1
|
Harper JA, Morrow EH. Systematic review reveals sexually antagonistic knockouts in model organisms. Ecol Evol 2022; 12:e9671. [PMID: 36619711 PMCID: PMC9798040 DOI: 10.1002/ece3.9671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022] Open
Abstract
Sexual antagonism is thought to be an important selective force in multiple evolutionary processes, but very few examples of the genes involved are known. Such a deficit of loci could partially be explained by the lack of overlap in terminology between scientific disciplines. Following a similar review in humans, we searched systematically for studies that described genes with sexually antagonistic or sex-opposite effects in any taxa, using terms designed to capture alternative descriptions of sexual antagonism. Despite drawing on a potentially very large pool of studies we found only eight articles, which between them described seven candidate variants, five of these were gene knockouts. In every case, the variants had net negative effects on the focal trait. One locus was independently validated between studies, but in comparison to previous data on variants in humans and the fruit-fly, the studies generally suffered from small sample sizes, with concomitant high variance. Our review highlights the radically different effects that gene deletions can have on males and females, where the beneficial effects seen in one sex may facilitate the evolution of gene loss. We searched systematically for genetic variants with sexually antagonistic or sex-opposite effects in any taxa. Of 2116 articles, we found seven candidate variants, five of which were gene knockouts. Our review highlights the radically different effects that gene deletions can have on males and females, where the beneficial effects seen in one sex may facilitate the evolution of gene loss.
Collapse
Affiliation(s)
- Jon Alexander Harper
- Evolution, Behaviour and Environment Group, School of Life SciencesJohn Maynard Smith Building, University of SussexBrightonUK
| | - Edward H. Morrow
- Department of Environmental and Life SciencesKarlstad UniversityKarlstadSweden
| |
Collapse
|
2
|
Vomhof-DeKrey EE, Stover AD, Labuhn M, Osman MR, Basson MD. Vil-Cre specific Schlafen 3 knockout mice exhibit sex-specific differences in intestinal differentiation markers and Schlafen family members expression levels. PLoS One 2021; 16:e0259195. [PMID: 34710177 PMCID: PMC8553116 DOI: 10.1371/journal.pone.0259195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
The intestinal epithelium requires self-renewal and differentiation in order to function and adapt to pathological diseases such as inflammatory bowel disease, short gut syndrome, and ulcers. The rodent Slfn3 protein and the human Slfn12 analog are known to regulate intestinal epithelial differentiation. Previous work utilizing a pan-Slfn3 knockout (KO) mouse model revealed sex-dependent gene expression disturbances in intestinal differentiation markers, metabolic pathways, Slfn family member mRNA expression, adaptive immune cell proliferation/functioning genes, and phenotypically less weight gain and sex-dependent changes in villus length and crypt depth. We have now created a Vil-Cre specific Slfn3KO (VC-Slfn3KO) mouse to further evaluate its role in intestinal differentiation. There were increases in Slfn1, Slfn2, Slfn4, and Slfn8 and decreases in Slfn5 and Slfn9 mRNA expression that were intestinal region and sex-specific. Differentiation markers, sucrase isomaltase (SI), villin 1, and dipeptidyl peptidase 4 and glucose transporters, glucose transporter 1 (Glut1), Glut2, and sodium glucose transporter 1 (SGLT1), were increased in expression in VC-Slfn3KO mice based on intestinal region and were also highly female sex-biased, except for SI in the ileum was also increased for male VC-Slfn3KO mice and SGLT1 was decreased for both sexes. Overall, the variations that we observed in these VC-Slfn3KO mice indicate a complex regulation of intestinal gene expression that is sex-dependent.
Collapse
Affiliation(s)
- Emilie E. Vomhof-DeKrey
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Allie D. Stover
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Mary Labuhn
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Marcus R. Osman
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Marc D. Basson
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| |
Collapse
|
3
|
Zheng Q, Duan L, Lou Y, Chao T, Guo G, Lu L, Zhang H, Zhao Y, Liang Y, Wang H. Slfn4 deficiency improves MAPK-mediated inflammation, oxidative stress, apoptosis and abates atherosclerosis progression in apolipoprotein E-deficient mice. Atherosclerosis 2021; 337:42-52. [PMID: 34757313 DOI: 10.1016/j.atherosclerosis.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis, a progressive inflammatory disease characterized by elevated inflammation and lipid accumulation in the aortic endothelium, arises in part from the infiltration of inflammatory cells into the vascular wall. However, it is not fully defined how inflammatory cells, especially macrophages, affect the pathogenesis of atherosclerosis. Schlafen4 (Slfn4) mRNA is remarkably upregulated upon ox-LDL stimulation in macrophages. Nonetheless, the role of Slfn4 in foam cell formation remains unclear. METHODS To determine whether and how Slfn4 regulates lesion macrophage function during atherosclerosis,we engineered ApoE-/-Slfn4-/- double-deficient mice on an ApoE-/- background and evaluated the deficiency of Slfn4 expression in atherosclerotic lesion formation in vivo. RESULTS Our results demonstrate that total absence of SLFN4 and the bone marrow-restricted deletion of Slfn4 in ApoE-/- mice remarkably diminish inflammatory cell numbers within arterial plaques as well as limit development of atherosclerosis in moderate hypercholesterolemia condition. This is linked to a marked reduction in the expression of proinflammatory cytokines, the generation of the reactive oxygen species (ROS) and the apoptosis of cells. Furthermore, the activation of MAPKs and apoptosis signaling pathways is compromised in the absence of Slfn4. CONCLUSIONS These findings demonstrate a novel role of Slfn4 in modulating vascular inflammation and atherosclerosis, highlighting a new target for the related diseases.
Collapse
Affiliation(s)
- Qianqian Zheng
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Tianzhu Chao
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Guo Guo
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Liaoxun Lu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China; Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Hongxia Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yucong Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, People's Republic of China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, People's Republic of China.
| |
Collapse
|
4
|
Schlafens: Emerging Proteins in Cancer Cell Biology. Cells 2021; 10:cells10092238. [PMID: 34571887 PMCID: PMC8465726 DOI: 10.3390/cells10092238] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Schlafens (SLFN) are a family of genes widely expressed in mammals, including humans and rodents. These intriguing proteins play different roles in regulating cell proliferation, cell differentiation, immune cell growth and maturation, and inhibiting viral replication. The emerging evidence is implicating Schlafens in cancer biology and chemosensitivity. Although Schlafens share common domains and a high degree of homology, different Schlafens act differently. In particular, they show specific and occasionally opposing effects in some cancer types. This review will briefly summarize the history, structure, and non-malignant biological functions of Schlafens. The roles of human and mouse Schlafens in different cancer types will then be outlined. Finally, we will discuss the implication of Schlafens in the anti-tumor effect of interferons and the use of Schlafens as predictors of chemosensitivity.
