1
|
Yang C, Zhu Q, Chen Y, Ji K, Li S, Wu Q, Pan Q, Li J. Review of the Protective Mechanism of Curcumin on Cardiovascular Disease. Drug Des Devel Ther 2024; 18:165-192. [PMID: 38312990 PMCID: PMC10838105 DOI: 10.2147/dddt.s445555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death worldwide and has been the focus of research in the medical community. Curcumin is a polyphenolic compound extracted from the root of turmeric. Curcumin has been shown to have a variety of pharmacological properties over the past decades. Curcumin can significantly protect cardiomyocyte injury after ischemia and hypoxia, inhibit myocardial hypertrophy and fibrosis, improve ventricular remodeling, reduce drug-induced myocardial injury, improve diabetic cardiomyopathy(DCM), alleviate vascular endothelial dysfunction, inhibit foam cell formation, and reduce vascular smooth muscle cells(VSMCs) proliferation. Clinical studies have shown that curcumin has a protective effect on blood vessels. Toxicological studies have shown that curcumin is safe. But high doses of curcumin also have some side effects, such as liver damage and defects in embryonic heart development. This article reviews the mechanism of curcumin intervention on CVDs in recent years, in order to provide reference for the development of new drugs in the future.
Collapse
Affiliation(s)
- Chunkun Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Yanbo Chen
- Department of Arrhythmia, Weifang People's Hospital, Weifang, Shandong, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Qian Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Li T, Jin J, Pu F, Bai Y, Chen Y, Li Y, Wang X. Cardioprotective effects of curcumin against myocardial I/R injury: A systematic review and meta-analysis of preclinical and clinical studies. Front Pharmacol 2023; 14:1111459. [PMID: 36969839 PMCID: PMC10034080 DOI: 10.3389/fphar.2023.1111459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Objective: Myocardial ischemia-reperfusion (I/R) injury is a complex clinical problem that often leads to further myocardial injury. Curcumin is the main component of turmeric, which has been proved to have many cardioprotective effects. However, the cardioprotective potential of curcumin remains unclear. The present systematic review and meta-analysis aimed to evaluate the clinical and preclinical (animal model) evidence regarding the effect of curcumin on myocardial I/R injury.Methods: Eight databases and three register systems were searched from inception to 1 November 2022. Data extraction, study quality assessment, data analyses were carried out strictly. Then a fixed or random-effects model was applied to analyze the outcomes. SYRCLE’s-RoB tool and RoB-2 tool was used to assess the methodological quality of the included studies. RevMan 5.4 software and stata 15.1 software were used for statistical analysis.Results: 24 animal studies, with a total of 503 animals, and four human studies, with a total of 435 patients, were included in this study. The meta-analysis of animal studies demonstrated that compared with the control group, curcumin significantly reduced myocardial infarction size (p < 0.00001), and improved the cardiac function indexes (LVEF, LVFS, LVEDd, and LVESd) (p < 0.01). In addition, the indexes of myocardial injury markers, myocardial oxidation, myocardial apoptosis, inflammation, and other mechanism indicators also showed the beneficial effect of curcumin (p < 0.05). In terms of clinical studies, curcumin reduced the incidence of cardiac dysfunction, myocardial infarction in the hospital and MACE in the short term, which might be related to its anti-inflammatory and anti-oxidative property. Dose-response meta-analysis predicted, 200 mg/kg/d bodyweight was the optimal dose of curcumin in the range of 10–200 mg/kg/d, which was safe and non-toxic according to the existing publications.Conclusion: Our study is the first meta-analysis that includes both preclinical and clinical researches. We suggested that curcumin might play a cardioprotective role in acute myocardial infarction in animal studies, mainly through anti-oxidative, anti-inflammatory, anti-apoptosis, and anti-fibrosis effects. In addition, from the clinical studies, we found that curcumin might need a longer course of treatment and a larger dose to protect the myocardium, and its efficacy is mainly reflected on reducing the incidence of myocardial infarction and MACE. Our finding provides some meaningful advice for the further research.
Collapse
Affiliation(s)
- Tianli Li
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Jialin Jin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Pu
- Center for Evidence Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Bai
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yajun Chen
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yan Li, ; Xian Wang,
| | - Xian Wang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yan Li, ; Xian Wang,
| |
Collapse
|
3
|
The Development of Dyslipidemia in Chronic Kidney Disease and Associated Cardiovascular Damage, and the Protective Effects of Curcuminoids. Foods 2023; 12:foods12050921. [PMID: 36900438 PMCID: PMC10000737 DOI: 10.3390/foods12050921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic kidney disease (CKD) is a health problem that is constantly growing. This disease presents a diverse symptomatology that implies complex therapeutic management. One of its characteristic symptoms is dyslipidemia, which becomes a risk factor for developing cardiovascular diseases and increases the mortality of CKD patients. Various drugs, particularly those used for dyslipidemia, consumed in the course of CKD lead to side effects that delay the patient's recovery. Therefore, it is necessary to implement new therapies with natural compounds, such as curcuminoids (derived from the Curcuma longa plant), which can cushion the damage caused by the excessive use of medications. This manuscript aims to review the current evidence on the use of curcuminoids on dyslipidemia in CKD and CKD-induced cardiovascular disease (CVD). We first described oxidative stress, inflammation, fibrosis, and metabolic reprogramming as factors that induce dyslipidemia in CKD and their association with CVD development. We proposed the potential use of curcuminoids in CKD and their utilization in clinics to treat CKD-dyslipidemia.
