1
|
Ghenu MI, Dragoş D, Manea MM, Ionescu D, Negreanu L. Pathophysiology of sepsis‐induced cholestasis: A review. JGH OPEN 2022; 6:378-387. [PMID: 35774351 PMCID: PMC9218521 DOI: 10.1002/jgh3.12771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/08/2022] [Indexed: 11/17/2022]
Abstract
Sepsis is a critical condition resulting from the excessive activation of the inflammatory/immune system in response to an infection, with high mortality if treatment is not administered promptly. One of the many possible complications of sepsis is liver dysfunction with consequent cholestasis. The aim of this paper is to review the main mechanisms involved in the development of cholestasis in sepsis. Cholestasis in a septic patient must raise the suspicion that it is the consequence of the septic condition and limit the laborious attempts of finding a hepatic or biliary disease. Prompt antibiotic administration when sepsis is suspected is essential and may improve liver enzymes. Cholestasis is a syndrome with a variety of etiologies, among which sepsis is frequently overlooked, despite a number of studies and case reports in the literature demonstrating not only the association between sepsis and cholestasis but also the role of cholestasis as a prognostic factor for sepsis‐induced death.
Collapse
Affiliation(s)
- Maria Iuliana Ghenu
- 1st Department Medical Semiology (MIG, DD, DI), 6th Department Clinical Neurosciences (MMM), 5th Department Internal Medicine (LN) “Carol Davila” University of Medicine and Pharmacy Bucharest Romania
- 1st Internal Medicine Clinic University Emergency Hospital Bucharest Romania
| | - Dorin Dragoş
- 1st Department Medical Semiology (MIG, DD, DI), 6th Department Clinical Neurosciences (MMM), 5th Department Internal Medicine (LN) “Carol Davila” University of Medicine and Pharmacy Bucharest Romania
- 1st Internal Medicine Clinic University Emergency Hospital Bucharest Romania
| | - Maria Mirabela Manea
- 1st Department Medical Semiology (MIG, DD, DI), 6th Department Clinical Neurosciences (MMM), 5th Department Internal Medicine (LN) “Carol Davila” University of Medicine and Pharmacy Bucharest Romania
- Neurology Department National Institute of Neurology and Cerebrovascular Diseases Bucharest Romania
| | - Dorin Ionescu
- 1st Department Medical Semiology (MIG, DD, DI), 6th Department Clinical Neurosciences (MMM), 5th Department Internal Medicine (LN) “Carol Davila” University of Medicine and Pharmacy Bucharest Romania
- Nephrology Clinic University Emergency Hospital Bucharest Romania
| | - Lucian Negreanu
- 1st Department Medical Semiology (MIG, DD, DI), 6th Department Clinical Neurosciences (MMM), 5th Department Internal Medicine (LN) “Carol Davila” University of Medicine and Pharmacy Bucharest Romania
- Gastroenterology Clinic University Emergency Hospital Bucharest Romania
| |
Collapse
|
2
|
HS1 deficiency protects against sepsis by attenuating neutrophil-inflicted lung damage. Eur J Cell Biol 2022; 101:151214. [PMID: 35286924 PMCID: PMC10170315 DOI: 10.1016/j.ejcb.2022.151214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Sepsis remains an important health problem worldwide due to inefficient treatments often resulting in multi-organ failure. Neutrophil recruitment is critical during sepsis. While neutrophils are required to combat invading bacteria, excessive neutrophil recruitment contributes to tissue damage due to their arsenal of molecular weapons that do not distinguish between host and pathogen. Thus, neutrophil recruitment needs to be fine-tuned to ensure bacterial killing, while avoiding neutrophil-inflicted tissue damage. We recently showed that the actin-binding protein HS1 promotes neutrophil extravasation; and hypothesized that HS1 is also a critical regulator of sepsis progression. We evaluated the role of HS1 in a model of lethal sepsis induced by cecal-ligation and puncture. We found that septic HS1-deficient mice had a better survival rate compared to WT mice due to absence of lung damage. Lungs of septic HS1-deficient mice showed less inflammation, fibrosis, and vascular congestion. Importantly, systemic CLP-induced neutrophil recruitment was attenuated in the lungs, the peritoneum and the cremaster in the absence of HS1. Lungs of HS1-deficient mice produced significantly more interleukin-10. Compared to WT neutrophils, those HS1-deficient neutrophils that reached the lungs had increased surface levels of Gr-1, ICAM-1, and L-selectin. Interestingly, HS1-deficient neutrophils had similar F-actin content and phagocytic activity, but they failed to polymerize actin and deform in response to CXCL-1 likely explaining the reduced systemic neutrophil recruitment in HS1-deficient mice. Our data show that HS1 deficiency protects against sepsis by attenuating neutrophil recruitment to amounts sufficient to combat bacterial infection, but insufficient to induce tissue damage.
Collapse
|
3
|
Sommerfeld O, Medyukhina A, Neugebauer S, Ghait M, Ulferts S, Lupp A, König R, Wetzker R, Schulz S, Figge MT, Bauer M, Press AT. Targeting Complement C5a Receptor 1 for the Treatment of Immunosuppression in Sepsis. Mol Ther 2021; 29:338-346. [PMID: 32966769 PMCID: PMC7791006 DOI: 10.1016/j.ymthe.2020.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/25/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Complement factor C5a was originally identified as a powerful promoter of inflammation through activation of the C5a receptor 1 (C5ar1). Recent evidence suggests involvement of C5a not only in pro- but also in anti-inflammatory signaling. The present study aims to unveil the role of C5ar1 as potential therapeutic target in a murine sepsis model. Our study discloses a significantly increased survival in models of mild to moderate but not severe sepsis of C5ar1-deficient mice. The decreased mortality of C5ar1-deficient mice is accompanied by improved pathogen clearance and largely preserved liver function. C5ar1-deficient mice exhibited a significantly increased production of the pro-inflammatory mediator interferon-γ (IFN-γ) and a decreased production of the anti-inflammatory cytokine interleukin-10 (IL-10). Together, these data uncover C5a signaling as a mediator of immunosuppressive processes during sepsis and describe the C5ar1 and related changes of the IFN-γ to IL-10 ratio as markers for the immunological (dys)function accompanying sepsis.