Collapse
|
5
|
Structure of Schlafen13 reveals a new class of tRNA/rRNA- targeting RNase engaged in translational control. Nat Commun 2018; 9:1165. [PMID: 29563550 PMCID: PMC5862951 DOI: 10.1038/s41467-018-03544-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/20/2018] [Indexed: 01/07/2023] Open
Abstract
Cleavage of transfer (t)RNA and ribosomal (r)RNA are critical and conserved steps of translational control for cells to overcome varied environmental stresses. However, enzymes that are responsible for this event have not been fully identified in high eukaryotes. Here, we report a mammalian tRNA/rRNA-targeting endoribonuclease: SLFN13, a member of the Schlafen family. Structural study reveals a unique pseudo-dimeric U-pillow-shaped architecture of the SLFN13 N'-domain that may clamp base-paired RNAs. SLFN13 is able to digest tRNAs and rRNAs in vitro, and the endonucleolytic cleavage dissevers 11 nucleotides from the 3'-terminus of tRNA at the acceptor stem. The cytoplasmically localised SLFN13 inhibits protein synthesis in 293T cells. Moreover, SLFN13 restricts HIV replication in a nucleolytic activity-dependent manner. According to these observations, we term SLFN13 RNase S13. Our study provides insights into the modulation of translational machinery in high eukaryotes, and sheds light on the functional mechanisms of the Schlafen family.
Collapse
|
6
|
Abstract
Schlafen-11 (SLFN11) showed a highly significant positive correlation with the response of topoisomerase inhibitors in cancer cell lines derived from prostate, lung, etc. However, this finding has not been validated in colorectal cancers (CRCs). Although irinotecan (CPT-11), a topoisomerase inhibitor, is one of the most important drugs in the treatment of advanced and/or metastatic CRC, resistance is a critical drawback to its clinical effectiveness. The present study aimed to investigate the mechanism of SLFN11 in the response of CRC cell lines to SN-38 (an active CPT-11 metabolite) treatment. Western blotting was used to measure protein expression levels of SLFN11 in human CRC cell lines. Then, SLFN11 expression was modulated by transfecting human CRC cell lines with vectors carrying the SLFN11 gene or specific SLFN11 small interfering RNAs. The effects of SN-38 treatment on CRC cells with different SLFN11 expression levels were detected, including inhibition of cell growth, induction of apoptosis, and cell cycle arrest. This study showed that SLFN11 expression varied between the CRC cell lines and high-level SLFN11 expression promoted SN-38-induced antiproliferative activity, apoptosis, and cell cycle arrest. Our results suggest that SLFN11 plays a key role in cell cycle arrest and/or induction of apoptosis in response to exogenous SN-38-induced DNA damage and might be used as a new predictive biomarker for CRC treatment.
Collapse
|
7
|
Abstract
Glutamine, reviewed extensively in the last century, is a key substrate for the splanchnic bed in the whole body and is a nutrient of particular interest in gastrointestinal research. A marked decrease in the plasma glutamine concentration has recently been observed in neonates and adults during acute illness and stress. Although some studies in newborns have shown parenteral and enteral supplementation with glutamine to be of benefit (by decreasing proteolysis and activating the immune system), clinical trials have not demonstrated prolonged advantages such as reductions in mortality or risk of infections in adults. In addition, glutamine is not able to combat the muscle wasting associated with disease or age-related sarcopenia. Oral glutamine supplementation initiated before advanced age in rats increases gut mass and improves the villus height of mucosa, thereby preventing the gut atrophy encountered in advanced age. Enterocytes from very old rats continuously metabolize glutamine into citrulline, which allowed, for the first time, the use of citrulline as a noninvasive marker of intestinal atrophy induced by advanced age.
Collapse
Affiliation(s)
- Dominique Meynial-Denis
- D. Meynial-Denis is with the Unit of Human Nutrition (UNH), French National Institute for Agricultural Research (INRA), Joint Research Unit (UMR) 1019, Center for Research in Human Nutrition (CRNH) Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
8
|
Nangia-Makker P, Yu Y, Majumdar APN. Role of cancer stem cells in age-related rise in colorectal cancer. World J Gastrointest Pathophysiol 2015; 6:86-89. [PMID: 26600965 PMCID: PMC4644890 DOI: 10.4291/wjgp.v6.i4.86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/16/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) that comprises about 50% of estimated gastrointestinal cancers remains a high mortality malignancy. It is estimated that CRC will result in 9% of all cancer related deaths. CRC is the third leading malignancy affecting both males and females equally; with 9% of the estimated new cancer cases and 9% cancer related deaths. Sporadic CRC, whose incidence increases markedly with advancing age, occurs in 80%-85% patients diagnosed with CRC. Little is known about the precise biochemical mechanisms responsible for the rise in CRC with aging. However, many probable reasons for this increase have been suggested; among others they include altered carcinogen metabolism and the cumulative effects of long-term exposure to cancer-causing agents. Herein, we propose a role for self-renewing, cancer stem cells (CSCs) in regulating these cellular events. In this editorial, we have briefly described the recent work on the evolution of CSCs in gastro-intestinal track especially in the colon, and how they are involved in the age-related rise in CRC. Focus of this editorial is to provide a description of (1) CSC; (2) epigenetic and genetic mechanisms giving rise to CSCs; (3) markers of CSC; (4) characteristics; and (5) age-related increase in CSC in the colonic crypt.