Collapse
|
4
|
Hartog MA, Lewandowski RJ, Hofmann CS, Melber AA, Rothwell CC, Sherman K, Andres J, Tressler JA, Sciuto AM, Wong B, Hoard-Fruchey HM. Transcriptomic Characterization of Inhalation Phosphine Toxicity in Adult Male Sprague-Dawley Rats. Chem Res Toxicol 2021; 34:2032-2044. [PMID: 34427094 DOI: 10.1021/acs.chemrestox.1c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphine (PH3) is a highly toxic, corrosive, flammable, heavier-than-air gas that is a commonly used fumigant. When used as a fumigant, PH3 can be released from compressed gas tanks or produced from commercially available metal phosphide tablets. Although the mechanism of toxicity is unclear, PH3 is thought to be a metabolic poison. PH3 exposure induces multiorgan toxicity, and no effective antidotes or therapeutics have been identified. Current medical treatment consists largely of supportive care and maintenance of cardiovascular function. To better characterize the mechanism(s) driving PH3-induced toxicity, we have performed transcriptomic analysis on conscious adult male Sprague-Dawley rats following whole-body inhalation exposure to phosphine gas at various concentration-time products. PH3 exposure induced concentration- and time-dependent changes in gene expression across multiple tissues. These gene expression changes were mapped to pathophysiological responses using molecular pathway analysis. Toxicity pathways indicative of cardiac dysfunction, cardiac arteriopathy, and cardiac enlargement were identified. These cardiotoxic responses were linked to apelin-mediated cardiomyocyte and cardiac fibroblast signaling pathways. Evaluation of gene expression changes in blood revealed alterations in pathways associated with the uptake, transport, and utilization of iron. Altered erythropoietin signaling was also observed in the blood. Upstream regulator analysis identified several therapeutics predicted to counteract PH3-induced gene expression changes. These include antihypertensive drugs (losartan, candesartan, and prazosin) and therapeutics to reduce pathological cardiac remodeling (curcumin and TIMP3). This transcriptomics study has characterized molecular pathways involved in PH3-induced cardiotoxicity. These data will aid in elucidating a precise mechanism of toxicity for PH3 and guide the development of effective medical countermeasures for PH3-induced toxicity.
Collapse
Affiliation(s)
- Matthew A Hartog
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Rebecca J Lewandowski
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Christopher S Hofmann
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Ashley A Melber
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Cristin C Rothwell
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Katherine Sherman
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Jaclynn Andres
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Justin A Tressler
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Alfred M Sciuto
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Benjamin Wong
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Heidi M Hoard-Fruchey
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
5
|
Rysz J, Franczyk B, Kujawski K, Sacewicz-Hofman I, Ciałkowska-Rysz A, Gluba-Brzózka A. Are Nutraceuticals Beneficial in Chronic Kidney Disease? Pharmaceutics 2021; 13:231. [PMID: 33562154 PMCID: PMC7915977 DOI: 10.3390/pharmaceutics13020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic kidney disease (CKD) is a worldwide health problem in which prevalence is constantly rising. The pathophysiology of CKD is complicated and has not been fully resolved. However, elevated oxidative stress is considered to play a vital role in the development of this disease. CKD is also thought to be an inflammatory disorder in which uremic toxins participate in the development of the inflammatory milieu. A healthy, balanced diet supports the maintenance of a good health status as it helps to reduce the risk of the development of chronic diseases, including chronic kidney disease, diabetes mellitus, and hypertension. Numerous studies have demonstrated that functional molecules and nutrients, including fatty acids and fiber as well as nutraceuticals such as curcumin, steviol glycosides, and resveratrol not only exert beneficial effects on pro-inflammatory and anti-inflammatory pathways but also on gut mucosa. Nutraceuticals have attracted great interest recently due to their potential favorable physiological effects on the human body and their safety. This review presents some nutraceuticals in which consumption could exert a beneficial impact on the development and progression of renal disease as well cardiovascular disease.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.); (K.K.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.); (K.K.)
| | - Krzysztof Kujawski
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.); (K.K.)
| | | | | | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.); (K.K.)
| |
Collapse
|
6
|
Protective Effects of Curcumin on Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:213-221. [DOI: 10.1007/978-3-030-73234-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Stamenkovska M, Hadzi-Petrushev N, Nikodinovski A, Gagov H, Atanasova-Panchevska N, Mitrokhin V, Kamkin A, Mladenov M. Application of curcumine and its derivatives in the treatment of cardiovascular diseases: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1977655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mimoza Stamenkovska
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
- Faculty of Dental Medicine, European University Skopje, Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Aleksandar Nikodinovski
- Institut for Preclinical and Clinical Pharmacology and Toxicology, Medical Faculty, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Hristo Gagov
- Faculty of Biology, St. Kliment Ohridski University, Sofia, Bulgaria
| | - Natalija Atanasova-Panchevska
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
8
|
Sciarretta S, Forte M, Castoldi F, Frati G, Versaci F, Sadoshima J, Kroemer G, Maiuri MC. Caloric restriction mimetics for the treatment of cardiovascular diseases. Cardiovasc Res 2020; 117:1434-1449. [PMID: 33098415 DOI: 10.1093/cvr/cvaa297] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
Caloric restriction mimetics (CRMs) are emerging as potential therapeutic agents for the treatment of cardiovascular diseases. CRMs include natural and synthetic compounds able to inhibit protein acetyltransferases, to interfere with acetyl coenzyme A biosynthesis, or to activate (de)acetyltransferase proteins. These modifications mimic the effects of caloric restriction, which is associated with the activation of autophagy. Previous evidence demonstrated the ability of CRMs to ameliorate cardiac function and reduce cardiac hypertrophy and maladaptive remodelling in animal models of ageing, mechanical overload, chronic myocardial ischaemia, and in genetic and metabolic cardiomyopathies. In addition, CRMs were found to reduce acute ischaemia-reperfusion injury. In many cases, these beneficial effects of CRMs appeared to be mediated by autophagy activation. In the present review, we discuss the relevant literature about the role of different CRMs in animal models of cardiac diseases, emphasizing the molecular mechanisms underlying the beneficial effects of these compounds and their potential future clinical application.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesca Castoldi