Collapse
Affiliation(s)
- Oliver Sommerfeld
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Anna Medyukhina
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Sophie Neugebauer
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Mohamed Ghait
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Svenja Ulferts
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Rainer König
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany; Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, Jena, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Stefan Schulz
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany; Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Marc Thilo Figge
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany; Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.
| |
Collapse
|
4
|
Kawamoto E, Nago N, Okamoto T, Gaowa A, Masui-Ito A, Sakakura Y, Akama Y, Soe ZY, Prajuabjinda O, Darkwah S, Appiah MG, Myint PK, Obeng G, Park EJ, Imai H, Shimaoka M. Anti-adhesive effects of human soluble thrombomodulin and its domains. Biochem Biophys Res Commun 2019; 511:312-317. [PMID: 30777333 DOI: 10.1016/j.bbrc.2019.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 11/29/2022]
Abstract
We reported previously that leukocyte β2 integrins (LFA-1 and Mac-1) bind to the serine/threonine-rich domain of thrombomodulin (TM) expressed on vascular endothelial cells (VECs). Recombinant human soluble TM (rhsTM, TMD123) has been approved as a therapeutic drug for septic disseminated intravascular coagulation. However, the roles of TMD123 on the adhesion of leukocyte integrins to VECs remain unclear. In the current study, we have revealed that an integrin-dependent binding between human peripheral blood mononuclear cells (PBMCs) and VECs was inhibited by TMD123. Next, using mutant proteins composed of isolated TM extracellular domains, we examined the structural characteristics responsible for the anti-adhesion properties of TMD123. Namely, we investigated whether the effects of the binding of TM and leukocytes was inhibited by the administration of TMD123. In fact, we confirmed that TMD123, TMD1, and TMD3 inhibited the binding of PBMCs to the immobilized recombinant proteins TMD123 and TMD3. These results indicate that TMD123 inhibited the adhesion of leukocytes to endothelial cells via β2 integrins and endothelial TM. Moreover, since TMD1 might bind to leukocytes via other adhesion receptors than integrins, TMD1 and TMD3 appear to inhibit leukocyte binding to TM on VECs via different mechanisms. In summary, TMD123 (rhsTM), TMD1 or TMD3 is a promising treatment option for sepsis that attenuates integrin-dependent binding of leukocytes to VECs, and may inhibit the undesirable adhesion and migration of leukocytes to VECs in sepsis.
Collapse
Affiliation(s)
- Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan.
| | - Nodoka Nago
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan; Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka-city, Mie, 510-0293, Japan
| | - Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane, 693-8501, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Asami Masui-Ito
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Yosuke Sakakura
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Yuichi Akama
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Zay Yar Soe
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Onmanee Prajuabjinda
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Gideon Obeng
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Hiroshi Imai
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| |
Collapse
|
5
|
Wetterholm E, Linders J, Merza M, Regner S, Thorlacius H. Platelet-derived CXCL4 regulates neutrophil infiltration and tissue damage in severe acute pancreatitis. Transl Res 2016; 176:105-18. [PMID: 27183218 DOI: 10.1016/j.trsl.2016.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Platelets are known to play an important role in acute pancreatitis (AP) via promotion of neutrophil accumulation, although mechanisms behind platelet-dependent accumulation of neutrophils in the pancreas remain elusive. Platelets contain a wide spectrum of different pro-inflammatory compounds, such as chemokines. CXCL4 (platelet factor 4) is one of the most abundant chemokine in platelets, and we hypothesized that CXCL4 might be involved in platelet-dependent accumulation of neutrophils in the inflamed pancreas. The aim of this study was to examine the role of CXCL4 in severe AP. Pancreatitis was provoked by infusion of taurocholate into the pancreatic duct or by intraperitoneal administration of L-arginine in C57BL/6 mice. Animals were treated with an antibody against platelets or CXCL4 before induction of pancreatitis. Plasma and lung levels of CXCL2, CXCL4, and interleukin (IL)-6 were determined by use of enzyme-linked immunosorbent assay. Flow cytometry was used to examine surface expression of macrophage-1 (Mac-1) on neutrophils. Plasma was obtained from healthy individuals (controls) and patients with AP. Challenge with taurocholate increased plasma levels of CXCL4, and depletion of platelets markedly reduced plasma levels of CXCL4 indicating that circulating levels of CXCL4 are mainly derived from platelets in AP. Inhibition of CXCL4 reduced taurocholate-induced neutrophil recruitment, IL-6 secretion, edema formation, amylase release, and tissue damage in the pancreas. However, immunoneutralization of CXCL4 had no effect on CXCL2-evoked neutrophil expression of Mac-1 or chemotaxis in vitro, suggesting an indirect effect of CXCL4 on neutrophil recruitment in AP. Targeting CXCL4 significantly attenuated plasma and lung levels of CXCL2, which is a potent neutrophil chemoattractant, and inhibition of the CXCL2 receptor attenuated neutrophil infiltration and tissue damage in the inflamed pancreas. A significant role of CXCL4 was confirmed in an alternate model of AP induced by L-arginine challenge. Moreover, patients with AP had significantly increased plasma levels of CXCL4 compared with healthy controls. These findings' results suggest that platelet-derived CXCL4 is a potent stimulator of neutrophil accumulation in AP and that this is mediated via generation of CXCL2 in the inflamed pancreas. We conclude that CXCL4 plays an important role in pancreatic inflammation and that targeting CXCL4 might be a useful way to ameliorate tissue damage in AP.
