1
|
Keasey MP, Lovins C, Jia C, Hagg T. Liver vitronectin release into the bloodstream increases due to reduced vagal muscarinic signaling after cerebral stroke in female mice. Physiol Rep 2022; 10:e15301. [PMID: 35531929 PMCID: PMC9082388 DOI: 10.14814/phy2.15301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Vitronectin (VTN) is a glycoprotein enriched in the blood and activates integrin receptors. VTN blood levels increase only in female mice 24 h after an ischemic stroke and exacerbate brain injury through IL-6-driven inflammation, but the VTN induction mechanism is unknown. Here, a 30 min middle cerebral artery occlusion (MCAO) in female mice induced VTN protein in the liver (normally the main source) in concert with plasma VTN. Male mice were excluded as VTN is not induced after stroke. MCAO also increased plasma VTN levels after de novo expression of VTN in the liver of VTN-/- female mice, using a hepatocyte-specific (SERPINA1) promoter. MCAO did not affect SERPINA1 or VTN mRNA in the liver, brain, or several peripheral organs, or platelet VTN, compared to sham mice. Thus, hepatocytes are the source of stroke-induced increases in plasma VTN, which is independent of transcription. The cholinergic innervation by the parasympathetic vagus nerve is a potential source of brain-liver signaling after stroke. Right-sided vagotomy at the cervical level led to increased plasma VTN levels, suggesting that VTN release is inhibited by vagal tone. Co-culture of hepatocytes with cholinergic neurons or treatment with acetylcholine, but not noradrenaline (sympathetic transmitter), suppressed VTN expression. Hepatocytes have muscarinic receptors and the M1/M3 agonist bethanechol decreased VTN mRNA and protein release in vitro via M1 receptors. Finally, systemic bethanechol treatment blocked stroke-induced plasma VTN. Thus, VTN translation and release are inhibited by muscarinic signaling from the vagus nerve and presents a novel target for lessening detrimental VTN expression.
Collapse
Affiliation(s)
- Matthew P. Keasey
- Department of Biomedical SciencesQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUnited States
| | - Chiharu Lovins
- Department of Biomedical SciencesQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUnited States
| | - Cuihong Jia
- Department of Biomedical SciencesQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUnited States
| | - Theo Hagg
- Department of Biomedical SciencesQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUnited States
| |
Collapse
|
2
|
Martin A, Mecawi AS, Antunes VR, Yao ST, Antunes-Rodrigues J, Paton JFR, Paterson A, Greenwood M, Šarenac O, Savić B, Japundžić-Žigon N, Murphy D, Hindmarch CCT. Transcriptome Analysis Reveals Downregulation of Urocortin Expression in the Hypothalamo-Neurohypophysial System of Spontaneously Hypertensive Rats. Front Physiol 2021; 11:599507. [PMID: 33815127 PMCID: PMC8011454 DOI: 10.3389/fphys.2020.599507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
The chronically increased blood pressure characteristic of essential hypertension represents an insidious and cumulative risk for cardiovascular disease. Essential hypertension is a multifactorial condition, with no known specific aetiology but a strong genetic component. The Spontaneously Hypertensive rat (SHR) shares many characteristics of human essential hypertension, and as such is a commonly used experimental model. The mammalian hypothalamo-neurohypophyseal system (HNS) plays a pivotal role in the regulation of blood pressure, volume and osmolality. In order to better understand the possible role of the HNS in hypertension, we have used microarray analysis to reveal differential regulation of genes in the HNS of the SHR compared to a control normotensive strain, the Wistar Kyoto rat (WKY). These results were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). One of the genes identified and validated as being downregulated in SHR compared to WKY was that encoding the neuropeptide urocortin (Ucn). Immunohistochemical analyses revealed Ucn to be highly expressed within magnocellular neurons of the PVN and SON, with pronounced localisation in dendritic projections containing oxytocin and vasopressin. When Ucn was overexpressed in the PVN of the SHR by in vivo lentiviral mediated gene transfer, blood pressure was unaffected but there were significant, transient reductions in the VLF spectra of systolic blood pressure consistent with an action on autonomic balance. We suggest that Ucn may act, possibly via dendritic release, to subtly regulate neurohumoral aspects of arterial pressure control.
