1
|
Roma MG, Barosso IR, Miszczuk GS, Crocenzi FA, Pozzi EJS. Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis. Curr Med Chem 2019; 26:1113-1154. [DOI: 10.2174/0929867325666171205153204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022]
Abstract
Bile flow generation is driven by the vectorial transfer of osmotically active compounds from sinusoidal blood into a confined space, the bile canaliculus. Hence, localization of hepatocellular transporters relevant to bile formation is crucial for bile secretion. Hepatocellular transporters are localized either in the plasma membrane or in recycling endosomes, from where they can be relocated to the plasma membrane on demand, or endocytosed when the demand decreases. The balance between endocytic internalization/ exocytic targeting to/from this recycling compartment is therefore the main determinant of the hepatic capability to generate bile, and to dispose endo- and xenobiotics. Furthermore, the exacerbated endocytic internalization is a common pathomechanisms in both experimental and human cholestasis; this results in bile secretory failure and, eventually, posttranslational transporter downregulation by increased degradation. This review summarizes the proposed structural mechanisms accounting for this pathological condition (e.g., alteration of function, localization or expression of F-actin or F-actin/transporter cross-linking proteins, and switch to membrane microdomains where they can be readily endocytosed), and the mediators implicated (e.g., triggering of “cholestatic” signaling transduction pathways). Lastly, we discussed the efficacy to counteract the cholestatic failure induced by transporter internalization of a number of therapeutic experimental approaches based upon the use of compounds that trigger exocytic targetting of canalicular transporters (e.g., cAMP, tauroursodeoxycholate). This therapeutics may complement treatments aimed to transcriptionally improve transporter expression, by affording proper localization and membrane stability to the de novo synthesized transporters.
Collapse
Affiliation(s)
- Marcelo G. Roma
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Ismael R. Barosso
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Gisel S. Miszczuk
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Fernando A. Crocenzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Enrique J. Sánchez Pozzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| |
Collapse
|
2
|
Dihydromyricetin reverses MRP2-mediated MDR and enhances anticancer activity induced by oxaliplatin in colorectal cancer cells. Anticancer Drugs 2017; 28:281-288. [PMID: 27997436 DOI: 10.1097/cad.0000000000000459] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dihydromyricetin (DMY), extracted from the Chinese herbal medicine Ampelopsis grossedentata, possesses antitumor potential in different types of human cancer cells. Hence, its effects on drug resistance and molecular mechanisms in colorectal cancer (CRC) are still unknown. In our present study, we observed that DMY enhanced the chemosensitivity to oxaliplatin (OXA). DMY increased OXA-induced apoptosis and reduced 5(6)-carboxy-2',7'-dichlorofluorescein accumulation in OXA-resistant CRC HCT116/L-OHP cells. Our mechanistic study suggested that DMY treatment inhibited multidrug resistance protein 2 (MRP2) expression levels and promoter activity, indicating that DMY reduced not only MRP2 transcriptional and translational levels but also its function. Additional experiments indicated that the nuclear translocation of nuclear factor-erythroid 2 p45 related factor 2, a MRP2 regulator, was also inhibited by DMY. In summary, our study provided the first direct evidence that the inhibitory effects of DMY on MRP2 expression in OXA-resistant CRC cells were closely associated with the inhibition of nuclear factor-erythroid 2 p45 related factor 2 signaling. DMY could be a potential candidate for CRC chemotherapy.