Collapse
Affiliation(s)
- Erik Wetterholm
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| | - Johan Linders
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| | - Mohammed Merza
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| | - Sara Regner
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden.
| |
Collapse
|
6
|
Wu Y, Ren J, Zhou B, Ding C, Chen J, Wang G, Gu G, Wu X, Liu S, Hu D, Li J. Gene silencing of non-obese diabetic receptor family (NLRP3) protects against the sepsis-induced hyper-bile acidaemia in a rat model. Clin Exp Immunol 2015; 179:277-93. [PMID: 25228381 DOI: 10.1111/cei.12457] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2014] [Indexed: 01/08/2023] Open
Abstract
The role of NOD-like receptor family (NLRP3) has been confirmed in various inflammatory diseases. The association between NLRP3 and hyper-bileacidaemia during the sepsis remains unclear. We aimed to investigate whether NLRP3 silencing protects against the sepsis-induced hyper-bileacidaemia. Sepsis was induced by caecum ligation and puncture (CLP). Gene silencing of NLRP3 was performed by injecting rats with NLRP3 short hairpin RNA plasmids (NLRP3 shRNA) 48 h before surgery. Rats were divided into four groups: group 1: sham; group 2: sepsis; group 3: NLRP3 shRNA + sepsis (called the 'NLRP3 shRNA' group); and group 4: scrambled shRNA + sepsis (called the 'scrambled shRNA' group). The serum levels of bile acids, hepatic expression of hepatocyte membrane transporters, hepatic cytokine levels and behaviours of immune cells were compared among the groups. Hepatic NLRP3 expression was increased dramatically during the sepsis, but was suppressed by pretreatment with NLRP3 shRNA. Compared with rats in the sepsis and the scrambled shRNA groups, rats in the NLRP3 shRNA group exhibited significantly decreased serum levels of glycine and taurine conjugated-bile acids, with rehabilitated expression of hepatocyte transporters, suppressed hepatic cytokine levels, decreased hepatic neutrophils infiltration and attenuated macrophages pyroptosis. Gene silencing of NLRP3 ameliorates sepsis-induced hyper-bileacidaemia by rehabilitating hepatocyte transporter expression, reducing hepatic cytokine levels, neutrophil infiltration and macrophages pyroptosis. NLRP3 may be a pivotal target for sepsis management.
Collapse
Affiliation(s)
- Y Wu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
RETRACTED ARTICLE: Short hairpin RNA gene silencing of NLRP3 confers protection against sepsis-induced hyperbilirubinemia in a rat model. Immunol Res 2015; 62:127. [PMID: 25550085 DOI: 10.1007/s12026-014-8613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Merza M, Rahman M, Zhang S, Hwaiz R, Regner S, Schmidtchen A, Thorlacius H. Human thrombin-derived host defense peptides inhibit neutrophil recruitment and tissue injury in severe acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G914-21. [PMID: 25214403 DOI: 10.1152/ajpgi.00237.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Severe acute pancreatitis (AP) is characterized by leukocyte infiltration and tissue injury. Herein, we wanted to examine the potential effects of thrombin-derived host defense peptides (TDPs) in severe AP. Pancreatitis was provoked by infusion of taurocholate into the pancreatic duct or by intraperitoneal administration of l-arginine in C57BL/6 mice. Animals were treated with the TDPs GKY20 and GKY25 or a control peptide WFF25 30 min before induction of AP. TDPs reduced blood amylase levels, neutrophil infiltration, hemorrhage, necrosis, and edema formation in the inflamed pancreas. Treatment with TDPs markedly attenuated the taurocholate-induced increase in plasma levels of CXCL2 and interleukin-6. Moreover, administration of TDPs decreased histone 3, histone 4, and myeloperoxidase levels in the pancreas in response to taurocholate challenge. Interestingly, administration of TDPs abolished neutrophil expression of Mac-1 in mice with pancreatitis. In addition, TDPs inhibited CXCL2-induced chemotaxis of isolated neutrophils in vitro. Fluorescent-labeled TDP was found to directly bind to isolated neutrophils. Finally, a beneficial effect of TDPs was confirmed in l-arginine-induced pancreatitis. Our novel results demonstrate that TDPs exert protective effects against pathological inflammation and tissue damage in AP. These findings suggest that TDPs might be useful in the management of patients with severe AP.
Collapse
Affiliation(s)
- Mohammed Merza
- Department of Clinical Sciences, Section of Surgery, Malmö, Lund University, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Section of Surgery, Malmö, Lund University, Sweden
| | - Songen Zhang
- Department of Clinical Sciences, Section of Surgery, Malmö, Lund University, Sweden
| | - Rundk Hwaiz
- Department of Clinical Sciences, Section of Surgery, Malmö, Lund University, Sweden
| | - Sara Regner
- Department of Clinical Sciences, Section of Surgery, Malmö, Lund University, Sweden
| | - Artur Schmidtchen
- Department of Clinical Sciences, Section of Dermatology and Venereology, Lund, Lund University, Sweden; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Henrik Thorlacius
- Department of Clinical Sciences, Section of Surgery, Malmö, Lund University, Sweden;
| |
Collapse
|
9
|
Abstract
OBJECTIVES The signaling mechanisms controlling organ damage in the pancreas in severe acute pancreatitis (AP) remain elusive. Herein, we examined the role of farnesyltransferase signaling in AP. METHODS Pancreatitis was provoked by the infusion of taurocholate into the pancreatic duct in C57BL/6 mice. Animals were treated with a farnesyltransferase inhibitor FTI-277 (25 mg/kg) before pancreatitis induction. RESULTS FTI-277 decreased the blood amylase levels, pancreatic neutrophil infiltration, hemorrhage, and edema formation in the pancreas in mice challenged with taurocholate. Farnesyltransferase inhibition reduced the myeloperoxidase levels in the pancreas and lungs in response to taurocholate infusion. However, FTI-277 had no effect on the taurocholate-provoked formation of macrophage inflammatory protein-2 in the pancreas. Interestingly, farnesyltransferase inhibition abolished the neutrophil expression of macrophage-1 antigen in mice with pancreatitis. In addition, FTI-277 decreased the taurocholate-induced activation of the rat sarcoma protein in the pancreas. An important role of farnesyltransferase was confirmed in L-arginine-induced pancreatitis. CONCLUSIONS These results demonstrate that farnesyltransferase signaling plays a significant role in AP by regulating neutrophil infiltration and tissue injury via the neutrophil expression of macrophage-1 antigen. Thus, our findings not only elucidate novel signaling mechanisms in pancreatitis but also suggest that farnesyltransferase might constitute a target in the management of severe AP.