Collapse
|
9
|
Deng Y, Cai Y, Huang Y, Yang Z, Bai Y, Liu Y, Deng X, Wang J. High SLFN11 expression predicts better survival for patients with KRAS exon 2 wild type colorectal cancer after treated with adjuvant oxaliplatin-based treatment. BMC Cancer 2015; 15:833. [PMID: 26525741 PMCID: PMC4631086 DOI: 10.1186/s12885-015-1840-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/23/2015] [Indexed: 01/22/2023] Open
Abstract
Background SLFN11 was reported to be a predictive marker for DNA damage drugs. The study was to investigate whether SLFN11 expression is related to sensitivity to adjuvant oxaliplatin-based treatment in colorectal cancer. Methods A tissue microarray, made with specimens from consecutive 261 patients who received oxaliplatin based adjuvant chemotherapy, was stained with anti-SLFN11 antibody. The staining was dichotomized as high or low expression. SLFN11 expression was correlated to clinicopathological factors, KRAS exon 2 mutation and survival. Results SLFN11 high expression was found in 16.9 % of patients, and KRAS exon 2 mutation was detected in 32.2 % of patients. SLFN11 was expressed more common in well/moderate differentiation tumors(comparing to poor differentiation ones, 21 % v 4.9 %, P = 0.003) and stage II tumors(comparing to stage III tumors, 26.1 % v 11.4 %,p = 0.006). 23 out of 153 patients with KRAS exon 2 wild-type CRC had SLFN11 high expression, no death events was recorded in the 23 patients until last follow up. These patients had significantly better overall survival (OS) than those with SLFN11 low expression tumors (100 % vs 78.2 %, log rank P = 0.048). However, among patients with KRAS exon 2 mutant tumors, OS did not significantly differ between those with SLFN11 high and SLFN11 low tumors (Log rank P = 0.709). Conclusions SLFN11 expression predicts good better survival in colorectal cancer patients with KRAS exon 2 wild type who have received oxaliplatin based adjuvant chemotherapy.
Collapse
Affiliation(s)
- Yanhong Deng
- Department of Medical Oncology, Gastrointestinal Hospital, Sun Yat-sen Universtiy, Guangzhou, 510655, China. .,Department of Research Institute, Gastrointestinal Hospital, Sun Yat-sen Universtiy, Guangzhou, 510655, China.
| | - Yue Cai
- Department of Medical Oncology, Gastrointestinal Hospital, Sun Yat-sen Universtiy, Guangzhou, 510655, China.
| | - Yan Huang
- Department of Pathology, Gastrointestinal Hospital, Sun Yat-sen Universtiy, Guangzhou, 510655, China.
| | - Zihuan Yang
- Department of Research Institute, Gastrointestinal Hospital, Sun Yat-sen Universtiy, Guangzhou, 510655, China.
| | - Yang Bai
- Department of Research Institute, Gastrointestinal Hospital, Sun Yat-sen Universtiy, Guangzhou, 510655, China. .,Department of Colorectal Surgery, Gastrointestinal Hospital, Sun Yat-sen Universtiy, Guangzhou, 510655, China.
| | - Yanlu Liu
- Department of Medical Oncology, Gastrointestinal Hospital, Sun Yat-sen Universtiy, Guangzhou, 510655, China.
| | - Xiuping Deng
- Department of Pathology, Gastrointestinal Hospital, Sun Yat-sen Universtiy, Guangzhou, 510655, China.
| | - Jianping Wang
- Department of Research Institute, Gastrointestinal Hospital, Sun Yat-sen Universtiy, Guangzhou, 510655, China. .,Department of Colorectal Surgery, Gastrointestinal Hospital, Sun Yat-sen Universtiy, Guangzhou, 510655, China.
| |
Collapse
|
10
|
Beaufrère AM, Neveux N, Patureau Mirand P, Buffière C, Marceau G, Sapin V, Cynober L, Meydinal-Denis D. Long-term intermittent glutamine supplementation repairs intestinal damage (structure and functional mass) with advanced age: assessment with plasma citrulline in a rodent model. J Nutr Health Aging 2014; 18:814-9. [PMID: 25389959 DOI: 10.1007/s12603-014-0554-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Glutamine is the preferred fuel for the rat small intestine and promotes the growth of intestinal mucosa, especially in the event of gut injury. Quantitatively, glutamine is one important precursor for intestinal citrulline release. The aim of this study was to determine whether the effect of glutamine on the increase in intestinal villus height is correlated with an increase in both gut mass and citrulline plasma level in very old rats. METHODS We intermittently supplemented very old (27-mo) female rats with oral glutamine (20% of diet protein). Intestinal histomorphometric analysis of the small bowel was performed. Amino acids, in particular citrulline, were measured in the plasma, liver and jejunum. Markers of renal (creatinine, urea) and liver (alanine aminotransferase [ALT]) and aspartate aminotransferase (AST) functions were measured to evaluate renal and liver functions in relation to aging and to glutamine supplementation. Liver glutathione was also determined to evaluate cellular redox state. RESULTS Glutamine supplementation maintains the body weight of very old rats, not by limiting sarcopenia but rather by increasing the organ mass of the splanchnic area. Total intestine mass was significantly higher in glutamine-supplemented rats than in controls (15%). Measurement of villus height and crypt depth demonstrated that the difference between villus and crypt was significantly improved in glutamine pre-treated rats compared to controls (~ 11%). Plasma citrulline also increased by 15% in glutamine-supplemented rats compared to controls. CONCLUSION Citrulline appears as a biomarker of enterocyte mass in villous atrophy associated with advanced age. Non-invasive measurement of this metabolite may be useful in following the state of the gastrointestinal tract in very old people, whose numbers are increasing worldwide and the care of whom is a major public health issue. The gut may contribute to the malnutrition caused by malabsorption frequently observed in the elderly.
Collapse
Affiliation(s)
- A M Beaufrère
- Dominique Meynial-Denis (PhD), Human Nutrition Unit, INRA and Human Nutrition Research Center, Theix 63122 - St Genes Champanelle, France. Phone: +33 (0)4 73 62 43 13; Fax: +33 (0)4 73 62 47 55; E-mail address:
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chaturvedi L, Sun K, Walsh MF, Kuhn LA, Basson MD. The P-loop region of Schlafen 3 acts within the cytosol to induce differentiation of human Caco-2 intestinal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:3029-37. [PMID: 25261706 DOI: 10.1016/j.bbamcr.2014.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/05/2014] [Accepted: 09/17/2014] [Indexed: 01/26/2023]
Abstract
Schlafen 3 (Slfn3) mediates rodent enterocyte differentiation in vitro and in vivo, required for intestinal function. Little is known about Schlafen protein structure-function relationships. To define the Slfn3 domain that promotes differentiation, we studied villin and sucrase isomaltase (SI) promoter activity in Slfn3-null human Caco-2BBE cells transfected with full-length rat Slfn3 DNA or truncated constructs. Confocal microscopy and Western blots showed that Slfn3 is predominantly cytosolic. Villin promoter activity, increased by wild type Slfn3, was further enhanced by adding a nuclear exclusion sequence, suggesting that Slfn3 does not affect transcription by direct nuclear action. We therefore sought to dissect the region in Slfn3 stimulating promoter activity. Since examination of the Slfn3 N-terminal region revealed sequences similar to both an aminopeptidase (App) and a divergent P-loop resembling those in NTPases, we initially divided Slfn3 into an N-terminal domain containing the App and P-loop regions, and a C-terminal region. Only the N-terminal construct stimulated promoter activity. Further truncation indicated that both the App and the smaller P-loop constructs enhanced promoter activity similarly to the N-terminal sequence. Point mutations within the N-terminal region (R128L, altering a critical active site residue in the App domain, and L212D, conserved in Schlafens but variable in P-loop proteins) did not affect activity. These results show that Slfn3 acts in the cytosol to trigger a secondary signal cascade that elicits differentiation marker expression and narrows the active domain to the third of the Slfn3 sequence homologous to P-loop NTPases, a first step in understanding its mechanism of action.