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100 Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Versaci
- Division of Cardiology, S. Maria Goretti Hospital, 04100 Latina, Italy
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, G-609, Newark, NJ 07103, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou Jiangsu 215163, China.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Team "Metabolism, Cancer & Immunity", INSERM UMRS1138, Université de Paris, Sorbonne Université, 75006 Paris, France.,Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| |
Collapse
|
9
|
Durairaj P, Venkatesan S, Narayanan V, Babu M. Protective effects of curcumin on bleomycin-induced changes in lung glycoproteins. Mol Cell Biochem 2020; 469:159-167. [DOI: 10.1007/s11010-020-03737-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/22/2020] [Indexed: 11/28/2022]
|
10
|
Li H, Sureda A, Devkota HP, Pittalà V, Barreca D, Silva AS, Tewari D, Xu S, Nabavi SM. Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol Adv 2020; 38:107343. [DOI: 10.1016/j.biotechadv.2019.01.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
|
11
|
Li P, Song X, Zhang D, Guo N, Wu C, Chen K, Liu Y, Yuan L, Chen X, Huang X. Resveratrol improves left ventricular remodeling in chronic kidney disease via Sirt1-mediated regulation of FoxO1 activity and MnSOD expression. Biofactors 2020; 46:168-179. [PMID: 31688999 DOI: 10.1002/biof.1584] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/12/2019] [Indexed: 12/20/2022]
Abstract
Left ventricular remodeling commonly complicates end-stage renal disease following chronic kidney disease (CKD). This study investigated the therapeutic efficacy of resveratrol (RSV), a polyphenolic compound, on left ventricular remodeling in subtotal nephrectomy rats and sought to uncover the underlying molecular mechanisms. Subtotal nephrectomy caused renal dysfunction, such as gradual increases in serum creatinine and blood urea nitrogen, glomerular sclerosis, and tubulointerstitial fibrosis. In addition, subtotal nephrectomy also resulted in significant increases in myocyte cross-sectional area, interstitial and perivascular fibrosis, and left ventricular dilatation. All these detrimental effects were alleviated in the presence of RSV. Mechanistically, RSV treatment led to the upregulation of manganese-containing superoxide dismutase (MnSOD) in the heart. Coimmunoprecipitation studies showed that silent information regulator 1 (Sirt1) bound forkhead box protein O1 (FoxO1) and thus reduced acetylated FoxO1. RSV strengthened this interaction between Sirt1 and FoxO1. Loss of one allele of Sirt1 aggravated renal damage, myocyte hypertrophy, and interstitial fibrosis in nephrectomized mice. Taken together, our data show that Sirt1 is an important mediator for the protective roles of RSV on renal and heart damage in CKD rodent model, and FoxO1 and MnSOD are likely downstream targets of Sirt1. Therefore, Sirt1 might be a potential therapeutic target for the treatment of left ventricular remodeling caused by CKD.
Collapse
Affiliation(s)
- Peipei Li
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaoli Song
- Department of Nephrology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, Jiangsu, China
| | - Dingwu Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Naifeng Guo
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chuwen Wu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Kairen Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yue Liu
- Department of Nephrology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, Jiangsu, China
| | - Li Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaolan Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
12
|
Ghelani H, Razmovski-Naumovski V, Chang D, Nammi S. Chronic treatment of curcumin improves hepatic lipid metabolism and alleviates the renal damage in adenine-induced chronic kidney disease in Sprague-Dawley rats. BMC Nephrol 2019; 20:431. [PMID: 31752737 PMCID: PMC6873446 DOI: 10.1186/s12882-019-1621-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background Chronic kidney disease (CKD), including nephrotic syndrome, is a major cause of cardiovascular morbidity and mortality. The literature indicates that CKD is associated with profound lipid disorders due to the dysregulation of lipoprotein metabolism which progresses kidney disease. The objective of this study is to evaluate the protective effects of curcumin on dyslipidaemia associated with adenine-induced chronic kidney disease in rats. Methods Male SD rats (n = 29) were divided into 5 groups for 24 days: normal control (n = 5, normal diet), CKD control (n = 6, 0.75% w/w adenine-supplemented diet), CUR 50 (n = 6, 50 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), CUR 100 (n = 6, 100 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), and CUR 150 (n = 6, 150 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet). The serum and tissue lipid profile, as well as the kidney function test, were measured using commercial diagnostic kits. Results The marked rise in total cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, triglycerides and free fatty acids in serum, as well as hepatic cholesterol, triglyceride and free fatty acids of CKD control rats were significantly protected by curcumin co-treatment (at the dose of 50, 100 and 150 mg/kg). Furthermore, curcumin significantly increased the serum high-density lipoprotein (HDL) cholesterol compared to the CKD control rats but did not attenuate the CKD-induced weight retardation. Mathematical computational analysis revealed that curcumin significantly reduced indicators for the risk of atherosclerotic lesions (atherogenic index) and coronary atherogenesis (coronary risk index). In addition, curcumin improved kidney function as shown by the reduction in proteinuria and improvement in creatinine clearance. Conclusion The results provide new scientific evidence for the use of curcumin in CKD-associated dyslipidaemia and substantiates the traditional use of curcumin in preventing kidney damage.
Collapse
Affiliation(s)
- Hardik Ghelani
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Valentina Razmovski-Naumovski
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia.,South Western Sydney Clinical School School of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dennis Chang
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia. .,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia.