Collapse
|
10
|
Wang D, Yin Y, Yao Y. Advances in sepsis-associated liver dysfunction. BURNS & TRAUMA 2014; 2:97-105. [PMID: 27602369 PMCID: PMC5012093 DOI: 10.4103/2321-3868.132689] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/14/2014] [Accepted: 04/24/2014] [Indexed: 05/06/2023]
Abstract
Recent studies have revealed liver dysfunction as an early event in sepsis. Sepsis-associated liver dysfunction is mainly resulted from systemic or microcirculatory disturbances, spillovers of bacteria and endotoxin (lipopolysaccharide, LPS), and subsequent activation of inflammatory cytokines as well as mediators. Three main cell types of the liver which contribute to the hepatic response in sepsis are Kupffer cells (KCs), hepatocytes and liver sinusoidal endothelial cells (LSECs). In addition, activated neutrophils, which are also recruited to the liver and produce potentially destructive enzymes and oxygen-free radicals, may further enhance acute liver injury. The clinical manifestations of sepsis-associated liver dysfunction can roughly be divided into two categories: Hypoxic hepatitis and jaundice. The latter is much more frequent in the context of sepsis. Hepatic failure is traditionally considered as a late manifestation of sepsis-induced multiple organ dysfunction syndrome. To date, no specific therapeutics for sepsis-associated liver dysfunction are available. Treatment measure is mainly focused on eradication of the underlying infection and management for severe sepsis. A better understanding of the pathophysiology of liver response in sepsis may lead to further increase in survival rates.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, No.51 Fucheng Road, Haidian District, Beijing, 100048 China
- Department of ICU, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Yimei Yin
- Department of ICU, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Yongming Yao
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, No.51 Fucheng Road, Haidian District, Beijing, 100048 China
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Sepsis elicits profound changes in the concentrations of plasma proteins synthesized by liver parenchymal cells referred to as acute-phase proteins. Mechanisms controlling this orchestrated response include release of cytokines that induce acute-phase proteins, while other 'house-keeping' genes are downregulated. RECENT FINDINGS Although some acute-phase proteins help to control damage, functions of many other acute-phase reactants remain obscure. Changes in acute-phase gene expression are primarily subject to transcriptional regulation and can be comprehensively monitored by array techniques. Emerging evidence from such strategies implies that in addition to a 'common host response' also highly specific pathways are induced in specific disease contexts. Applying a systems biology approach to the integrated response of the hepatocyte to infection would suggest that the reprogramming of metabolic functions occurs in parallel with a severity-dependent disruption of phase I and II biotransformation and canalicular transport, that is, excretory failure. Although traditionally bilirubin serves to monitor excretion, emerging evidence suggests that bile acids indicate liver dysfunction with higher sensitivity and specificity. SUMMARY Sepsis induces reprogramming of the hepatic transcriptome. This includes induction of adaptive acute-phase proteins but also repression of phase I, II metabolism and transport with important implications for monitoring and pharmacotherapy.
Collapse
|
12
|
Merza M, Wetterholm E, Zhang S, Regner S, Thorlacius H. Inhibition of geranylgeranyltransferase attenuates neutrophil accumulation and tissue injury in severe acute pancreatitis. J Leukoc Biol 2013; 94:493-502. [PMID: 23744643 DOI: 10.1189/jlb.1112546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Leukocyte infiltration and acinar cell necrosis are hallmarks of severe AP, but the signaling pathways regulating inflammation and organ injury in the pancreas remain elusive. In the present study, we investigated the role of geranylgeranyltransferase in AP. Male C57BL/6 mice were treated with a geranylgeranyltransferase inhibitor GGTI-2133 (20 mg/kg) prior to induction of pancreatitis by infusion of taurocholate into the pancreatic duct. Pretreatment with GGTI-2133 reduced plasma amylase levels, pancreatic neutrophil recruitment, hemorrhage, and edema formation in taurocholate-evoked pancreatitis. Moreover, administration of GGTI-2133 decreased the taurocholate-induced increase of MPO activity in the pancreas and lung. Treatment with GGTI-2133 markedly reduced levels of CXCL2 in the pancreas and IL-6 in the plasma in response to taurocholate challenge. Notably, geranylgeranyltransferase inhibition abolished neutrophil expression of Mac-1 in mice with pancreatitis. Finally, inhibition of geranylgeranyltransferase had no direct effect on secretagogue-induced activation of trypsinogen in pancreatic acinar cells in vitro. A significant role of geranylgeranyltransferase was confirmed in an alternate model of AP induced by L-arginine challenge. Our findings show that geranylgeranyltransferase regulates neutrophil accumulation and tissue damage via expression of Mac-1 on neutrophils and CXCL2 formation in AP. Thus, these results reveal new signaling mechanisms in pancreatitis and indicate that targeting geranylgeranyltransferase might be an effective way to ameliorate severe AP.