Collapse
|
3
|
Tocchetti GN, Arias A, Arana MR, Rigalli JP, Domínguez CJ, Zecchinati F, Ruiz ML, Villanueva SSM, Mottino AD. Acute regulation of multidrug resistance-associated protein 2 localization and activity by cAMP and estradiol-17β-D-glucuronide in rat intestine and Caco-2 cells. Arch Toxicol 2017; 92:777-788. [PMID: 29052767 DOI: 10.1007/s00204-017-2092-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/05/2017] [Indexed: 01/27/2023]
Abstract
Multidrug resistance-associated protein 2 (MRP2) is an ATP-dependent transporter expressed at the brush border membrane of the enterocyte that confers protection against absorption of toxicants from foods or bile. Acute, short-term regulation of intestinal MRP2 activity involving changes in its apical membrane localization was poorly explored. We evaluated the effects of dibutyryl-cAMP (db-cAMP), a permeable analog of cAMP, and estradiol-17β-D-glucuronide (E217G), an endogenous derivative of estradiol, on MRP2 localization and activity using isolated rat intestinal sacs and Caco-2 cells, a model of human intestinal epithelium. Changes in MRP2 localization were studied by Western blotting of plasma membrane (PM) vs. intracellular membrane (IM) fractions in both experimental models, and additionally, by confocal microscopy in Caco-2 cells. After 30 min of exposure, db-cAMP-stimulated sorting of MRP2 from IM to PM both in rat jejunum and Caco-2 cells at 10 and 100 µM concentrations, respectively, with increased excretion of the model substrate 2,4-dinitrophenyl-S-glutathione. In contrast, E217G (400 µM) induced internalization of MRP2 together with impairment of transport activity. Confocal microscopy analysis performed in Caco-2 cells confirmed Western blot results. In the particular case of E217G, MRP2 exhibited an unusual pattern of staining compatible with endocytic vesiculation. Use of selective inhibitors demonstrated the participation of cAMP-dependent protein kinase and classic calcium-dependent protein kinase C in db-cAMP and E217G effects, respectively. We conclude that localization of MRP2 in intestine may be subjected to a dynamic equilibrium between plasma membrane and intracellular domains, thus allowing for rapid regulation of MRP2 function.
Collapse
Affiliation(s)
- Guillermo Nicolás Tocchetti
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Agostina Arias
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - Maite Rocío Arana
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - Juan Pablo Rigalli
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | - Felipe Zecchinati
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - María Laura Ruiz
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | | | - Aldo Domingo Mottino
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
4
|
Mitogen-activated protein kinases are involved in hepatocanalicular dysfunction and cholestasis induced by oxidative stress. Arch Toxicol 2016; 91:2391-2403. [PMID: 27913845 DOI: 10.1007/s00204-016-1898-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022]
Abstract
In previous studies, we showed that the pro-oxidant model agent tert-butyl hydroperoxide (tBuOOH) induces alterations in hepatocanalicular secretory function by activating Ca2+-dependent protein kinase C isoforms (cPKC), via F-actin disorganization followed by endocytic internalization of canalicular transporters relevant to bile formation (Mrp2, Bsep). Since mitogen-activated protein kinases (MAPKs) may be downstream effectors of cPKC, we investigated here the involvement of the MAPKs of the ERK1/2, JNK1/2, and p38MAPK types in these deleterious effects. tBuOOH (100 µM, 15 min) increased the proportion of the active, phosphorylated forms of ERK1/2, JNK1/2, and p38MAPK, and panspecific PKC inhibition with bisindolylmaleimide-1 (100 nM) or selective cPKC inhibition with Gö6976 (1 μM) prevented the latter two events. In isolated rat hepatocyte couplets, tBuOOH (100 µM, 15 min) decreased the canalicular vacuolar accumulation of the fluorescent Bsep and Mrp2 substrates, cholylglycylamido fluorescein, and glutathione-methylfluorescein, respectively, and selective inhibitors of ERK1/2 (PD098059), JNK1/2 (SP600125), and p38MAPK (SB203580) partially prevented these alterations. In in situ perfused rat livers, these three MAPK inhibitors prevented tBuOOH (75 µM)-induced impairment of bile flow and the decrease in the biliary output of the Bsep and Mrp2 substrates, taurocholate, and dinitrophenyl-S-glutathione, respectively. The changes in Bsep/Mrp2 and F-actin localization induced by tBuOOH, as assessed by (immuno)fluorescence staining followed by analysis of confocal images, were prevented total or partially by the MAPK inhibitors. We concluded that MAPKs of the ERK1/2, JNK1/2, and p38MAPK types are all involved in cholestasis induced by oxidative stress, by promoting F-actin rearrangement and further endocytic internalization of canalicular transporters critical for bile formation.
