Asare GA, Kew MC, Mossanda KS, Paterson AC, Siziba K, Kahler-Venter CP. Effects of exogenous antioxidants on dietary iron overload.
J Clin Biochem Nutr 2008;
44:85-94. [PMID:
19177193 PMCID:
PMC2613504 DOI:
10.3164/jcbn.08-184]
[Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 09/26/2008] [Indexed: 12/14/2022] Open
Abstract
In dietary iron overload, excess hepatic iron promotes liver damage. The aim was to attenuate free radical-induced liver damage using vitamins. Four groups of 60 Wistar rats were studied: group 1 (control) was fed normal diet, group 2 (Fe) 2.5% pentacarbonyl iron (CI) followed by 0.5% Ferrocene, group 3 (Fe + V gp) CI, Ferrocene, plus vitamins A and E (42× and 10× RDA, respectively), group 4 (Fe – V gp) CI, Ferrocene diet, minus vitamins A and E. At 20 months, glutathione peroxidase (GPx), superoxide dismutase (SOD), Oxygen Radical Absorbance Capacity (ORAC), Ames mutagenicity test, AST, ALT and 4-hydroxynonenal (4-HNE) immunohistochemistry were measured. 8OHdG levels of the Fe + V and Fe – V groups were 346 ± 117 and 455 ± 151, ng/g w.wt, respectively. Fe + V and Fe – V differences were significant (p<0.005). A positive correlation between DNA damage and mutagenesis existed (p<0.005) within the iron-fed gps. AST levels for Fe + V and Fe – V groups were 134.6 ± 48.6 IU and 202.2 ± 50.5 IU, respectively. Similarly, ALT levels were 234.6 ± 48.3 IU and 329.0 ± 48.6 IU, respectively. However, Fe – V and Fe + V groups transaminases were statistically insignificant. 4-HNE was detected in Fe + V and Fe – V gp livers. Vitamins A and E could not prevent hepatic damage.
Collapse