Collapse
Affiliation(s)
- Mohammed Merza
- Department of Surgery, Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | |
Collapse
|
13
|
Recknagel P, Gonnert FA, Westermann M, Lambeck S, Lupp A, Rudiger A, Dyson A, Carré JE, Kortgen A, Krafft C, Popp J, Sponholz C, Fuhrmann V, Hilger I, Claus RA, Riedemann NC, Wetzker R, Singer M, Trauner M, Bauer M. Liver dysfunction and phosphatidylinositol-3-kinase signalling in early sepsis: experimental studies in rodent models of peritonitis. PLoS Med 2012; 9:e1001338. [PMID: 23152722 PMCID: PMC3496669 DOI: 10.1371/journal.pmed.1001338] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 10/02/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. METHODS AND FINDINGS In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). CONCLUSIONS Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors' Summary.
Collapse
Affiliation(s)
- Peter Recknagel
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Falk A. Gonnert
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | - Sandro Lambeck
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Department of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Alain Rudiger
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Jane E. Carré
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Andreas Kortgen
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | - Jürgen Popp
- Institute of Photonic Technology, Jena, Germany
| | - Christoph Sponholz
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Valentin Fuhrmann
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ingrid Hilger
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Ralf A. Claus
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Niels C. Riedemann
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Reinhard Wetzker
- Department of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Bauer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- * E-mail:
| |
Collapse
|
14
|
Awla D, Abdulla A, Zhang S, Roller J, Menger MD, Regnér S, Thorlacius H. Lymphocyte function antigen-1 regulates neutrophil recruitment and tissue damage in acute pancreatitis. Br J Pharmacol 2011; 163:413-23. [PMID: 21244370 DOI: 10.1111/j.1476-5381.2011.01225.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Leucocyte infiltration is a rate-limiting step in the pathophysiology of acute pancreatitis (AP) although the adhesive mechanisms supporting leucocyte-endothelium interactions in the pancreas remain elusive. The aim of this study was to define the role of lymphocyte function antigen-1 (LFA-1) in regulating neutrophil-endothelium interactions and tissue damage in severe AP. EXPERIMENTAL APPROACH Pancreatitis was induced by retrograde infusion of sodium taurocholate into the pancreatic duct in mice. LFA-1 gene-targeted mice and an antibody directed against LFA-1 were used to define the role of LFA-1. KEY RESULTS Taurocholate challenge caused a clear-cut increase in serum amylase, neutrophil infiltration, CXCL2 (macrophage inflammatory protein-2) formation, trypsinogen activation and tissue damage in the pancreas. Inhibition of LFA-1 function markedly reduced taurocholate-induced amylase levels, accumulation of neutrophils, production of CXC chemokines and tissue damage in the pancreas. Notably, intravital microscopy revealed that inhibition of LFA-1 abolished taurocholate-induced leucocyte adhesion in postcapillary venules of the pancreas. In addition, pulmonary infiltration of neutrophils was attenuated by inhibition of LFA-1 in mice challenged with taurocholate. However, interference with LFA-1 had no effect on taurocholate-induced activation of trypsinogen in the pancreas. CONCLUSIONS AND IMPLICATIONS Our novel data suggest that LFA-1 plays a key role in regulating neutrophil recruitment, CXCL2 formation and tissue injury in the pancreas. Moreover, these results suggest that LFA-1-mediated inflammation is a downstream component of trypsinogen activation in the pathophysiology of AP. Thus, we conclude that targeting LFA-1 may be a useful approach to protect against pathological inflammation in the pancreas.
Collapse
Affiliation(s)
- Darbaz Awla
- Department of Clinical Sciences, Malmö, Section of Surgery, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Awla D, Hartman H, Abdulla A, Zhang S, Rahman M, Regnér S, Thorlacius H. Rho-kinase signalling regulates trypsinogen activation and tissue damage in severe acute pancreatitis. Br J Pharmacol 2011; 162:648-58. [PMID: 20942858 DOI: 10.1111/j.1476-5381.2010.01060.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Severe acute pancreatitis (SAP) is characterized by trypsinogen activation, infiltration of leucocytes and tissue necrosis but the intracellular signalling mechanisms regulating organ injury in the pancreas remain elusive. Rho-kinase is a potent regulator of specific cellular processes effecting several pro-inflammatory activities. Herein, we examined the role of Rho-kinase signalling in acute pancreatitis. EXPERIMENTAL APPROACH Pancreatitis was induced by infusion of taurocholate into the pancreatic duct in C57BL/6 mice. Animals were treated with a Rho-kinase inhibitor Y-27632 (0.5-5 mg·kg⁻¹) before induction of pancreatitis. KEY RESULTS Taurocholate infusion caused a clear-cut increase in blood amylase, pancreatic neutrophil infiltration, acinar cell necrosis and oedema formation in the pancreas. Levels of pancreatic myeloperoxidase (MPO), macrophage inflammatory protein-2 (MIP-2), trypsinogen activation peptide (TAP) and lung MPO were significantly increased, indicating local and systemic disease. Inhibition of Rho-kinase activity dose-dependently protected against pancreatitis. For example, 5 mg·kg⁻¹ Y-27632 reduced acinar cell necrosis, leucocyte infiltration and pancreatic oedema by 90%, 89% and 58%, respectively, as well as tissue levels of MPO by 75% and MIP-2 by 84%. Moreover, Rho-kinase inhibition decreased lung MPO by 75% and blood amylase by 83%. Pancreatitis-induced TAP levels were reduced by 61% in Y-27632-treated mice. Inhibition of Rho-kinase abolished secretagogue-induced activation of trypsinogen in pancreatic acinar cells in vitro. CONCLUSIONS AND IMPLICATIONS Our novel data suggest that Rho-kinase signalling plays an important role in acute pancreatitis by regulating trypsinogen activation and subsequent CXC chemokine formation, neutrophil infiltration and tissue injury. Thus, these results indicate that Rho-kinase may constitute a novel target in the management of SAP.