Collapse
|
5
|
Schonhoff CM, Park SW, Webster CR, Anwer MS. p38 MAPK α and β isoforms differentially regulate plasma membrane localization of MRP2. Am J Physiol Gastrointest Liver Physiol 2016; 310:G999-G1005. [PMID: 27012769 PMCID: PMC4935486 DOI: 10.1152/ajpgi.00005.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/14/2016] [Indexed: 01/31/2023]
Abstract
In hepatocytes, cAMP both activates p38 mitogen-activated protein kinase (MAPK) and increases the amount of multidrug resistance-associated protein-2 (MRP2) in the plasma membrane (PM-MRP2). Paradoxically, taurolithocholate (TLC) activates p38 MAPK but decreases PM-MRP2 in hepatocytes. These opposing effects of cAMP and TLC could be mediated via different p38 MAPK isoforms (α and β) that are activated differentially by upstream kinases (MKK3, MKK4, and MKK6). Thus we tested the hypothesis that p38α MAPK and p38β MAPK mediate increases and decreases in PM-MRP2 by cAMP and TLC, respectively. Studies were conducted in hepatocytes isolated from C57BL/6 wild-type (WT) and MKK3-knockout (MKK3(-/-)) mice and in a hepatoma cell line (HuH7) that overexpresses sodium-taurocholate cotransporting polypeptide (NTCP) (HuH-NTCP). Cyclic AMP activated MKK3, p38 MAPK, and p38α MAPK and increased PM-MRP2 in WT hepatocytes, but failed to activate p38α MAPK or increase PM-MRP2 in MKK3(-/-) hepatocytes. In contrast to cAMP, TLC activated total p38 MAPK but decreased PM-MRP2, and did not activate MKK3 or p38α MAPK in WT hepatocytes. In MKK3(-/-) hepatocytes, TLC still decreased PM-MRP2 and activated p38 MAPK, indicating that these effects are not MKK3-dependent. Additionally, TLC activated MKK6 in MKK3(-/-) hepatocytes, and small interfering RNA knockdown of p38β MAPK abrogated TLC-mediated decreases in PM-MRP2 in HuH-NTCP cells. Taken together, these results suggest that p38α MAPK facilitates plasma membrane insertion of MRP2 by cAMP, whereas p38β MAPK mediates retrieval of PM-MRP2 by TLC.
Collapse
Affiliation(s)
- Christopher M. Schonhoff
- 1Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Se Won Park
- 1Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Cynthia R.L. Webster
- 2Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - M. Sawkat Anwer
- 1Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| |
Collapse
|
6
|
Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance. Toxicol Appl Pharmacol 2015; 287:178-190. [PMID: 26049102 DOI: 10.1016/j.taap.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 01/18/2023]
Abstract
The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose-response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics.
Collapse
|
7
|
Guan PP, Yu X, Guo JJ, Wang Y, Wang T, Li JY, Konstantopoulos K, Wang ZY, Wang P. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization. Oncotarget 2015; 6:9140-9159. [PMID: 25823818 PMCID: PMC4496208 DOI: 10.18632/oncotarget.3274] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/07/2015] [Indexed: 12/28/2022] Open
Abstract
Interstitial fluid flow and associated shear stress are relevant mechanical signals in cartilage and bone (patho)physiology. However, their effects on chondrosarcoma cell motility, invasion and metastasis have yet to be delineated. Using human SW1353, HS.819.T and CH2879 chondrosarcoma cell lines as model systems, we found that fluid shear stress induces the accumulation of cyclic AMP (cAMP) and interleukin-1β (IL-1β), which in turn markedly enhance chondrosarcoma cell motility and invasion via the induction of matrix metalloproteinase-7 (MMP-7). Specifically, shear-induced cAMP and IL-1β activate PI3-K, ERK1/2 and p38 signaling pathways, which lead to the synthesis of MMP-7 via transactivating NF-κB and c-Jun in human chondrosarcoma cells. Importantly, MMP-7 upregulation in response to shear stress exposure has the ability to promote lung colonization of chondrosarcomas in vivo. These findings offer a better understanding of the mechanisms underlying MMP-7 activation in shear-stimulated chondrosarcoma cells, and provide insights on designing new therapeutic strategies to interfere with chondrosarcoma invasion and metastasis.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jian-Jun Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yue Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jia-Yi Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund 22184, Sweden