| |
Collapse
|
13
|
In vivo evaluation of enhanced drug carrier efficiency and cardiac anti-hypertrophy therapeutic potential of nano-curcumin encapsulated photo-plasmonic nanoparticles combined polymerized nano-vesicles: A novel strategy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111619. [DOI: 10.1016/j.jphotobiol.2019.111619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/17/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
|
14
|
Ahmed S, Khan H, Mirzaei H. Mechanics insights of curcumin in myocardial ischemia: Where are we standing? Eur J Med Chem 2019; 183:111658. [PMID: 31514063 DOI: 10.1016/j.ejmech.2019.111658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
Cardiovascular disorders are known as one of the main health problems which are associated with mortality worldwide. Myocardial ischemia (MI) is improper blood supply to myocardium which leads from serious complications to life-threatening problems like AMI, atherosclerosis, hypertension, cardiac-hypertrophy as well as diabetic associated complications as diabetic atherosclerosis/cardiomyopathy/hypertension. Despite several efforts, the current therapeutic platforms are not related with significant results. Hence, it seems, developing novel therapies are required. In this regard, increasing evidences indicated, curcumin (CRC) acts as cardioprotective agent. Given that CRC and its analogs exert their cardioprotective effects via affecting on a variety of cardiovascular diseases-related mechanisms (i.e., Inflammation, and oxidative stress). Herein, for first time, we have highlighted the protective impacts of CRC against MI. This review might be a steppingstone for further investigation into the clinical implications of the CRC against MI. Furthermore, it pulls in light of a legitimate concern for scientific community, seeking novel techniques and characteristic dynamic biopharmaceuticals for use against myocardial ischemia.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
15
|
Curcumin for the prevention of myocardial injury following elective percutaneous coronary intervention; a pilot randomized clinical trial. Eur J Pharmacol 2019; 858:172471. [PMID: 31228455 DOI: 10.1016/j.ejphar.2019.172471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023]
Abstract
Due to the potential benefits of curcumin in the ischemic heart disease, this study was performed to evaluate whether pretreatment with curcumin may reduce myocardial injury following elective percutaneous coronary intervention (PCI). A randomized clinical trial was performed on 110 patients undergoing elective PCI. The intervention group (n = 55) received a single dose of 480 mg nanomicelle curcumin orally and the standard treatment before PCI, while the control group (n = 55) received only the standard treatment., Serum concentrations of CK-MB and troponin I was measured before, 8 and 24 h after the procedure to assess myocardial damage during PCI. The results showed that the raise of CK-MB in curcumin group was half of the control group (4 vs. 8 cases) but was not significant. There were no significant differences in CK-MB levels at 8 (P = .24) and 24 h (P = .37) after PCI between the curcumin and the control group. No significant difference was also found in troponin I levels at 8 (P = 1.0) and 24 h (P = .35) after PCI between the groups. This study did not support the potential cardioprotective benefit of curcumin against pre-procedural myocardial injury in patients undergoing elective PCI.
Collapse
|
16
|
He Y, Lang X, Cheng D, Yang Z. Curcumin Ameliorates Chronic Renal Failure in 5/6 Nephrectomized Rats by Regulation of the mTOR/HIF-1α/VEGF Signaling Pathway. Biol Pharm Bull 2019; 42:886-891. [PMID: 30918132 DOI: 10.1248/bpb.b18-00787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies implicated the mammalian target of rapamycin (mTOR)/hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway in renal fibrosis and found that curcumin could suppress the expression of mTOR. Therefore, the aim of the present study was to investigate the therapeutic effects of curcumin against chronic renal failure (CRF) in a rat model induced by 5/6 nephrectomy through inhibition of mTOR/HIF-1α/VEGF signaling. A total of 70 male Sprague-Dawley rats were divided into seven groups: a sham group, a CRF group, and five treatment groups. Except for the sham rats, all rats underwent 5/6 nephrectomy to induce CRF. The 5/6 nephrectomized rats received treatment with curcumin vehicle, everolimus vehicle, curcumin, everolimus, or the combination of curcumin and everolimus. Everolimus, a specific inhibitor of mTOR, was used as a positive control. At the end of treatment, blood biochemical indexes, proteinuria and the kidney index were detected. Moreover, histological change was examined by hematoxylin and eosin staining, and protein expression levels were detected by Western blotting. The blood biochemical indexes, proteinuria, and kidney index were increased in the CRF group as compared to the sham group, which was accompanied by marked activation of the mTOR/HIF-1α/VEGF pathway. However, curcumin, as well as everolimus, restored or ameliorated these changes. These results indicate that activation of the mTOR/HIF-1α/VEGF signaling pathway plays an important role in the occurrence and development of CRF, and that curcumin has renoprotective effects by blocking activation of this pathway.
Collapse
Affiliation(s)
- Yangbiao He
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine
| | - Xujun Lang
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine
| | - Dong Cheng
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine
| | - Zhihao Yang
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine
| |
Collapse
|
17
|
Li C, Miao X, Li F, Adhikari BK, Liu Y, Sun J, Zhang R, Cai L, Liu Q, Wang Y. Curcuminoids: Implication for inflammation and oxidative stress in cardiovascular diseases. Phytother Res 2019; 33:1302-1317. [PMID: 30834628 DOI: 10.1002/ptr.6324] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/28/2018] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
Abstract
It has been extensively verified that inflammation and oxidative stress play important roles in the pathogenesis of cardiovascular diseases (CVDs). Curcuminoids, from the plant Curcuma longa, have three major active ingredients, which include curcumin (curcumin I), demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have been used in traditional medicine for CVDs' management and other comorbidities for centuries. Numerous studies had delineated their anti-inflammatory, antioxidative, and other medicinally relevant properties. Animal experiments and clinical trials have also demonstrated that turmeric and curcuminoids can effectively reduce atherosclerosis, cardiac hypertrophy, hypertension, ischemia/reperfusion injury, and diabetic cardiovascular complications. In this review, we introduce and summarize curcuminoids' molecular and biological significance, while focusing on their mechanistic anti-inflammatory/antioxidative involvements in CVDs and preventive effects against CVDs, and, finally, discuss relevant clinical applications.