Collapse
Affiliation(s)
- D Awla
- Department of Surgery, Malmö University Hospital, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
16
|
Abdulla A, Awla D, Jeppsson B, Regnér S, Thorlacius H. CD40L is not involved in acute experimental pancreatitis. Eur J Pharmacol 2011; 659:85-8. [PMID: 21419763 DOI: 10.1016/j.ejphar.2011.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/17/2011] [Accepted: 03/08/2011] [Indexed: 01/02/2023]
Abstract
Recent data suggest that platelets not only control thrombosis and hemostasis but may also regulate inflammatory processes such as acute pancreatitis. However, the specific role of platelet-derived mediators in the pathophysiology of acute pancreatitis is not known. Herein, we examined the role of CD40 ligand (CD40L, CD154) in different models of acute pancreatitis. Acute pancreatitis was induced by repetitive caerulein administration (50μg/kg, i.p.) or infusion of sodium taurocholate (5%-10μl) into the pancreatic duct in wild-type C57BL/6 and CD40L-deficient mice. Neutrophil infiltration, myeloperoxidase (MPO), macrophage inflammatory protein-2 (MIP-2) levels, acinar cell necrosis, edema and hemorrhage in the pancreas as well as serum amylase activity and lung levels of MPO were quantified 24h after induction of acute pancreatitis. Caerulein and taurocholate challenge caused a clear-cut pancreatic damage characterized by increased acinar cell necrosis, neutrophil infiltration, focal hemorrhage, edema formation as well as increased levels of serum amylase and MIP-2 in the pancreas and lung MPO and histological damage. Notably, CD40L gene-deficient animals exhibited a similar phenotype as wild-type mice after challenge with caerulein and taurocholate. Similarly, administration of an antibody directed against CD40L had no effect against acute pancreatitis. Our data suggest that CD40L does not play a functional role in experimental acute pancreatitis. Thus, other candidates than CD40L needs to be explored in order to identify platelet-derived mediators in the pathophysiology of acute pancreatitis.
Collapse
|
17
|
Ploppa A, Schmidt V, Hientz A, Reutershan J, Haeberle HA, Nohé B. Mechanisms of leukocyte distribution during sepsis: an experimental study on the interdependence of cell activation, shear stress and endothelial injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R201. [PMID: 21059228 PMCID: PMC3220016 DOI: 10.1186/cc9322] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/22/2010] [Accepted: 11/08/2010] [Indexed: 01/06/2023]
Abstract
Introduction This study was carried out to determine whether interactions of cell activation, shear stress and platelets at sites of endothelial injury explain the paradoxical maldistribution of activated leukocytes during sepsis away from local sites of infection towards disseminated leukocyte accumulation at remote sites. Methods Human umbilical venous endothelial cells (HUVEC) and polymorphonuclear neutrophils (PMN) were activated with lipopolysaccharide at 100 and 10 ng/ml to achieve adhesion molecule patterns as have been reported from the hyper- and hypo-inflammatory stage of sepsis. To examine effects of leukocyte activation on leukocyte-endothelial interactions, activated HUVEC were perfused with activated and non-activated neutrophils in a parallel plate flow chamber. Adhesion molecule expression and function were assessed by flow cytometry and blocking antibodies. In a subset of experiments the sub-endothelial matrix was exposed and covered with platelets to account for the effects of endothelial injury. To investigate interactions of these effects with flow, all experiments were done at various shear stress levels (3 to 0.25 dyne/cm2). Leukocyte-endothelial interactions were analyzed by videomicroscopy and analysis of covariance. Results Activation of neutrophils rendered adhesion increasingly dependent on shear stress reduction. At normal shear stress, shedding of L-selectin decreased adhesion by 56%. Increased rolling fractions of activated PMN at low shear stress revealed impaired integrin affinity despite numerical up-regulation of CD11b. On sub-maximally activated, intact HUVEC shear stress became the prevailing determinant of adhesion. Presence of a platelet-covered injury with high surface density of P-selectin was the strongest variable for adhesion. When compared to maximally activated HUVEC, platelets increased neutrophil adhesion by 2.7-fold. At sub-maximal activation a 10-fold increase was observed (P < 0.05 for all). Conclusions L-selectin shedding and integrin dysfunction render leukocyte adhesion increasingly susceptible to shear stress and alternative adhesion receptors. In combination, these effects inhibit recruitment to normally perfused sites with intact endothelium and favor maldistribution towards sites with compromised perfusion or endothelial injury.
Collapse
Affiliation(s)
- Annette Ploppa
- Department of Anesthesiology and Intensive Care Medicine, Tuebingen University Hospital, Eberhard-Karls University, Hoppe-Seyler-Str, 3, Tuebingen, 72076, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Abdulla A, Awla D, Hartman H, Rahman M, Jeppsson B, Regnér S, Thorlacius H. Role of platelets in experimental acute pancreatitis. Br J Surg 2010; 98:93-103. [PMID: 20882560 DOI: 10.1002/bjs.7271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND Platelets not only control thrombosis and haemostasis but may also regulate inflammatory processes. Acute pancreatitis (AP) is characterized by changes in both coagulation and proinflammatory activities. The role of platelets in AP is not yet known. METHODS AP was induced in C57BL/6 mice by repeated caerulein administration (50 µg/kg intraperitoneally). Mice received a platelet-depleting or control antibody before caerulein challenge. Neutrophil infiltration, myeloperoxidase (MPO) and macrophage inflammatory protein (MIP) 2 levels, acinar cell necrosis and haemorrhage in the pancreas, as well as serum amylase activity, were determined 24 h after caerulein injection. In an alternative model of pancreatitis, L-arginine (4 g/kg intraperitoneally) was given twice with an interval of 1 h and tissue samples were taken after 72 h [Correction added after online publication 29 September 2010: in the preceding sentence, 4 mg/kg was corrected to 4 g/kg]. RESULTS Caerulein administration increased acinar cell necrosis, neutrophil infiltration, focal haemorrhage and serum amylase levels. Platelet depletion reduced acinar cell necrosis, haemorrhage and serum amylase levels in AP. Depletion of platelets decreased caerulein-induced MPO levels and neutrophil recruitment in the pancreas. Platelet depletion abolished caerulein-induced MIP-2 generation in the pancreas and circulation. The effects of platelet depletion on necrosis, neutrophils and MPO levels were confirmed in L-arginine-induced pancreatitis. CONCLUSION Platelets play a crucial role in AP by regulating neutrophil infiltration, most likely mediated by MIP-2 production in the pancreas.