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States of America
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States of America
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland 21218, United States of America
- Johns Hopkins Physical Sciences-Oncology Center, Center of Cancer Nanotechonology Excellence, The Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
8
|
Anwer MS. Role of protein kinase C isoforms in bile formation and cholestasis. Hepatology 2014; 60:1090-7. [PMID: 24700589 PMCID: PMC4141907 DOI: 10.1002/hep.27088] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Transhepatic solute transport provides the osmotic driving force for canalicular bile formation. Choleretic and cholestatic agents affect bile formation, in part, by altering plasma membrane localizations of transporters involved in bile formation. These short-term dynamic changes in transporter location are highly regulated posttranslational events requiring various cellular signaling pathways. Interestingly, both choleretic and cholestatic agents activate the same intracellular signaling kinases, such as phosphoinositide-3-kinase (PI3K), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK). An emerging theme is that choleretic and cholestatic effects may be mediated by different isoforms of these kinases. This is most evident for PKC-mediated regulation of plasma membrane localization of Na+-taurocholate cotransporting polypeptide (NTCP) and multidrug resistance-associated protein 2 (MRP2) by conventional PKCα (cPKCα), novel PKCδ (nPKCδ), nPKCε, and atypical PKCζ (aPKCζ). aPKCζ may mediate choleretic effects by inserting NTCP into the plasma membrane, and nPKCε may mediate cholestatic effects by retrieving MRP2 from the plasma membrane. On the other hand, cPKCα and nPKCδ may be involved in choleretic, cholestatic, and anticholestatic effects by inserting, retrieving, and inhibiting retrieval of transporters, respectively. The effects of PKC isoforms may be mediated by phosphorylation of the transporters, actin binding proteins (radixin and myristoylated alanine-rich C kinase substrate), and Rab proteins. Human NTCP plays an important role in the entry of hepatitis B and D viruses into hepatocytes and consequent infection. Thus, PKCs, by regulating NTCP trafficking, may also play an important role in hepatic viral infections.
Collapse
Affiliation(s)
- M Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA
| |
Collapse
|
9
|
Erlinger S, Arias IM, Dhumeaux D. Inherited disorders of bilirubin transport and conjugation: new insights into molecular mechanisms and consequences. Gastroenterology 2014; 146:1625-38. [PMID: 24704527 DOI: 10.1053/j.gastro.2014.03.047] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/12/2014] [Accepted: 03/23/2014] [Indexed: 12/11/2022]
Abstract
Inherited disorders of bilirubin metabolism might reduce bilirubin uptake by hepatocytes, bilirubin conjugation, or secretion of bilirubin into bile. Reductions in uptake could increase levels of unconjugated or conjugated bilirubin (Rotor syndrome). Defects in bilirubin conjugation could increase levels of unconjugated bilirubin; the effects can be benign and frequent (Gilbert syndrome) or rare but severe, increasing the risk of bilirubin encephalopathy (Crigler-Najjar syndrome). Impairment of bilirubin secretion leads to accumulation of conjugated bilirubin (Dubin-Johnson syndrome). We review the genetic causes and pathophysiology of disorders of bilirubin transport and conjugation as well as clinical and therapeutic aspects. We also discuss the possible mechanisms by which hyperbilirubinemia protects against cardiovascular disease and the metabolic syndrome and the effects of specific genetic variants on drug metabolism and cancer development.