Collapse
Affiliation(s)
- Andrew Martin
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Andre S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Vagner R Antunes
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom.,Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Song T Yao
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Jose Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Julian F R Paton
- Manaaki Mānawa, The Heart Research Centre, University of Auckland, Auckland, New Zealand
| | - Alex Paterson
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Michael Greenwood
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Olivera Šarenac
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom.,Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Bojana Savić
- Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Nina Japundžić-Žigon
- Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Charles C T Hindmarch
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom.,Queen's Cardiopulmonary Unit, Department of Medicine, Translational Institute of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
3
|
Gao HR, Gao HY. Cardiovascular functions of central corticotropin-releasing factor related peptides system. Neuropeptides 2019; 75:18-24. [PMID: 30922523 DOI: 10.1016/j.npep.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
The corticotropin-releasing factor (CRF) related peptides system has widespread distributions in central nervous system, to perform many physiological and pathophysiological functions, including cardiovascular functions. A complex connection exists between the central CRF related peptides system and cardiovascular system. There are multiple pathways and mechanisms through which the central CRF related peptides system influences cardiovascular functions. A dysfunction in the central CRF related peptides system may lead to a wide range of alterations in cardiovascular functions. Though there are difficulties or limitations in establishing exact modulatory roles of the central CRF related peptides system in cardiovascular functions. The central CRF related peptides system as target to prevent cardiovascular diseases is being pursued with increasing interest. In this review, we summarize recent understanding on cardiovascular functions of the CRF related peptides system in limbic forebrain, hypothalamus and brain stem structures, discuss mechanisms of the central CRF related peptides system in control of cardiovascular functions, and suggest that the central CRF related peptides system may be a potent candidate for prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- He-Ren Gao
- Research Institute of Acupuncture and Meridian, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - He-Yuan Gao
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| |
Collapse
|
4
|
Oliveira LA, Almeida J, Gomes-de-Souza L, Benini R, Crestani CC. CRF1and CRF2receptors in the bed nucleus of stria terminalis differently modulate the baroreflex function in unanesthetized rats. Eur J Neurosci 2017; 46:1805-1812. [DOI: 10.1111/ejn.13622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Leandro A. Oliveira
- Laboratory of Pharmacology; Department of Natural Active Principles and Toxicology; School of Pharmaceutical Sciences; São Paulo State University (UNESP); Rodovia Araraquara-Jau Km 01 (Campus Universitário) 14800-903 Araraquara SP Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences; PIPGCF; São Carlos SP Brazil
| | - Jeferson Almeida
- Laboratory of Pharmacology; Department of Natural Active Principles and Toxicology; School of Pharmaceutical Sciences; São Paulo State University (UNESP); Rodovia Araraquara-Jau Km 01 (Campus Universitário) 14800-903 Araraquara SP Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences; PIPGCF; São Carlos SP Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology; Department of Natural Active Principles and Toxicology; School of Pharmaceutical Sciences; São Paulo State University (UNESP); Rodovia Araraquara-Jau Km 01 (Campus Universitário) 14800-903 Araraquara SP Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences; PIPGCF; São Carlos SP Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology; Department of Natural Active Principles and Toxicology; School of Pharmaceutical Sciences; São Paulo State University (UNESP); Rodovia Araraquara-Jau Km 01 (Campus Universitário) 14800-903 Araraquara SP Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences; PIPGCF; São Carlos SP Brazil
| | - Carlos C. Crestani
- Laboratory of Pharmacology; Department of Natural Active Principles and Toxicology; School of Pharmaceutical Sciences; São Paulo State University (UNESP); Rodovia Araraquara-Jau Km 01 (Campus Universitário) 14800-903 Araraquara SP Brazil
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences; PIPGCF; São Carlos SP Brazil
| |
Collapse
|
5
|
A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 2017; 20:484-496. [PMID: 28166221 PMCID: PMC5323293 DOI: 10.1038/nn.4495] [Citation(s) in RCA: 543] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023]
Abstract
The hypothalamic arcuate-median eminence complex (Arc-ME) controls energy balance, fertility, and growth through molecularly distinct cell types, many of which remain unknown. To catalog cell types in an unbiased way, we profiled gene expression in 20,921 individual cells in and around the adult mouse Arc-ME using Drop-seq. We identify 50 transcriptionally distinct Arc-ME cell populations, including a rare tanycyte population at the Arc-ME diffusion barrier, a novel leptin-sensing neuronal population, multiple AgRP and POMC subtypes, and an orexigenic somatostatin neuronal population. We extended Drop-seq to detect dynamic expression changes across relevant physiological perturbations, revealing cell type-specific responses to energy status, including distinctly responsive subtypes of AgRP and POMC neurons. Finally, integrating our data with human GWAS data implicates two previously unknown neuronal subtypes in the genetic control of obesity. This resource will accelerate biological discovery by providing insights into molecular and cell type diversity from which function can be inferred.
Collapse
|
6
|
Corticotropin releasing factor excites neurons of posterior hypothalamic nucleus to produce tachycardia in rats. Sci Rep 2016; 6:20206. [PMID: 26831220 PMCID: PMC4735335 DOI: 10.1038/srep20206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/23/2015] [Indexed: 12/26/2022] Open
Abstract
Corticotropin releasing factor (CRF), a peptide hormone involved in the stress response, holds a key position in cardiovascular regulation. Here, we report that the central effect of CRF on cardiovascular activities is mediated by the posterior hypothalamic nucleus (PH), an important structure responsible for stress-induced cardiovascular changes. Our present results demonstrate that CRF directly excites PH neurons via two CRF receptors, CRFR1 and CRFR2, and consequently increases heart rate (HR) rather than the mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). Bilateral vagotomy does not influence the tachycardia response to microinjection of CRF into the PH, while β adrenergic receptor antagonist propranolol almost totally abolishes the tachycardia. Furthermore, microinjecting CRF into the PH primarily increases neuronal activity of the rostral ventrolateral medulla (RVLM) and rostral ventromedial medulla (RVMM), but does not influence that of the dorsal motor nucleus of the vagus nerve (DMNV). These findings suggest that the PH is a critical target for central CRF system in regulation of cardiac activity and the PH-RVLM/RVMM-cardiac sympathetic nerve pathways, rather than PH-DMNV-vagus pathway, may contribute to the CRF-induced tachycardia.