Collapse
Affiliation(s)
- Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Miao
- Department of ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fengsheng Li
- General Hospital of the PLA Rocket Force, Beijing, China
| | - Binay Kumar Adhikari
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yucheng Liu
- A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, USA
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Rong Zhang
- General Hospital of the PLA Rocket Force, Beijing, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, Radiation Oncology, Pharmacology & Toxicology, The University of Louisville, Louisville, KY, USA
| | - Quan Liu
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
18
|
Feng W, Zhang K, Liu Y, Chen J, Cai Q, He W, Zhang Y, Wang MH, Wang J, Huang H. Advanced oxidation protein products aggravate cardiac remodeling via cardiomyocyte apoptosis in chronic kidney disease. Am J Physiol Heart Circ Physiol 2018; 314:H475-H483. [PMID: 29101185 DOI: 10.1152/ajpheart.00628.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Weijing Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Yu Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Wanbing He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Yinyin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Mong-Heng Wang
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| |
Collapse
|
19
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Montalto G, Cervello M, Gizak A, Rakus D. Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases. Adv Biol Regul 2017; 65:77-88. [PMID: 28579298 DOI: 10.1016/j.jbior.2017.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Natural products or nutraceuticals promote anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway. This review will focus on the effects of curcumin (CUR), berberine (BBR) and resveratrol (RES), on the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway, with a special focus on GSK-3. These natural products may regulate the pathway by multiple mechanisms including: reactive oxygen species (ROS), cytokine receptors, mirco-RNAs (miRs) and many others. CUR is present the root of turmeric (Curcuma longa). CUR is used in the treatment of many disorders, especially in those involving inflammatory processes which may contribute to abnormal proliferation and promote cancer growth. BBR is also isolated from various plants (Berberis coptis and others) and is used in traditional medicine to treat multiple diseases/conditions including: diabetes, hyperlipidemia, cancer and bacterial infections. RES is present in red grapes, other fruits and berries such as blueberries and raspberries. RES may have some anti-diabetic and anti-cancer effects. Understanding the effects of these natural products on the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway may enhance their usage as anti-proliferative agent which may be beneficial for many health problems.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|
20
|
Verjans R, van Bilsen M, Schroen B. MiRNA Deregulation in Cardiac Aging and Associated Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:207-263. [PMID: 28838539 DOI: 10.1016/bs.ircmb.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of age-related diseases is increasing dramatically, among which cardiac disease represents the leading cause of death. Aging of the heart is characterized by various molecular and cellular hallmarks impairing both cardiomyocytes and noncardiomyocytes, and resulting in functional deteriorations of the cardiac system. The aging process includes desensitization of β-adrenergic receptor (βAR)-signaling and decreased calcium handling, altered growth signaling and cardiac hypertrophy, mitochondrial dysfunction and impaired autophagy, increased programmed cell death, low-grade inflammation of noncanonical inflammatory cells, and increased ECM deposition. MiRNAs play a fundamental role in regulating the processes underlying these detrimental changes in the cardiac system, indicating that MiRNAs are crucially involved in aging. Among others, MiR-34, MiR-146a, and members of the MiR-17-92 cluster, are deregulated during senescence and drive cardiac aging processes. It is therefore suggested that MiRNAs form possible therapeutic targets to stabilize the aged failing myocardium.
Collapse
Affiliation(s)
- Robin Verjans
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marc van Bilsen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Blanche Schroen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
21
|
Jiang S, Han J, Li T, Xin Z, Ma Z, Di W, Hu W, Gong B, Di S, Wang D, Yang Y. Curcumin as a potential protective compound against cardiac diseases. Pharmacol Res 2017; 119:373-383. [PMID: 28274852 DOI: 10.1016/j.phrs.2017.03.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/16/2017] [Accepted: 03/01/2017] [Indexed: 01/08/2023]
Abstract
Curcumin, which was first used 3000 years ago as an anti-inflammatory agent, is a well-known bioactive compound derived from the active ingredient of turmeric (Curcuma longa). Previous research has demonstrated that curcumin has immense therapeutic potential in a variety of diseases via anti-oxidative, anti-apoptotic, and anti-inflammatory pathways. Cardiac diseases are the leading cause of mortality worldwide and cause considerable harm to human beings. Numerous studies have suggested that curcumin exerts a protective role in the human body whereas its actions in cardiac diseases remain elusive and poorly understood. On the basis of the current evidence, we first give a brief introduction of cardiac diseases and curcumin, especially regarding the effects of curcumin in embryonic heart development. Secondly, we analyze the basic roles of curcumin in pathways that are dysregulated in cardiac diseases, including oxidative stress, apoptosis, and inflammation. Thirdly, actions of curcumin in different cardiac diseases will be discussed, as will relevant clinical trials. Eventually, we would like to discuss the existing controversial opinions and provide a detailed analysis followed by the remaining obstacles, advancement, and further prospects of the clinical application of curcumin. The information compiled here may serve as a comprehensive reference of the protective effects of curcumin in the heart, which is significant to the further research and design of curcumin analogs as therapeutic options for cardiac diseases.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wei Hu
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Bing Gong
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
22
|
Bugyei-Twum A, Abadeh A, Thai K, Zhang Y, Mitchell M, Kabir G, Connelly KA. Suppression of NLRP3 Inflammasome Activation Ameliorates Chronic Kidney Disease-Induced Cardiac Fibrosis and Diastolic Dysfunction. Sci Rep 2016; 6:39551. [PMID: 28000751 PMCID: PMC5175152 DOI: 10.1038/srep39551] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 01/28/2023] Open
Abstract
Cardiac fibrosis is a common finding in patients with chronic kidney disease. Here, we investigate the cardio-renal effects of theracurmin, a novel formulation of the polyphenolic compound curcumin, in a rat model of chronic kidney disease. Briefly, Sprague-Dawley rats were randomized to undergo sham or subtotal nephrectomy (SNx) surgery. At 3 weeks post surgery, SNx animals were further randomized to received theracurmin via once daily oral gavage or vehicle for 5 consecutive weeks. At 8 weeks post surgery, cardiac function was assessed via echocardiography and pressure volume loop analysis, followed by LV and renal tissue collection for analysis. SNx animals developed key hallmarks of renal injury including hypertension, proteinuria, elevated blood urea nitrogen, and glomerulosclerosis. Renal injury in SNx animals was also associated with significant diastolic dysfunction, macrophage infiltration, and cardiac NLRP3 inflammasome activation. Treatment of SNx animals with theracurmin improved structural and functional manifestations of cardiac injury associated with renal failure and also attenuated cardiac NLRP3 inflammasome activation and mature IL-1β release. Taken together, our findings suggest a significant role for the NLRP3 inflammasome in renal injury-induced cardiac dysfunction and presents inflammasome attenuation as a unique strategy to prevent adverse cardiac remodeling in the setting of chronic kidney disease.