Collapse
Affiliation(s)
| | - Kelian Sun
- Department of Surgery, Michigan State University, East Lansing, MI, USA.
| | - Mary F Walsh
- Department of Surgery, Michigan State University, East Lansing, MI, USA.
| | - Leslie A Kuhn
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Computer Science & Engineering, Michigan State University, East Lansing, MI, USA.
| | - Marc D Basson
- Department of Surgery, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
12
|
Evaluation of chemopreventive effects of Acanthus ilicifolius against azoxymethane-induced aberrant Crypt Foci in the rat colon. PLoS One 2014; 9:e96004. [PMID: 24819728 PMCID: PMC4018435 DOI: 10.1371/journal.pone.0096004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/01/2014] [Indexed: 11/19/2022] Open
Abstract
Background Acanthus ilicifolius, a mangrove medicinal plant, is traditionally used to treat a variety of diseases. The aim of this research is to assess the chemoprotective outcomes of A. ilicifolius ethanolic extract against azoxymethane (AOM) induced colonic aberrant crypt foci (ACF) in rats. Methodology/Principal Findings In our study, rats were arranged in to five groups. Rats in the normal control group were given subcutaneous injections of normal saline once weekly for 2 weeks. The AOM control, reference and treatment groups were given subcutaneous injection of AOM, 15 mg/kg body weight, once weekly for 2 weeks each. The reference group was treated with 35 mg/kg 5-Fluorouracil via intraperitoneal injection once weekly for 8 weeks, and the treatment groups were administered by gavage with 250 and 500 mg/kg A. ilicifolius extract daily for 8 weeks. Both normal and AOM control groups received the vehicle; 10% Tween-20 only. Rats treated with 250 mg/kg and 500 mg/kg of A. ilicifolius extracts showed a decrease in the mean number of ACF by 65% and 53%, respectively. Those fed with A. ilicifolius showed significantly decreased multiplicity of ACF formations when compared with the results from the AOM control group. The 250 mg/kg A. ilicifolius treatment group showed significant decreases in lipid peroxidation MDA levels when compared with the AOM control group. In immunohistochemistry staining, the proliferating nuclear cell antigen (PCNA)-positive cells were significantly higher in the AOM control group than in the A. ilicifolius-treated groups. RT-PCR showed that A. ilicifolius caused a change in the regulation of apoptosis-related genes expression. Conclusion/Significance The results of the current study show that AOM-treated rats receiving oral exposure to A. ilicifolius demonstrated a significant decrease in the number of ACF in the colon when compared to AOM-treated rats receiving vehicle only. A ilicifolius may be an effective herbal approach for the prevention of AOM-induced ACF in the rat colon.
Collapse
|
13
|
Kovalenko PL, Basson MD. Schlafen 12 expression modulates prostate cancer cell differentiation. J Surg Res 2014; 190:177-84. [PMID: 24768141 DOI: 10.1016/j.jss.2014.03.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/14/2014] [Accepted: 03/21/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Schlafen proteins have previously been linked to leukocyte and intestinal epithelial differentiation. We hypothesized that Schlafen 12 (SLFN12) overexpression in human prostate epithelial cells would modulate expression of prostate-specific antigen (PSA) and dipeptidyl peptidase 4 (DPP4), markers of prostatic epithelial differentiation. MATERIALS AND METHODS Differentiation of the human prostate cancer cell lines LNCaP and PC-3 was compared after infection with an adenoviral vector coding for SLFN12 (Ad-SLFN12) or green fluorescent protein (GFP) only expressing virus (control). Transcript levels of SLFN12, PSA, and DPP4 were evaluated by real-time reverse transcription PCR and protein levels by Western blotting. Because mixed lineage kinase (MLK) and one of its downstream effectors (extracellular signal-regulated kinases [ERK]) have previously been implicated in some aspects of prostate epithelial differentiation, we conducted further studies in which LNCaP cells were cotreated with dimethyl sulfoxide (control), PD98059 (ERK inhibitor), or MLK inhibitor during transfection with Ad-SLFN12 for 72 h. RESULTS Treatment of LNCaP or PC-3 cells with Ad-SLFN12 reduced PSA expression by 56.6±4.6% (P<0.05) but increased DPP4 transcript level by 4.8±1.0 fold (P<0.05) versus Ad-GFP-treated controls. Further studies in LNCaP cells showed that Ad-SLFN12 overexpression increased the ratio of the mature E-cadherin protein to its precursor protein. Furthermore, SLFN12 overexpression promoted DPP4 expression either when MLK or ERK was blocked. ERK inhibition did not reverse SLFN12-induced changes in PSA, E-cadherin, or DPP4. CONCLUSIONS SLFN12 may regulate differentiation in prostate epithelial cells, at least in part independently of ERK or MLK. Understanding how SLFN12 influences prostatic epithelial differentiation may ultimately identify targets to influence the phenotype of prostatic malignancy.
