1
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
2
|
Abstract
This protocol was developed to assess communication in tumor cells and to provide a dependable and standardized assay for the in vitro determination of gap junction function. The method is noninvasive; in this method, the cell population under study is divided such that 1 fraction is loaded with a lipophilic cell plasma membrane permeable dye, calcein acetoxymethyl ester, that is hydrolyzed upon cellular uptake by cytoplasmic esterases to yield calcein, a fluorescent and membrane-impermeable molecule. The other fraction is loaded with 1,1'-dioctadecyl-3,3,3',3' tetramethylindodicarbocyanine perchlorate (DiD)/1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate [Dil; DilC18(3)], which is a lipophilic membrane dye that diffuses laterally to stain the entire cell membrane, is impermeable, and attains an orange-red fluorescence upon incorporation into membranes. The 2 fractions are mixed and incubated under coculture conditions. Calcein with MW 890 kD is transferred to the DiD/DiI-stained cells through gap junctions. The assessment of this uptake is made with confocal imaging and quantitated using flow cytometry. Cell lines representing cancer of the breast as well as a nontransformed cell line developed from the buccal mucosa were analyzed for gap junction competency. Confocal imaging with acquisition at specific time points during the in vitro treatment and flow cytometry gave a qualitative and quantitative analysis of the passage of molecules through the gap junctions. Here, the method has been combined to obtain images as well as quantitation and is a simple and effective approach in assessing the functional competency of gap junction in epithelial cells.
Collapse
Affiliation(s)
- Ujjwala M Warawdekar
- Cancer Research Institute (CRI) Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India.,Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400085, India
| |
Collapse
|
3
|
Dydowiczová A, Brózman O, Babica P, Sovadinová I. Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. Sci Rep 2020; 10:730. [PMID: 31959888 PMCID: PMC6971000 DOI: 10.1038/s41598-020-57536-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/31/2019] [Indexed: 12/28/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) is a vital cellular process required for maintenance of tissue homeostasis. In vitro assessment of GJIC represents valuable phenotypic endpoint that could be effectively utilized as an integral component in modern toxicity testing, drug screening or biomedical in vitro research. However, currently available methods for quantifying GJIC with higher-throughputs typically require specialized equipment, proprietary software and/or genetically engineered cell models. To overcome these limitations, we present here an innovative adaptation of traditional, fluorescence microscopy-based scrape loading-dye transfer (SL-DT) assay, which has been optimized to simultaneously evaluate GJIC, cell density and viability. This multiparametric method was demonstrated to be suitable for various multiwell microplate formats, which facilitates an automatized image acquisition. The assay workflow is further assisted by an open source-based software tools for batch image processing, analysis and evaluation of GJIC, cell density and viability. Our results suggest that this approach provides a simple, fast, versatile and cost effective way for in vitro high-throughput assessment of GJIC and other related phenotypic cellular events, which could be included into in vitro screening and assessment of pharmacologically and toxicologically relevant compounds.
Collapse
Affiliation(s)
- Aneta Dydowiczová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Ondřej Brózman
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic.
| |
Collapse
|
4
|
Fridman MD, Liu J, Sun Y, Hamilton RM. Microinjection Technique for Assessment of Gap Junction Function. Methods Mol Biol 2016; 1437:145-154. [PMID: 27207292 DOI: 10.1007/978-1-4939-3664-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gap junctions are essential for the proper function of many native mammalian tissues including neurons, cardiomyocytes, embryonic tissues, and muscle. Assessing these channels is therefore fundamental to understanding disease pathophysiology, developing therapies for a multitude of acquired and genetic conditions, and providing novel approaches to drug delivery and cellular communication. Microinjection is a robust, albeit difficult, technique, which provides considerable information that is superior to many of the simpler techniques due to its ability to isolate cells, quantify kinetics, and allow cross-comparison of multiple cell lines. Despite its user-dependent nature, the strengths of the technique are considerable and with the advent of new, automation technologies may improve further. This text describes the basic technique of microinjection and briefly discusses modern automation advances that can improve the success rates of this technique.
Collapse
Affiliation(s)
- Michael D Fridman
- Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Jun Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Robert M Hamilton
- Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Pediatrics - Division of Cardiology, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
6
|
Sharma P, Abbasi C, Lazic S, Teng ACT, Wang D, Dubois N, Ignatchenko V, Wong V, Liu J, Araki T, Tiburcy M, Ackerley C, Zimmermann WH, Hamilton R, Sun Y, Liu PP, Keller G, Stagljar I, Scott IC, Kislinger T, Gramolini AO. Evolutionarily conserved intercalated disc protein Tmem65 regulates cardiac conduction and connexin 43 function. Nat Commun 2015; 6:8391. [PMID: 26403541 DOI: 10.1038/ncomms9391] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/18/2015] [Indexed: 02/07/2023] Open
Abstract
Membrane proteins are crucial to heart function and development. Here we combine cationic silica-bead coating with shotgun proteomics to enrich for and identify plasma membrane-associated proteins from primary mouse neonatal and human fetal ventricular cardiomyocytes. We identify Tmem65 as a cardiac-enriched, intercalated disc protein that increases during development in both mouse and human hearts. Functional analysis of Tmem65 both in vitro using lentiviral shRNA-mediated knockdown in mouse cardiomyocytes and in vivo using morpholino-based knockdown in zebrafish show marked alterations in gap junction function and cardiac morphology. Molecular analyses suggest that Tmem65 interaction with connexin 43 (Cx43) is required for correct localization of Cx43 to the intercalated disc, since Tmem65 deletion results in marked internalization of Cx43, a shorter half-life through increased degradation, and loss of Cx43 function. Our data demonstrate that the membrane protein Tmem65 is an intercalated disc protein that interacts with and functionally regulates ventricular Cx43.