Collapse
Affiliation(s)
- Antoinette Bugyei-Twum
- Keenan Research Centre for Biomedical Science, St. Michael's hospital, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Armin Abadeh
- Keenan Research Centre for Biomedical Science, St. Michael's hospital, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science, St. Michael's hospital, Toronto, Ontario, Canada
| | - Yanling Zhang
- Keenan Research Centre for Biomedical Science, St. Michael's hospital, Toronto, Ontario, Canada
| | - Melissa Mitchell
- Keenan Research Centre for Biomedical Science, St. Michael's hospital, Toronto, Ontario, Canada
| | - Golam Kabir
- Keenan Research Centre for Biomedical Science, St. Michael's hospital, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's hospital, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, St. Michael's hospital, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Nehra S, Bhardwaj V, Kar S, Saraswat D. Chronic Hypobaric Hypoxia Induces Right Ventricular Hypertrophy and Apoptosis in Rats: Therapeutic Potential of Nanocurcumin in Improving Adaptation. High Alt Med Biol 2016; 17:342-352. [DOI: 10.1089/ham.2016.0032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sarita Nehra
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, New Delhi, India
| | - Varun Bhardwaj
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, New Delhi, India
| | | | - Deepika Saraswat
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, New Delhi, India
| |
Collapse
|
24
|
Abstract
Diabetic nephropathy (DN) is currently well established as the most common cause of end-stage renal disease in most parts of the world. Notwithstanding the expanding basic and clinical research in this field, the pathogenesis remains far from clear and hence the treatment of DN remains suboptimal. There is a critical need for the development of newer therapeutic strategies including alternative and complementary therapies. One of the natural products that was extensively studied in cancer and other chronic disease states such as diabetes is curcumin, an active ingredient in turmeric, a spice extensively used in India. In this manuscript, we present a critical review of the experimental and clinical evidence that supports the use of curcumin and its analogs in DN as well as the various proposed mechanisms for its biological actions in health and disease states.
Collapse
|
25
|
Haryuna TSH, Riawan W, Nasution A, Ma'at S, Harahap J, Adriztina I. Curcumin Reduces the Noise-Exposed Cochlear Fibroblasts Apoptosis. Int Arch Otorhinolaryngol 2016; 20:370-376. [PMID: 27746842 PMCID: PMC5063744 DOI: 10.1055/s-0036-1579742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/11/2015] [Indexed: 11/22/2022] Open
Abstract
Introduction The structural changes underlying permanent noise-induced hearing loss (NIHL) include loss of the sensory hair cells, damage to their stereocilia, and supporting tissues within the cochlear lateral wall. Objective The objective of this study is to demonstrate curcumin as a safe and effective therapeutic agent in the prevention and treatment for fibroblasts damage within the cochlear supporting tissues and lateral wall through cell death pathway. Methods We divided 24 Rattus norvegicus into 4 groups, Group 1: control; Group 2: noise (+); Group 3: noise (+), 50 mg/day curcumin (+); Group 4: noise (+), 100 mg/day curcumin (+). We provided the noise exposure dose at 100 dB SPL for two hours over two weeks and administered the curcumin orally over two weeks. We examined all samples for the expressions of calcineurin, nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), and apoptotic index of cochlear fibroblasts. Results We found significant differences for the expressions of calcineurin (p < 0.05) in all groups, significant differences for the expressions of NFATc1 (p < 0.05) in all groups, except in Groups 1 and 4, and significant differences for the apoptotic index (p < 0.05) in all groups. Conclusion Curcumin proved to be potentially effective in the prevention and treatment for fibroblasts damage within the cochlear supporting tissues and lateral wall regarding the decreased expression of calcineurin, NFATc1, and apoptotic index of cochlear fibroblasts.
Collapse
Affiliation(s)
- Tengku Siti Hajar Haryuna
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Wibi Riawan
- Department of Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia
| | - Ardyansyah Nasution
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Suprapto Ma'at
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Juliandi Harahap
- Department of Community Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Indri Adriztina
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| |
Collapse
|
26
|
Hernández-Reséndiz S, Correa F, García-Niño WR, Buelna-Chontal M, Roldán FJ, Ramírez-Camacho I, Delgado-Toral C, Carbó R, Pedraza-Chaverrí J, Tapia E, Zazueta C. Cardioprotection by curcumin post-treatment in rats with established chronic kidney disease. Cardiovasc Drugs Ther 2016; 29:111-20. [PMID: 25779825 DOI: 10.1007/s10557-015-6581-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The pathogenic mechanisms leading to cardiovascular disorders in patients with chronic kidney disease have not been clearly established, although increased oxidative stress has been pointed out as a potential cause. Therefore, as cardiovascular events are still the first cause of death in patients with chronic kidney disease and traditional drugs or therapies rarely have effects on cardiac complications, we sought to determine the effect of curcumin in treating cardiac dysfunction in rats with established chronic renal disease. METHODS AND RESULTS Treatment consisted in daily administration of curcumin (120 mg/kg/day) dissolved in 0.05% carboxymethylcellulose via oral gavages during 30 days, beginning from day 30 after 5/6 nephrectomy (5/6Nx). Cardiac function, markers of oxidative stress, activation of PI3K/Akt/GSK3β and MEK1/2-ERK1/2 pathway, metalloproteinase-II (MMP-2) content, overall gelatinolytic activity, ROS production and mitochondrial integrity were evaluated after 1-month treatment. Curcumin restored systolic blood pressure, diminished interventricular and rear wall thickening, decreased left ventricle dimension at end-systole (LVSd) and restored ejection fraction in nephrectomized rats. Also, it diminished metalloproteinase-II levels and overall gelatinase activity, decreased oxidative stress and inhibited the mitochondrial permeability transition pore opening. CONCLUSION Our findings suggest that curcumin might have therapeutic potential in treatment of heart disease in patients with established CKD by attenuating oxidative stress-related events as cardiac remodeling, mitochondrial dysfunction and cell death.