Collapse
Affiliation(s)
- Pavlo L Kovalenko
- Department of Surgery, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Marc D Basson
- Department of Surgery, College of Human Medicine, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
14
|
Kovalenko PL, Yuan L, Sun K, Kunovska L, Seregin S, Amalfitano A, Basson MD. Regulation of epithelial differentiation in rat intestine by intraluminal delivery of an adenoviral vector or silencing RNA coding for Schlafen 3. PLoS One 2013; 8:e79745. [PMID: 24244554 PMCID: PMC3823574 DOI: 10.1371/journal.pone.0079745] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/23/2013] [Indexed: 12/15/2022] Open
Abstract
Although we stimulate enterocytic proliferation to ameliorate short gut syndrome or mucosal atrophy, less effort has been directed at enterocytic differentiation. Schlafen 3 (Slfn3) is a poorly understood protein induced during IEC-6 enterocytic differentiation. We hypothesized that exogenous manipulation of Slfn3 would regulate enterocytic differentiation in vivo. Adenoviral vector coding for Slfn3 cDNA (Ad-GFP-Slfn3) or silencing RNA for Slfn3 (siSlfn3) was introduced intraluminally into rat intestine. We assessed Slfn3, villin, sucrase-isomaltase (SI), Dpp4, and Glut2 by qRT-PCR, Western blot, and immunohistochemistry. We also studied Slfn3 and these differentiation markers in atrophic defunctionalized jejunal mucosa and the crypt-villus axis of normal jejunum. Ad-GFP-Slfn3 but not Ad-GFP increased Slfn3, villin and Dpp4 expression in human Caco-2 intestinal epithelial cells. Injecting Ad-GFP-Slfn3 into rat jejunum in vivo increased mucosal Slfn3 mRNA three days later vs. intraluminal Ad-GFP. This Slfn3 overexpression was associated with increases in all four differentiation markers. Injecting siSlfn3 into rat jejunum in vivo substantially reduced Slfn3 and all four intestinal mucosal differentiation markers three days later, as well as Dpp4 specific activity. Endogenous Slfn3 was reduced in atrophic mucosa from a blind-end Roux-en-Y anastomosis in parallel with differentiation marker expression together with AKT and p38 signaling. Slfn3 was more highly expressed in the villi than the crypts, paralleling Glut2, SI and Dpp4. Slfn3 is a key intracellular regulator of rat enterocytic differentiation. Understanding how Slfn3 works may identify targets to promote enterocytic differentiation and maintain mucosal function in vivo, facilitating enteral nutrition and improving survival in patients with mucosal atrophy or short gut syndrome.
Collapse
Affiliation(s)
- Pavlo L. Kovalenko
- Department of Surgery, Michigan State University, East Lansing, Michigan, United States of America
| | - Lisi Yuan
- Department of Surgery, Michigan State University, East Lansing, Michigan, United States of America
- Research Service, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States of America
| | - Kelian Sun
- Department of Surgery, Michigan State University, East Lansing, Michigan, United States of America
| | - Lyudmyla Kunovska
- Department of Surgery, Michigan State University, East Lansing, Michigan, United States of America
| | - Sergey Seregin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Marc D. Basson
- Department of Surgery, Michigan State University, East Lansing, Michigan, United States of America
- Research Service, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
15
|
Mavrommatis E, Arslan AD, Sassano A, Hua Y, Kroczynska B, Platanias LC. Expression and regulatory effects of murine Schlafen (Slfn) genes in malignant melanoma and renal cell carcinoma. J Biol Chem 2013; 288:33006-15. [PMID: 24089532 DOI: 10.1074/jbc.m113.460741] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is emerging evidence that the IFN-inducible family of Slfn genes and proteins play important roles in cell cycle progression and control of cellular proliferation, but the precise functional roles of different Slfn members in the regulation of tumorigenesis remain unclear. In the present study, we undertook a systematic analysis on the expression and functional relevance of different mouse Slfn genes in malignant melanoma and renal cell carcinoma cells. Our studies demonstrate that several mouse Slfn genes are up-regulated in response to IFN treatment of mouse melanoma and renal cell carcinoma cells, including Slfn1, Slfn2, Slfn4, Slfn5, and Slfn8. Our data show that Slfn2 and Slfn3 play essential roles in the control of mouse malignant melanoma cell proliferation and/or anchorage-independent growth, suggesting key and non-overlapping roles for these genes in the control of malignant melanoma tumorigenesis. In renal cell carcinoma cells, in addition to Slfn2 and Slfn3, Slfn5 also exhibits important antineoplastic effects. Altogether, our findings indicate important functions for distinct mouse Slfn genes in the control of tumorigenesis and provide evidence for differential involvement of distinct members of this gene family in controlling tumorigenesis. They also raise the potential of future therapeutic approaches involving modulation of expression of members of this family of genes in malignant melanoma and renal cell carcinoma.
Collapse
Affiliation(s)
- Evangelos Mavrommatis
- From the Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611 and
| | | | | | | | | | | |
Collapse
|
16
|
Mavrommatis E, Fish EN, Platanias LC. The schlafen family of proteins and their regulation by interferons. J Interferon Cytokine Res 2013; 33:206-10. [PMID: 23570387 DOI: 10.1089/jir.2012.0133] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Schlafen (SLFN) family of proteins includes several mouse and human members. There is emerging evidence that members of this family of proteins are involved in important functions, such as the control of cell proliferation, induction of immune responses, and the regulation of viral replication. These proteins span across all species with great diversity, with 10 murine and 5 human isoforms. Recent work has established that mouse and human SLFN proteins are regulated by interferons (IFNs). Several Slfn genes were shown to be induced as classical interferon-stimulated genes, and emerging evidence suggests that these proteins play important roles in the growth inhibitory and antineoplastic effects of IFNs. In the current review, the known properties of mouse and human SLFNs are reviewed, and the implications of their emerging functions are discussed.
Collapse
Affiliation(s)
- Evangelos Mavrommatis
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
17
|
Imchen T, Manasse J, Min KW, Baek SJ. Characterization of PPAR dual ligand MCC-555 in AOM-induced colorectal tumorigenesis. ACTA ACUST UNITED AC 2013; 65:919-24. [PMID: 23369238 DOI: 10.1016/j.etp.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/03/2012] [Accepted: 01/04/2013] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers. Peroxisome proliferator-activated receptor γ (PPARγ) agonists represent a potentially important family of chemopreventive/therapeutic compounds for cancer treatment by affecting cell proliferation, differentiation, and apoptosis. Dual ligands for PPARα and PPARγ, such as netoglitazone (MCC-555), have been developed to improve treatment of metabolic syndromes, including hyperglycemia and hyperlipidemia. Interestingly, these dual ligands also possess anti-proliferative activities against a variety of cancer cell lines with a greater potency than conventional PPARγ specific ligands. In this study, chemopreventive properties of MCC-555 in colorectal tumorigenesis were evaluated using azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in A/J mice. We found that MCC-555 suppressed AOM-induced ACF in A/J mice, compared to the control group. Administration of MCC-555 resulted in decreased mitoses and increased apoptotic cells in the colon. Furthermore, expression of tumor suppressor protein MUC2 was increased in MCC-555 treated mice. Our data clearly suggest that MCC-555 has an effect on the early events of colon carcinogenesis, thus providing evidence that MCC-555 could be a potential preventive compound for CRC.