Collapse
Affiliation(s)
- Parveen Sharma
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7
| | - Cynthia Abbasi
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7
| | - Savo Lazic
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Allen C T Teng
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7
| | - Dingyan Wang
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7
| | - Nicole Dubois
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Victoria Wong
- Departments of Molecular Genetics and Biochemistry, Donnelly Centre,, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Jun Liu
- Department of Mechanical and Industrial Engineering, Advanced Micro and Nanosystems Laboratory, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Toshiyuki Araki
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Malte Tiburcy
- Institute of Pharmacology, University Medical Center Göttingen and DZHK (German Center for Cardiovascular Research) partner site Göttingen, Göttingen 37075, Germany
| | - Cameron Ackerley
- The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Wolfram H Zimmermann
- Institute of Pharmacology, University Medical Center Göttingen and DZHK (German Center for Cardiovascular Research) partner site Göttingen, Göttingen 37075, Germany
| | - Robert Hamilton
- The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada M5G 1L7
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, Advanced Micro and Nanosystems Laboratory, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Peter P Liu
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Igor Stagljar
- Departments of Molecular Genetics and Biochemistry, Donnelly Centre,, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Ian C Scott
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada M5G 1L7
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Anthony O Gramolini
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7.,Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
7
|
Trehan A, Rotgers E, Coffey ET, Huhtaniemi I, Rivero-Müller A. CANDLES, an assay for monitoring GPCR induced cAMP generation in cell cultures. Cell Commun Signal 2014; 12:70. [PMID: 25366423 PMCID: PMC4228090 DOI: 10.1186/s12964-014-0070-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background G protein-coupled receptors (GPCRs) represent a physiologically and pharmacologically important family of receptors that upon coupling to GαS stimulate cAMP production catalyzed by adenylyl cyclase. Thus, developing assays to monitor cAMP production is crucial to screen for ligands in studies of GPCR signaling. Primary cell cultures represent a more robust model than cell lines to study GPCR signaling since they physiologically resemble the parent tissue. Current cAMP assays have two fundamental limitations: 1) absence of cAMP kinetics as competition-based assays require cell lysis and measure only a single time-point, and 2) high variation with separate samples needed to measure consecutive time points. The utility of real-time cAMP biosensors is also limited in primary cell cultures due to their poor transfection efficiency, variable expression levels and inability to select stable clones. We therefore, decided to develop an assay that can measure cAMP not only at a single time-point but the entire cAMP kinetics after GPCR activation in untransfected primary cells. Results CANDLES (Cyclic AMP iNdirect Detection by Light Emission from Sensor cells) assay for monitoring cAMP kinetics in cell cultures, particularly in primary cultures was developed. The assay requires co-culturing of primary cells with sensor cells that stably express a luminescent cAMP sensor. Upon GPCR activation in primary cells, cAMP is transferred to sensor cells via gap junction channels, thereby evoking a luminescent read-out. GPCR activation using primary cultures of rat cortical neurons and mouse granulosa cells was measured. Kinetic responses of different agonists to adrenergic receptors were also compared using rat cortical neurons. The assay optimization was done by varying sensor-test cell ratio, using phosphodiesterase inhibitors and testing cell-cell contact requirement. Conclusions Here we present CANDLES assay based on co-culturing test cells with cAMP-detecting sensor cells. This co-culture setup allows kinetic measurements, eliminates primary cell transfections and reduces variability. A variety of cell types (rat cortical neurons, mouse granulosa cells and established cell lines) and receptors (adrenergic, follicle stimulating hormone and luteinizing hormone/chorionic gonadotropin receptors) were tested for use with CANDLES. The assay is best applied while comparing cAMP generation curves upon different drug treatments to untransfected primary cells. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0070-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashutosh Trehan
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Emmi Rotgers
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Eleanor T Coffey
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, BioCity, Turku, Finland.
| | - Ilpo Huhtaniemi
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland. .,Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, UK.
| | - Adolfo Rivero-Müller
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland. .,Faculty of Natural Sciences and Technology, Åbo Akademi University, Turku, Finland. .,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|