Collapse
Affiliation(s)
- Sauri Hernández-Reséndiz
- Department of Cardiovascular Biomedicine, National Institute of Cardiology I. Ch, Juan Badiano No. 1. Colonia Sección XVI, México, 14080, DF, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu H, Liu A, Shi C, Li B. Curcumin suppresses transforming growth factor-β1-induced cardiac fibroblast differentiation via inhibition of Smad-2 and p38 MAPK signaling pathways. Exp Ther Med 2016; 11:998-1004. [PMID: 26998027 DOI: 10.3892/etm.2016.2969] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/10/2015] [Indexed: 02/06/2023] Open
Abstract
The differentiation of cardiac fibroblasts (CFs) into myofibroblasts and the subsequent deposition of the extracellular matrix is associated with myocardial fibrosis following various types of myocardial injury. In the present study, the effect of curcumin, which is a pharmacologically-safe natural compound from the Curcuma longa herb, on transforming growth factor (TGF)-β1-induced CFs was investigated, and the underlying molecular mechanisms were examined. The expression levels of α-smooth muscle actin (SMA) stress fibers were investigated using western blotting and immunofluorescence in cultured neonatal rat CFs. Protein and mRNA expression levels of α-SMA and collagen type I (ColI) were determined by western blotting and reverse transcription-quantitative polymerase chain reaction. In addition, the activation of Smad2 and p38 was examined using western blotting. Curcumin, SB431542 (a TGF-βR-Smad2 inhibitor) and SB203580 (a p38 inhibitor) were used to inhibit the stimulation by TGF-β1. The results demonstrated that the TGF-β1-induced expression of α-SMA and ColI was suppressed by curcumin at the mRNA and protein levels, while SB431542 and SB203580 induced similar effects. Furthermore, phosphorylated Smad-2 and p38 were upregulated in TGF-β1-induced CFs, and these effects were substantially inhibited by curcumin administration. In conclusion, the results of the present study demonstrated that treatment with curcumin effectively suppresses TGF-β1-induced CF differentiation via Smad-2 and p38 signaling pathways. Thus, curcumin may be a potential therapeutic agent for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Huzi Liu
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Aijun Liu
- Pediatric Heart Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Chunli Shi
- Outpatient Department, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Bao Li
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
28
|
Rice KM, Manne NDPK, Kolli MB, Wehner PS, Dornon L, Arvapalli R, Selvaraj V, Kumar A, Blough ER. Curcumin nanoparticles attenuate cardiac remodeling due to pulmonary arterial hypertension. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1909-1916. [DOI: 10.3109/21691401.2015.1111235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Dedkova EN. Some Like it Hot: Cardioprotective Effect of Curcumin in Chronic Kidney Disease. Cardiovasc Drugs Ther 2015; 29:101-3. [DOI: 10.1007/s10557-015-6586-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Nehra S, Bhardwaj V, Kalra N, Ganju L, Bansal A, Saxena S, Saraswat D. Nanocurcumin protects cardiomyoblasts H9c2 from hypoxia-induced hypertrophy and apoptosis by improving oxidative balance. J Physiol Biochem 2015; 71:239-51. [PMID: 25846484 DOI: 10.1007/s13105-015-0405-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/19/2015] [Indexed: 12/15/2022]
Abstract
Hypoxia-induced cardiomyocyte hypertrophy is evident; however, the distinct molecular mechanism underlying the oxidative stress-mediated damages to cardiomyocytes remains unknown. Curcumin (diferuloylmethane) is known for anti-hypertrophic effects, but low bioavailability makes it unsuitable to exploit its pharmacological properties. We assessed the efficacy of nanotized curcumin, i.e. nanocurcumin, in ameliorating hypoxia-induced hypertrophy and apoptosis in H9c2 cardiomyoblasts and compared it to curcumin. H9c2 cardiomyoblasts were challenged with 0.5 % oxygen, for 24 h to assess hypoxia-induced oxidative damage, hypertrophy and consequent apoptosis. The molecular mechanism underlying the protective efficacy of nanocurcumin was evaluated in regulating Raf-1/Erk-1/2 apoptosis by caspase-3/-7 pathway and oxidative stress. Nanocurcumin ameliorated hypoxia-induced hypertrophy and apoptosis in H9c2 cells significantly (p ≤ 0.01), by downregulating atrial natriuretic factor expression, caspase-3/-7 activation, oxidative stress and stabilizing hypoxia-inducible factor-1α (HIF-1α) better than curcumin. Nanocurcumin provides insight into its use as a potential candidate in curing hypoxia-induced cardiac pathologies by restoring oxidative balance.
Collapse
Affiliation(s)
- Sarita Nehra
- Experimental Biology Division, Department of Experimental Biology, Defence Institute of Physiology and Allied Science, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
31
|
RETRACTED: Dual ACE-inhibition and angiotensin II AT1 receptor antagonism with curcumin attenuate maladaptive cardiac repair and improve ventricular systolic function after myocardial infarctionin rat heart. Eur J Pharmacol 2015; 746:22-30. [DOI: 10.1016/j.ejphar.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/16/2014] [Accepted: 11/03/2014] [Indexed: 02/02/2023]
|
32
|
Curcumin and chronic kidney disease (CKD): major mode of action through stimulating endogenous intestinal alkaline phosphatase. Molecules 2014; 19:20139-56. [PMID: 25474287 PMCID: PMC6271001 DOI: 10.3390/molecules191220139] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 12/22/2022] Open
Abstract
Curcumin, an active ingredient in the traditional herbal remedy and dietary spice turmeric (Curcuma longa), has significant anti-inflammatory properties. Chronic kidney disease (CKD), an inflammatory disease, can lead to end stage renal disease resulting in dialysis and transplant. Furthermore, it is frequently associated with other inflammatory disease such as diabetes and cardiovascular disorders. This review will focus on the clinically relevant inflammatory molecules that play a role in CKD and associated diseases. Various enzymes, transcription factors, growth factors modulate production and action of inflammatory molecules; curcumin can blunt the generation and action of these inflammatory molecules and ameliorate CKD as well as associated inflammatory disorders. Recent studies have shown that increased intestinal permeability results in the leakage of pro-inflammatory molecules (cytokines and lipopolysaccharides) from gut into the circulation in diseases such as CKD, diabetes and atherosclerosis. This change in intestinal permeability is due to decreased expression of tight junction proteins and intestinal alkaline phosphatase (IAP). Curcumin increases the expression of IAP and tight junction proteins and corrects gut permeability. This action reduces the levels of circulatory inflammatory biomolecules. This effect of curcumin on intestine can explain why, despite poor bioavailability, curcumin has potential anti-inflammatory effects in vivo and beneficial effects on CKD.