Collapse
Affiliation(s)
- Temjenmongla Imchen
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
18
|
Arulselvan P, Wen CC, Lan CW, Chen YH, Wei WC, Yang NS. Dietary administration of scallion extract effectively inhibits colorectal tumor growth: cellular and molecular mechanisms in mice. PLoS One 2012; 7:e44658. [PMID: 23024755 PMCID: PMC3443092 DOI: 10.1371/journal.pone.0044658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/10/2012] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer is a common malignancy and a leading cause of cancer death worldwide. Diet is known to play an important role in the etiology of colon cancer and dietary chemoprevention is receiving increasing attention for prevention and/or alternative treatment of colon cancers. Allium fistulosum L., commonly known as scallion, is popularly used as a spice or vegetable worldwide, and as a traditional medicine in Asian cultures for treating a variety of diseases. In this study we evaluated the possible beneficial effects of dietary scallion on chemoprevention of colon cancer using a mouse model of colon carcinoma (CT-26 cells subcutaneously inoculated into BALB/c mice). Tumor lysates were subjected to western blotting for analysis of key inflammatory markers, ELISA for analysis of cytokines, and immunohistochemistry for analysis of inflammatory markers. Metabolite profiles of scallion extracts were analyzed by LC-MS/MS. Scallion extracts, particularly hot-water extract, orally fed to mice at 50 mg (dry weight)/kg body weight resulted in significant suppression of tumor growth and enhanced the survival rate of test mice. At the molecular level, scallion extracts inhibited the key inflammatory markers COX-2 and iNOS, and suppressed the expression of various cellular markers known to be involved in tumor apoptosis (apoptosis index), proliferation (cyclin D1 and c-Myc), angiogenesis (VEGF and HIF-1α), and tumor invasion (MMP-9 and ICAM-1) when compared with vehicle control-treated mice. Our findings may warrant further investigation of the use of common scallion as a chemopreventive dietary agent to lower the risk of colon cancer.
Collapse
Affiliation(s)
- Palanisamy Arulselvan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chih-Chun Wen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chun-Wen Lan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan, Republic of China
- Graduate Institute of Biotechnology and Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Yung-Hsiang Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Wen-Chi Wei
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China
| | - Ning-Sun Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
19
|
Walsh MF, Hermann R, Sun K, Basson MD. Schlafen 3 changes during rat intestinal maturation. Am J Surg 2012; 204:598-601. [PMID: 22906252 DOI: 10.1016/j.amjsurg.2012.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Understanding gut development may illuminate the adaptive response to massive small-bowel resection and facilitate enteral nutrition. We reported that Schlafen-3 (Slfn3) mediates differentiation in vitro in rat intestinal epithelial. We hypothesized that Slfn3 is involved in intestinal development in vivo. METHODS We removed fetal intestines, liver, and lungs on day 20 of gestation, at birth, and on postnatal days 1 and 5. Expression of Slfn3, markers of intestinal differentiation, and Slfn5, to address specificity, were determined by quantitative reverse-transcription polymerase chain reaction. RESULTS Villin expression increased on days 1 and 5 (8.7 ± .6 and 5.4 ± .4, respectively; P < .01). Intestinal Slfn3 expression was increased substantially after birth (2.1- ± .5-fold) and on days 1 and 5 (P < .02). Slfn3 was higher after birth in liver and lung but decreased sharply thereafter. Slfn5 expression was mostly unchanged. CONCLUSIONS The data suggest that the developmental/maturation effects we observed correlate with Slfn3 but not Slfn5 and are more relevant to the intestines. A better understanding of how Slfn3 promotes intestinal differentiation could help promote intestinal maturation, improving outcomes in children or adults with short-gut syndrome.
Collapse
Affiliation(s)
- Mary F Walsh
- Department of Surgery, Michigan State University, Lansing, MI 48912, USA
| | | | | | | |
Collapse
|
20
|
Oh PS, Patel VB, Sanders MA, Kanwar SS, Yu Y, Nautiyal J, Patel BB, Majumdar APN. Schlafen-3 decreases cancer stem cell marker expression and autocrine/juxtacrine signaling in FOLFOX-resistant colon cancer cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G347-55. [PMID: 21596996 PMCID: PMC3154606 DOI: 10.1152/ajpgi.00403.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously demonstrated that expression of the novel gene schlafen-3 (Slfn-3) correlates with intestinal epithelial cell differentiation (Patel VB, Yu Y, Das JK, Patel BB, Majumdar AP. Biochem Biophys Res Commun 388: 752-756, 2009). The present investigation was undertaken to examine whether Slfn-3 plays a role in regulating differentiation of FOLFOX-resistant (5-fluorouracil + oxaliplatin) colon cancer cells that are highly enriched in cancer stem cells (CSCs). Transfection of Slfn-3 in FOLFOX-resistant colon cancer HCT-116 cells resulted in increase of alkaline phosphatase activity, a marker of intestinal differentiation. Additionally, Slfn-3 transfection resulted in reduction of mRNA and protein levels of the CSC markers CD44, CD133, CD166, and aldehyde dehydrogenase 1 in both FOLFOX-resistant HCT-116 and HT-29 cells. This was accompanied by decreased formation of tumorosphere/colonosphere (an in vitro model of tumor growth) in stem cell medium and inhibition of expression of the chemotherapeutic drug transporter protein ABCG2. Additionally, Slfn-3 transfection of FOLFOX-resistant HCT-116 and HT-29 cells reduced Hoechst 33342 dye exclusion. Finally, Slfn-3 transfection inhibited the expression of transforming growth factor-α in both FOLFOX-resistant colon cancer cells, but stimulated apoptosis in response to additional FOLFOX treatment. In summary, our data demonstrate that Slfn-3 expression inhibits multiple characteristics of CSC-enriched, FOLFOX-resistant colon cancer cells, including induction of differentiation and reduction in tumorosphere/colonosphere formation, drug transporter activity, and autocrine stimulation of proliferation. Thus Slfn-3 expression may render colon CSCs more susceptible to cancer chemotherapeutics.