Collapse
|
8
|
Chitravanshi VC, Kawabe K, Sapru HN. GABA and glycine receptors in the nucleus ambiguus mediate tachycardia elicited by chemical stimulation of the hypothalamic arcuate nucleus. Am J Physiol Heart Circ Physiol 2015; 309:H174-84. [PMID: 25957221 DOI: 10.1152/ajpheart.00801.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/01/2015] [Indexed: 02/07/2023]
Abstract
We have previously reported that stimulation of the hypothalamic arcuate nucleus (ARCN) by microinjections of N-methyl-d-aspartic acid (NMDA) elicits tachycardia, which is partially mediated via inhibition of vagal inputs to the heart. The neuronal pools and neurotransmitters in them mediating tachycardia elicited from the ARCN have not been identified. We tested the hypothesis that the tachycardia elicited from the ARCN may be mediated by inhibitory neurotransmitters in the nucleus ambiguus (nAmb). Experiments were done in urethane-anesthetized, artificially ventilated, male Wistar rats. In separate groups of rats, unilateral and bilateral microinjections of muscimol (1 mM), gabazine (0.01 mM), and strychnine (0.5 mM) into the nAmb significantly attenuated tachycardia elicited by unilateral microinjections of NMDA (10 mM) into the ARCN. Histological examination of the brains showed that the microinjections sites were within the targeted nuclei. Retrograde anatomic tracing from the nAmb revealed direct bilateral projections from the ARCN and hypothalamic paraventricular nucleus to the nAmb. The results of the present study suggest that tachycardia elicited by stimulation of the ARCN by microinjections of NMDA is mediated via GABAA and glycine receptors located in the nAmb.
Collapse
Affiliation(s)
- Vineet C Chitravanshi
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Kazumi Kawabe
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Hreday N Sapru
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
9
|
Cote SR, Chitravanshi VC, Bleickardt C, Sapru HN, Kuzhikandathil EV. Overexpression of the dopamine D3 receptor in the rat dorsal striatum induces dyskinetic behaviors. Behav Brain Res 2014; 263:46-50. [PMID: 24462727 DOI: 10.1016/j.bbr.2014.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/11/2014] [Accepted: 01/15/2014] [Indexed: 01/26/2023]
Abstract
L-DOPA-induced dyskinesias (LID) are motor side effects associated with treatment of Parkinson's disease (PD). The etiology of LID is not clear; however, studies have shown that the dopamine D3 receptor is upregulated in the basal ganglia of mice, rats and non-human primate models of LID. It is not known if the upregulation of D3 receptor is a cause or result of LID. In this paper we tested the hypothesis that overexpression of the dopamine D3 receptor in dorsal striatum, in the absence of dopamine depletion, will elicit LID. Replication-deficient recombinant adeno-associated virus-2 expressing the D3 receptor or enhanced green fluorescent protein (EGFP) were stereotaxically injected, unilaterally, into the dorsal striatum of adult rats. Post-hoc immunohistochemical analysis revealed that ectopic expression of the D3 receptor was limited to neurons near the injection sites in the dorsal striatum. Following a 3-week recovery period, rats were administered saline, 6 mg/kg L-DOPA, 0.1 mg/kg PD128907 or 10 mg/kg ES609, i.p., and motor behaviors scored. Rats overexpressing the D3 receptor specifically exhibited contralateral axial abnormal involuntary movements (AIMs) following administration of L-DOPA and PD128907 but not saline or the novel agonist ES609. Daily injection of 6 mg/kg L-DOPA to the rats overexpressing the D3 receptor also caused increased vacuous chewing behavior. These results suggest that overexpression of the D3 receptor in the dorsal striatum results in the acute expression of agonist-induced axial AIMs and chronic L-DOPA-induced vacuous chewing behavior. Agonists such as ES609 might provide a novel therapeutic approach to treat dyskinesia.
Collapse
Affiliation(s)
- Samantha R Cote
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, Newark, NJ 07101, USA
| | - Vineet C Chitravanshi
- Department of Neurological Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07101, USA
| | - Carina Bleickardt
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, Newark, NJ 07101, USA
| | - Hreday N Sapru
- Department of Neurological Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07101, USA
| | - Eldo V Kuzhikandathil
- Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, Newark, NJ 07101, USA.
| |
Collapse
|