Collapse
Affiliation(s)
| | | | - Daniel Dhumeaux
- Henri Mondor Hospital, Créteil, University of Paris-Est, Créteil, France
| |
Collapse
|
10
|
Abstract
Bile acids, synthesized from cholesterol, are known to produce beneficial as well as toxic effects in the liver. The beneficial effects include choleresis, immunomodulation, cell survival, while the toxic effects include cholestasis, apoptosis and cellular toxicity. It is believed that bile acids produce many of these effects by activating intracellular signaling pathways. However, it has been a challenge to relate intracellular signaling to specific and at times opposing effects of bile acids. It is becoming evident that bile acids produce different effects by activating different isoforms of phosphoinositide 3-kinase (PI3K), Protein kinase Cs (PKCs), and mitogen activated protein kinases (MAPK). Thus, the apoptotic effect of bile acids may be mediated via PI3K-110γ, while cytoprotection induce by cAMP-GEF pathway involves activation of PI3K-p110α/β isoforms. Atypical PKCζ may mediate beneficial effects and nPKCε may mediate toxic effects, while cPKCα and nPKCδ may be involved in both beneficial and toxic effects of bile acids. The opposing effects of nPKCδ activation may depend on nPKCδ phosphorylation site(s). Activation of ERK1/2 and JNK1/2 pathway appears to mediate beneficial and toxic effects, respectively, of bile acids. Activation of p38α MAPK and p38β MAPK may mediate choleretic and cholestatic effects, respectively, of bile acids. Future studies clarifying the isoform specific effects on bile formation should allow us to define potential therapeutic targets in the treatment of cholestatic disorders.
Collapse
Affiliation(s)
- Mohammed Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA
| |
Collapse
|
11
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
12
|
Boaglio AC, Zucchetti AE, Toledo FD, Barosso IR, Sánchez Pozzi EJ, Crocenzi FA, Roma MG. ERK1/2 and p38 MAPKs are complementarily involved in estradiol 17ß-D-glucuronide-induced cholestasis: crosstalk with cPKC and PI3K. PLoS One 2012; 7:e49255. [PMID: 23166621 PMCID: PMC3498151 DOI: 10.1371/journal.pone.0049255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/04/2012] [Indexed: 12/17/2022] Open
Abstract
Objective The endogenous, cholestatic metabolite estradiol 17ß-d-glucuronide (E217G) induces endocytic internalization of the canalicular transporters relevant to bile formation, Bsep and Mrp2. We evaluated here whether MAPKs are involved in this effect. Design ERK1/2, JNK1/2, and p38 MAPK activation was assessed by the increase in their phosphorylation status. Hepatocanalicular function was evaluated in isolated rat hepatocyte couplets (IRHCs) by quantifying the apical secretion of fluorescent Bsep and Mrp2 substrates, and in isolated, perfused rat livers (IPRLs), using taurocholate and 2,4-dinitrophenyl-S-glutathione, respectively. Protein kinase participation in E217G-induced secretory failure was assessed by co-administering selective inhibitors. Internalization of Bsep/Mrp2 was assessed by confocal microscopy and image analysis. Results E217G activated all kinds of MAPKs. The PI3K inhibitor wortmannin prevented ERK1/2 activation, whereas the cPKC inhibitor Gö6976 prevented p38 activation, suggesting that ERK1/2 and p38 are downstream of PI3K and cPKC, respectively. The p38 inhibitor SB203580 and the ERK1/2 inhibitor PD98059, but not the JNK1/2 inhibitor SP600125, partially prevented E217G-induced changes in transporter activity and localization in IRHCs. p38 and ERK1/2 co-inhibition resulted in additive protection, suggesting complementary involvement of these MAPKs. In IPRLs, E217G induced endocytosis of canalicular transporters and a rapid and sustained decrease in bile flow and biliary excretion of Bsep/Mrp2 substrates. p38 inhibition prevented this initial decay, and the internalization of Bsep/Mrp2. Contrarily, ERK1/2 inhibition accelerated the recovery of biliary secretion and the canalicular reinsertion of Bsep/Mrp2. Conclusions cPKC/p38 MAPK and PI3K/ERK1/2 signalling pathways participate complementarily in E217G-induced cholestasis, through internalization and sustained intracellular retention of canalicular transporters, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando A. Crocenzi
- Institute of Experimental Physiology, National Scientific and Technical Research Council/National University of Rosario, Rosario, Argentina
- * E-mail: (FAC); (MGR)
| | - Marcelo G. Roma
- Institute of Experimental Physiology, National Scientific and Technical Research Council/National University of Rosario, Rosario, Argentina
- * E-mail: (FAC); (MGR)
| |
Collapse
|