Collapse
Affiliation(s)
- Phil-Sun Oh
- 1Veterans Affairs Medical Center, ,3Department of Internal Medicine, Wayne State University, Detroit, Michigan
| | - Vaishali B. Patel
- 1Veterans Affairs Medical Center, ,3Department of Internal Medicine, Wayne State University, Detroit, Michigan
| | - Matthew A. Sanders
- 1Veterans Affairs Medical Center, ,3Department of Internal Medicine, Wayne State University, Detroit, Michigan
| | - Shailender S. Kanwar
- 1Veterans Affairs Medical Center, ,3Department of Internal Medicine, Wayne State University, Detroit, Michigan
| | - Yingjie Yu
- 1Veterans Affairs Medical Center, ,3Department of Internal Medicine, Wayne State University, Detroit, Michigan
| | - Jyoti Nautiyal
- 1Veterans Affairs Medical Center, ,3Department of Internal Medicine, Wayne State University, Detroit, Michigan
| | - Bhaumik B. Patel
- 1Veterans Affairs Medical Center, ,2Karmanos Cancer Institute, and ,3Department of Internal Medicine, Wayne State University, Detroit, Michigan
| | - Adhip P. N. Majumdar
- 1Veterans Affairs Medical Center, ,2Karmanos Cancer Institute, and ,3Department of Internal Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
21
|
de la Casa-Esperón E. From mammals to viruses: the Schlafen genes in developmental, proliferative and immune processes. Biomol Concepts 2011; 2:159-69. [DOI: 10.1515/bmc.2011.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/29/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractThe Schlafen genes have been associated with proliferation control and with several differentiation processes, as well as with disparate phenotypes such as immune response, embryonic lethality and meiotic drive. They constitute a gene family with widespread distribution in mammals, where they are expressed in several tissues, predominantly those of the immune system. Moreover, horizontal transfer of these genes to orthopoxviruses suggests a role of the viral Schlafens in evasion to the host immune response. The expression and functional studies of this gene family will be reviewed under the prism of their evolution and diversification, the challenges they pose and the future avenues of research.
Collapse
Affiliation(s)
- Elena de la Casa-Esperón
- 1Albacete Science and Technology Park, Regional Center for Biomedical Research (C.R.I.B.) at the University of Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain
| |
Collapse
|
22
|
Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis. PLoS One 2011; 6:e15723. [PMID: 21249125 PMCID: PMC3017543 DOI: 10.1371/journal.pone.0015723] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/28/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The ten mouse and six human members of the Schlafen (Slfn) gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM) by the Toll-like Receptor (TLR)4 agonist lipopolysaccharide (LPS), the TLR3 agonist Poly(I∶C), and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN)-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1)-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the myeloid lineage in vivo perturbs myelopoiesis. We hypothesise that the down-regulation of Slfn4 gene expression during macrophage differentiation is a necessary step in development of this lineage.
Collapse
|
23
|
Ravichandran K, Velmurugan B, Gu M, Singh RP, Agarwal R. Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice. Clin Cancer Res 2010; 16:4595-606. [PMID: 20823143 DOI: 10.1158/1078-0432.ccr-10-1213] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Colorectal cancer is the second leading cause of cancer-associated deaths, which suggests that more effort is needed to prevent/control this disease. Herein, for the first time, we investigate in vivo the efficacy of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice. EXPERIMENTAL DESIGN Five-week-old male mice were gavaged with vehicle or silibinin (250 and 750 mg/kg) for 25 weeks starting 2 weeks before initiation with azoxymethane (pretreatment regime) or for 16 weeks starting 2 weeks after the last azoxymethane injection (posttreatment regime). The mice were then sacrificed, and colon tissues were examined for tumor multiplicity and size, and molecular markers for proliferation, apoptosis, inflammation, and angiogenesis. RESULTS Silibinin feeding showed a dose-dependent decrease in azoxymethane-induced colon tumorigenesis with stronger efficacy in pretreatment versus posttreatment regimen. Mechanistic studies in tissue samples showed that silibinin inhibits cell proliferation as evident by a decrease (P < 0.001) in proliferating cell nuclear antigen and cyclin D1, and increased Cip1/p21 levels. Silibinin also decreased (P < 0.001) the levels of inducible nitric oxide synthase, cyclooxygenase-2, and vascular endothelial growth factor, suggesting its anti-inflammatory and antiangiogenic potential in this model. Further, silibinin increased cleaved caspase-3 and poly(ADP-ribose) polymerase levels, indicating its apoptotic effect. In other studies, colonic mucosa and tumors expressed high levels of β-catenin, insulin-like growth factor-1 receptorβ, phospho Glycogen synthase kinase-3β, and phospho protein kinase B/pAkt proteins in azoxymethane-treated mice, which were strongly lowered (P < 0.001) by silibinin treatment. Moreover, azoxymethane reduced insulin-like growth factor binding protein-3 protein level, which was enhanced by silibinin. CONCLUSIONS Silibinin targets β-catenin and IGF-1Rβ pathways for its chemopreventive efficacy against azoxymethane-induced colon carcinogenesis in A/J mice. Overall, these results support the translational potential of silibinin in colorectal cancer chemoprevention.
Collapse
Affiliation(s)
- Kameswaran Ravichandran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
24
|
Yuan L, Yu Y, Sanders MA, Majumdar APN, Basson MD. Schlafen 3 induction by cyclic strain regulates intestinal epithelial differentiation. Am J Physiol Gastrointest Liver Physiol 2010; 298:G994-G1003. [PMID: 20299602 PMCID: PMC4865113 DOI: 10.1152/ajpgi.00517.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal epithelium is subjected to repetitive deformation during normal gut function by peristalsis and villous motility. In vitro, cyclic strain promotes intestinal epithelial proliferation and induces an absorptive phenotype characterized by increased dipeptidyl dipeptidase (DPPIV) expression. Schlafen 3 is a novel gene recently associated with cellular differentiation. We sought to evaluate whether Schlafen 3 mediates the effects of strain on the differentiation of intestinal epithelial cell (IEC)-6 in the absence or presence of cyclic strain. Strain increased Schlafen 3 mRNA and protein. In cells transfected with a control-nontargeting siRNA, strain increased DPPIV-specific activity. However, Schlafen 3 reduction by siRNA decreased basal DPPIV and prevented any stimulation of DPPIV activity by strain. Schlafen 3 reduction also prevented DPPIV induction by sodium butyrate (1 mM) or transforming growth factor (TGF)-beta (0.1 ng/ml), two unrelated differentiating stimuli. However, Schlafen-3 reduction by siRNA did not prevent the mitogenic effect of strain or that of EGF. Blocking Src and phosphatidyl inositol (PI3)-kinase prevented strain induction of Schlafen 3, but Schlafen 3 induction required activation of p38 but not ERK. These results suggest that cyclic strain induces an absorptive phenotype characterized by increased DPPIV activity via Src-, p38-, and PI3-kinase-dependent induction of Schlafen 3 in rat IEC-6 cells on collagen, whereas Schlafen 3 may also be a key factor in the induction of intestinal epithelial differentiation by other stimuli such as sodium butyrate or TGF-beta. The induction of Schlafen 3 or its human homologs may modulate intestinal epithelial differentiation and preserve the gut mucosa during normal gut function.