Collapse
Affiliation(s)
- A Abdulla
- Department of Clinical Sciences, Section for Surgery, Malmö University Hospital, Lund University, S-205 02 Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 2009; 89:1269-339. [PMID: 19789382 DOI: 10.1152/physrev.00027.2008] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The complex functions of the liver in biosynthesis, metabolism, clearance, and host defense are tightly dependent on an adequate microcirculation. To guarantee hepatic homeostasis, this requires not only a sufficient nutritive perfusion and oxygen supply, but also a balanced vasomotor control and an appropriate cell-cell communication. Deteriorations of the hepatic homeostasis, as observed in ischemia/reperfusion, cold preservation and transplantation, septic organ failure, and hepatic resection-induced hyperperfusion, are associated with a high morbidity and mortality. During the last two decades, experimental studies have demonstrated that microcirculatory disorders are determinants for organ failure in these disease states. Disorders include 1) a dysregulation of the vasomotor control with a deterioration of the endothelin-nitric oxide balance, an arterial and sinusoidal constriction, and a shutdown of the microcirculation as well as 2) an overwhelming inflammatory response with microvascular leukocyte accumulation, platelet adherence, and Kupffer cell activation. Within the sequelae of events, proinflammatory mediators, such as reactive oxygen species and tumor necrosis factor-alpha, are the key players, causing the microvascular dysfunction and perfusion failure. This review covers the morphological and functional characterization of the hepatic microcirculation, the mechanistic contributions in surgical disease states, and the therapeutic targets to attenuate tissue injury and organ dysfunction. It also indicates future directions to translate the knowledge achieved from experimental studies into clinical practice. By this, the use of the recently introduced techniques to monitor the hepatic microcirculation in humans, such as near-infrared spectroscopy or orthogonal polarized spectral imaging, may allow an early initiation of treatment, which should benefit the final outcome of these critically ill patients.
Collapse
Affiliation(s)
- Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany.
| | | |
Collapse
|
20
|
Kim YW, Kang HE, Lee MG, Hwang SJ, Kim SC, Lee CH, Kim SG. Liquiritigenin, a flavonoid aglycone from licorice, has a choleretic effect and the ability to induce hepatic transporters and phase-II enzymes. Am J Physiol Gastrointest Liver Physiol 2009; 296:G372-81. [PMID: 19074639 DOI: 10.1152/ajpgi.90524.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liquiritigenin (LQ), an active component of licorice, has an inhibitory effect on LPS-induced inhibitory nitric oxide synthase expression. This study investigated the effects of LQ on choleresis, the expression of hepatic transporters and phase-II enzymes, and fulminant hepatitis. The choleretic effect and the pharmacokinetics of LQ and its glucuronides were monitored in rats. After intravenous administration of LQ, the total area under the plasma concentration-time curve of glucuronyl metabolites was greater than that of LQ in plasma, which accompanied elevations in bile flow rate and biliary excretion of bile acid, glutathione, and bilirubin. The expressions of hepatocellular transporters and phase-II enzymes were assessed by immunoblots, real-time PCR, and immunohistochemistry. In the livers of rats treated with LQ, the protein and mRNA levels of multidrug resistance protein 2 and bile salt export pump were increased in the liver, which was verified by their increased localizations in canalicular membrane. In addition, LQ treatment enhanced the expression levels of major hepatic phase-II enzymes. Consistent with these results, LQ treatments attenuated galactosamine/LPS-induced hepatitis in rats, as supported by decreases in the plasma alanine aminotransferase, liver necrosis, and plasma TNF-alpha. These results demonstrate that LQ has a choleretic effect and the ability to induce transporters and phase-II enzymes in the liver, which may be associated with a hepatoprotective effect against galactosamine/LPS. Our findings may provide insight into understanding the action of LQ and its therapeutic use for liver disease.
Collapse
Affiliation(s)
- Young Woo Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Mulder J, Karpen SJ, Tietge UJF, Kuipers F. Nuclear receptors: mediators and modifiers of inflammation-induced cholestasis. FRONT BIOSCI-LANDMRK 2009; 14:2599-630. [PMID: 19273222 PMCID: PMC4085779 DOI: 10.2741/3400] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammation-induced cholestasis (IIC) is a frequently occurring phenomenon. A central role in its pathogenesis is played by nuclear receptors (NRs). These ligand-activated transcription factors not only regulate basal expression of hepatobiliary transport systems, but also mediate adaptive responses to inflammation and possess anti-inflammatory characteristics. The latter two functions may be exploited in the search for new treatments for IIC as well as for cholestasis in general. Current knowledge of the pathogenesis of IIC and the dual role NRs in this process are reviewed. Special interest is given to the use of NRs as potential targets for intervention.
