Saito-Yabe M, Kasuya Y, Yoshigae Y, Yamamura N, Suzuki Y, Fukuda N, Honma M, Yano K, Mochizuki SI, Okada F, Okada A, Nagayama Y, Tsuda E, Fischer T, Höpner U, Zaja S, Mueller J, Okada J, Kurihara A, Ikeda T, Okazaki O. PEGylation of osteoprotegerin/osteoclastogenesis inhibitory factor (OPG/OCIF) results in decreased uptake into rats and human liver.
J Pharm Pharmacol 2010;
62:985-94. [PMID:
20663032 DOI:
10.1111/j.2042-7158.2010.01120.x]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES
Our aim was to investigate the effect of PEGylation on the uptake of osteoprotegerin/osteoclastogenesis inhibitory factor (OPG/OCIF) into rat liver, kidney and spleen, and human liver.
METHODS
Copolymer of polyethyleneglycol allylmethylether and maleamic acid sodium salt with OCIF (poly(PEG)-OCIF) (0.5 mg/kg) was administered to rats and the concentrations of poly(PEG)-OCIF in the liver, kidney and spleen at 15 min after administration were measured by ELISA. For human liver uptake, the liver perfusion of OCIF and (3)H-labelled poly(PEG)-OCIF was conducted using fresh human liver block.
KEY FINDINGS
The tissue uptake of poly(PEG)-OCIF in rats was significantly lower compared with that of OCIF. In fresh human liver perfusion, (3)H-poly(PEG)-OCIF was rarely taken up into the liver. On the other hand, more than 50% of the perfused OCIF was taken up.
CONCLUSIONS
PEGylation of OCIF using poly(PEG) dramatically suppressed the uptake of OCIF into human liver as well as into rat liver and could be a promising approach for improving the pharmacokinetic and pharmacological effects of OCIF in the clinical setting.
Collapse