Collapse
Affiliation(s)
- Lisi Yuan
- 1Department of Surgery, Michigan State University, Lansing; ,2Research Service, John. D. Dingell VA Medical Center, and ,Departments of 3Anatomy and Cell Biology and
| | - Yingjie Yu
- 2Research Service, John. D. Dingell VA Medical Center, and ,4Internal Medicine, Wayne State University, Detroit, Michigan
| | | | - Adhip P. N. Majumdar
- 2Research Service, John. D. Dingell VA Medical Center, and ,4Internal Medicine, Wayne State University, Detroit, Michigan
| | - Marc D. Basson
- 1Department of Surgery, Michigan State University, Lansing; ,2Research Service, John. D. Dingell VA Medical Center, and ,Departments of 3Anatomy and Cell Biology and
| |
Collapse
|
25
|
Schlafen-3: a novel regulator of intestinal differentiation. Biochem Biophys Res Commun 2009; 388:752-6. [PMID: 19703412 DOI: 10.1016/j.bbrc.2009.08.094] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 08/17/2009] [Indexed: 01/27/2023]
Abstract
Schlafen-3 (Slfn-3), a novel gene, has been shown to be a negative regulator of proliferation. The current investigation was undertaken to determine whether Slfn-3 might play a role in regulating cellular differentiation. Butyric acid, a short chain fatty acid, which induced differentiation of intestinal cells as evidenced by increased alkaline phosphatase (ALP) activity in the rat small intestinal IEC-6 cells, also produced a marked increase in Slfn-3 expression. Furthermore, overexpression of Slfn-3 caused stimulation of ALP activity in IEC-6 cells, which was exacerbated by butyrate. On the other hand, downregulation of Slfn-3 by slfn-3-si-RNA greatly attenuated the butyrate-mediated induction of differentiation of IEC-6 cells. Additionally, we observed that increased expression of Slfn-3 in colon cancer HCT-116 cells stimulated TGF-beta expression and modulated expression of its downstream effectors as evidenced by increased expression of p27kip1 and downregulation of CDK-2. In addition, Slfn-3 increases E-cadherin expression but downregulates beta-catenin. In conclusion, our data show that Slfn-3 plays a critical role in regulating intestinal mucosal differentiation. Furthermore our data also show that TGF-beta signaling pathway plays an important role in mediating slfn-3 induced differentiation.
Collapse
|
26
|
Bustos O, Naik S, Ayers G, Casola C, Perez-Lamigueiro MA, Chippindale PT, Pritham EJ, de la Casa-Esperón E. Evolution of the Schlafen genes, a gene family associated with embryonic lethality, meiotic drive, immune processes and orthopoxvirus virulence. Gene 2009; 447:1-11. [PMID: 19619625 PMCID: PMC9533870 DOI: 10.1016/j.gene.2009.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/26/2009] [Accepted: 07/04/2009] [Indexed: 12/30/2022]
Abstract
Genes of the Schlafen family, first discovered in mouse, are expressed in hematopoietic cells and are involved in immune processes. Previous results showed that they are candidate genes for two major phenomena: meiotic drive and embryonic lethality (DDK syndrome). However, these genes remain poorly understood, mostly due to the limitations imposed by their similarity, close location and the potential functional redundancy of the gene family members. Here we use genomic and phylogenetic studies to investigate the evolution and role of this family of genes. Our results show that the Schlafen family is widely distributed in mammals, where we recognize four major clades that experienced lineage-specific expansions or contractions in various orders, including primates and rodents. In addition, we identified members of the Schlafen family in Chondrichthyes and Amphibia, indicating an ancient origin of these genes. We find evidence that positive selection has acted on many Schlafen genes. Moreover, our analyses indicate that a member of the Schlafen family was horizontally transferred from murine rodents to orthopoxviruses, where it is hypothesized to play a role in allowing the virus to survive host immune defense mechanisms. The functional relevance of the viral Schlafen sequences is further underscored by our finding that they are evolving under purifying selection. This is of particular importance, since orthopoxviruses infect mammals and include variola, the causative agent of smallpox, and monkeypox, an emerging virus of great concern for human health.
Collapse
Affiliation(s)
- Olivia Bustos
- Department of Biology. The University of Texas Arlington, 501 S. Nedderman Dr. Arlington, TX 76019-0498, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Levi E, Misra S, Du J, Patel BB, Majumdar APN. Combination of aging and dimethylhydrazine treatment causes an increase in cancer-stem cell population of rat colonic crypts. Biochem Biophys Res Commun 2009; 385:430-3. [PMID: 19465005 DOI: 10.1016/j.bbrc.2009.05.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/20/2009] [Indexed: 12/13/2022]
Abstract
Aging is associated with increased incidence of colon cancers. It is also becoming evident that cancer stem cells (CSC) play a vital role in the pathogenesis and prognosis of colon cancer. Recently, we reported the presence of colon cancer stem-like cells in macroscopically normal mucosa in patients with adenomatous polyps and that they increase with aging, suggesting that aging may predispose the colon to carcinogenesis. In the current study we have examined the combined effects of aging and carcinogen exposure on the status of colon CSCs in an experimental model. We used young (4-6 months) and aged (22-24 months) rats and exposed them to the carcinogen, dimethylhydroxide (DMH). We investigated the expression of colon cancer stem cell markers, CD44, CD166, EpCam, and ALDH1 as well as EGFR expression in normal colonic crypt epithelium following carcinogen treatment. Our results demonstrate that aging per se or carcinogen treatment alone causes an increase in the number of colon cancer stems cells, as evidenced by increased immunoreactive-CSC-markers positive cells in the colonic mucosa. In aged rats, carcinogen exposure results in a more pronounced increase in colon cancer stem cells. Our study shows that in aging colon the effects of carcinogens are more pronounced, and an increase in colon CSCs is one of the earliest changes preceding tumor development. Moreover, the current investigation of the use of a panel of immunohistochemical markers of colon CSC can potentially serve as a prognostic marker during screening for colon cancer.
Collapse
Affiliation(s)
- Edi Levi
- Department of Veterans Affairs Medical Center, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|