Collapse
Affiliation(s)
- Jaap Mulder
- Department of Pediatrics Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | | | | | | |
Collapse
|
22
|
Dold S, Laschke MW, Lavasani S, Menger MD, Thorlacius H. Cholestatic liver damage is mediated by lymphocyte function antigen-1-dependent recruitment of leukocytes. Surgery 2008; 144:385-93. [PMID: 18707037 DOI: 10.1016/j.surg.2008.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 05/14/2008] [Indexed: 12/27/2022]
Abstract
BACKGROUND The role of specific adhesion molecules in cholestasis-induced leukocyte recruitment in the liver is not known. Therefore, the aim of our experimental study was to evaluate the role of lymphocyte function antigen-1 (LFA-1) in cholestatic liver injury. METHODS C57BL/6 mice underwent bile duct ligation for 12 hours. Mice were pretreated with an anti-LFA-1 antibody or control antibody. Subsequently, hepatic accumulation of leukocytes and sinusoidal perfusion were determined by means of intravital fluorescence microscopy. Hepatocellular damage was monitored by measuring serum levels of alanine aminotransferase and aspartate aminotransferase. CXC chemokines in the liver were determined by enzyme-linked immunosorbent assay. RESULTS Bile duct ligation provoked clear-cut recruitment of leukocytes and liver damage, as indicated by increased serum activities of liver enzymes and sinusoidal perfusion failure. Neutrophils expressed greater levels of LFA-1 and inhibition of LFA-1 significantly decreased serum activity of alanine aminotransferase and aspartate aminotransferase levels in cholestatic mice. Immunoneutralization of LFA-1 reduced leukocyte adhesion in postsinusoidal venules that had been induced by bile duct ligation, whereas leukocyte rolling and sinusoidal accumulation were not changed. Moreover, blocking LFA-1 function restored sinusoidal perfusion in cholestatic animals. CONCLUSION These findings demonstrate an important role of LFA-1 in supporting cholestasis-induced leukocyte recruitment in the liver. Thus, targeting LFA-1 may help to protect against pathologic inflammation and liver damage in cholestatic liver diseases.
Collapse
Affiliation(s)
- Stefan Dold
- Department of Surgery, Malmö University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | |
Collapse
|
23
|
Dold S, Laschke MW, Lavasani S, Menger MD, Jeppsson B, Thorlacius H. Simvastatin protects against cholestasis-induced liver injury. Br J Pharmacol 2008; 156:466-74. [PMID: 19154429 DOI: 10.1111/j.1476-5381.2008.00043.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bile duct obstruction is associated with hepatic accumulation of leukocytes and liver injury. The aim of this study was to evaluate the effect of simvastatin on cholestasis-induced liver inflammation and tissue damage. EXPERIMENTAL APPROACH C57BL/6 mice were treated with simvastatin (0.02 and 0.2 mg.kg(-1)) and vehicle before and after undergoing bile duct ligation (BDL) for 12 h. Leukocyte recruitment and microvascular perfusion in the liver were analysed using intravital fluorescence microscopy. CXC chemokines in the liver were determined by enzyme-linked immunosorbent assay. Liver damage was monitored by measuring serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Hepatic levels of myeloperoxidase (MPO) were also determined. KEY RESULTS Administration of 0.2 mg.kg(-1) simvastatin decreased ALT and AST by 87% and 83%, respectively, in BDL mice. This dose of simvastatin reduced hepatic formation of CXC chemokines by 37-82% and restored sinusoidal perfusion in cholestatic animals. Moreover, BDL-induced leukocyte adhesion in sinusoids and postsinusoidal venules, as well as MPO levels in the liver, was significantly reduced by simvastatin. Notably, administration of 0.2 mg.kg(-1) simvastatin 2 h after BDL induction also decreased cholestatic liver injury and inflammation. CONCLUSIONS AND IMPLICATIONS These findings show that simvastatin protects against BDL-induced liver injury. The hepatoprotective effect of simvastatin is mediated, at least in part, by reduced formation of CXC chemokines and leukocyte recruitment. Thus, our novel data suggest that the use of statins may be an effective strategy to protect against the hepatic injury associated with obstructive jaundice.
Collapse
Affiliation(s)
- S Dold
- Department of Surgery, Malmö University Hospital, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Platelet-dependent accumulation of leukocytes in sinusoids mediates hepatocellular damage in bile duct ligation-induced cholestasis. Br J Pharmacol 2007; 153:148-56. [PMID: 18026126 DOI: 10.1038/sj.bjp.0707578] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Although it is well known that extrahepatic cholestasis induces liver damage, the mechanisms are still not completely understood. The aim of the present study was to evaluate the role of platelets and P-selectin in cholestasis-induced liver injury. EXPERIMENTAL APPROACH C57BL/6 mice underwent bile duct ligation (BDL) and pretreatment with an anti-GP1balpha antibody, which depletes platelets, an anti-P-selectin antibody or a control antibody. Hepatic platelet and leukocyte recruitment as well as microvascular perfusion were determined by intravital fluorescence microscopy. KEY RESULTS BDL caused significant liver damage and sinusoidal perfusion failure. BDL further induced hepatic platelet accumulation with widespread intravascular platelet aggregates, increased platelet adhesion in postsinusoidal venules and massive platelet accumulation in liver sinusoids. Administration of the anti-GP1balpha antibody reduced systemic platelet count by 90%. Depletion of platelets in BDL mice not only abolished accumulation and adhesion of platelets in sinusoids and venules but also restored sinusoidal perfusion and reduced liver enzymes by more than 83%. Platelet depletion further reduced BDL-associated sinusoidal leukocyte accumulation by 48% although leukocyte-endothelium interactions in venules were not affected. Immunoneutralization of P-selectin also inhibited hepatic microvascular accumulation of platelets and leukocytes, and protected against cholestasis-provoked hepatocellular damage. CONCLUSIONS AND IMPLICATIONS Platelets play an important role in BDL-induced liver injury by promoting leukocyte recruitment and deteriorating microvascular perfusion. Moreover, our findings demonstrate that cholestasis-induced accumulation of platelets is mediated by P-selectin. Thus, targeting platelet accumulation may be a useful strategy against liver damage associated with obstructive jaundice.
Collapse
|