Collapse
|
33
|
Correa F, Buelna-Chontal M, Hernández-Reséndiz S, García-Niño WR, Roldán FJ, Soto V, Silva-Palacios A, Amador A, Pedraza-Chaverrí J, Tapia E, Zazueta C. Curcumin maintains cardiac and mitochondrial function in chronic kidney disease. Free Radic Biol Med 2013; 61:119-29. [PMID: 23548636 DOI: 10.1016/j.freeradbiomed.2013.03.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 01/14/2023]
Abstract
Curcumin, a natural pigment with antioxidant activity obtained from turmeric and largely used in traditional medicine, is currently being studied in the chemoprevention of several diseases for its pleiotropic effects and nontoxicity. In chronic renal failure, the pathogenic mechanisms leading to cardiovascular disorders have been associated with increased oxidative stress, a process inevitably linked with mitochondrial dysfunction. Thus, in this study we aimed at investigating if curcumin pretreatment exerts cardioprotective effects in a rat model of subtotal nephrectomy (5/6Nx) and its impact on mitochondrial homeostasis. Curcumin was orally administered (120mg/kg) to Wistar rats 7 days before nephrectomy and after surgery for 60 days (5/6Nx+curc). Renal dysfunction was detected a few days after nephrectomy, whereas changes in cardiac function were observed until the end of the protocol. Our results indicate that curcumin treatment protects against pathological remodeling, diminishes ischemic events, and preserves cardiac function in uremic rats. Cardioprotection was related to diminished reactive oxygen species production, decreased oxidative stress markers, increased antioxidant response, and diminution of active metalloproteinase-2. We also observed that curcumin's cardioprotective effects were related to maintaining mitochondrial function. Aconitase activity was significantly higher in the 5/6Nx + curc (408.5±68.7nmol/min/mg protein) than in the 5/6Nx group (104.4±52.3nmol/min/mg protein, P<0.05), and mitochondria from curcumin-treated rats showed enhanced oxidative phosphorylation capacities with both NADH-linked substrates and succinate plus rotenone (3.6±1 vs 1.1±0.9 and 3.1±0.7 vs 1.2±0.8, respectively, P<0.05). The mechanisms involved in cardioprotection included both direct antioxidant effects and indirect strategies that could be related to protein kinase C-activated downstream signaling.
Collapse
Affiliation(s)
- Francisco Correa
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico; Department of Biochemistry, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Mabel Buelna-Chontal
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico; Department of Biochemistry, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Sauri Hernández-Reséndiz
- Department of Biochemistry, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Wylly R García-Niño
- Renal Pathophysiology Laboratory, Department of Nephrology, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Francisco J Roldán
- Department of Echocardiography, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Virgilia Soto
- Department of Pathology, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080, DF, Mexico
| | - Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Alejandra Amador
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | | | - Edilia Tapia
- Renal Pathophysiology Laboratory, Department of Nephrology, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico; Department of Biochemistry, National Institute of Cardiology Ignacio Chavez, Mexico City, 14080 DF, Mexico.
| |
Collapse
|
34
|
Wang NP, Wang ZF, Tootle S, Philip T, Zhao ZQ. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. Br J Pharmacol 2013; 167:1550-62. [PMID: 22823335 DOI: 10.1111/j.1476-5381.2012.02109.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Curcumin, the natural yellow pigment extracted from the rhizomes of the plant curcuma longa, has been demonstrated to exhibit a variety of potent beneficial effects, acting as an antioxidant, anti-inflammatory and anti-fibrotic. In this study we tested the hypothesis that curcumin attenuates maladaptive cardiac repair and improves cardiac function after ischaemia and reperfusion by reducing degradation of extracellular matrix (ECM) and inhibiting synthesis of collagens via TGFβ/Smad-mediated signalling pathway. EXPERIMENTAL APPROACH Sprague-Dawley rats were subjected to 45 min of ischaemia followed by 7, 21 and 42 days of reperfusion respectively. Curcumin was fed orally at a dose of 150 mg·kg(-1) ·day(-1) only during reperfusion. KEY RESULTS Curcumin reduced the level of malondialdehyde, inhibited activity of MMPs, preserved ECM from degradation and attenuated collagen deposition, as it reduced the extent of collagen-rich scar and increased mass of viable myocardium. In addition to reducing collagen synthesis and fibrosis in the ischaemic/reperfused myocardium, curcumin significantly down-regulated the expression of TGFβ1 and phospho-Smad2/3, and up-regulated Smad7 and also increased the population of α-smooth muscle actin expressing myofibroblasts within the infarcted myocardium relative to the control. Echocardiography showed it significantly improved left ventricular end-diastolic volume, stroke volume and ejection fraction. The wall thickness of the infarcted middle anterior septum in the curcumin group was also greater than that in the control group. CONCLUSION AND IMPLICATIONS Dietary curcumin is effective at inhibiting maladaptive cardiac repair and preserving cardiac function after ischaemia and reperfusion. Curcumin has potential as a treatment for patients who have had a heart attack.
Collapse
Affiliation(s)
- Ning-Ping Wang
- Cardiovascular Research Laboratory, Mercer University School of Medicine, Savannah, GA 31404, USA
| | | | | | | | | |
Collapse
|
35
|
Youreva V, Kapakos G, Srivastava AK. Insulin-like growth-factor-1-induced PKB signaling and Egr-1 expression is inhibited by curcumin in A-10 vascular smooth muscle cells. Can J Physiol Pharmacol 2013; 91:241-7. [DOI: 10.1139/cjpp-2012-0267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) is a mitogenic factor that stimulates the signaling pathways responsible for inducing hypertrophic and proliferative responses in vascular smooth muscle cells (VSMC). We have previously demonstrated that IGF-1 receptor (IGF-1R) plays a key role in transducing the hypertrophic and proliferative responses of angiotensin II (Ang-II) and endothelin-1 (ET-1). Curcumin, a polyphenolic compound derived from the spice turmeric is known to possess antiproliferative properties and exerts vasculoprotective effects. However, the ability of curcumin to modulate IGF-1-induced signaling responses in VSMC remains to be investigated. In this study, we determined the effect of curcumin on IGF-1-induced phosphorylation of protein kinase B (PKB), glycogen synthase kinase-3β (GSK-3β), and IGF-1R in VSMC. Curcumin inhibited IGF-1-induced phosphorylation of PKB and GSK-3β as well as the IGF-1R β subunit in a dose-dependent fashion. In addition, IGF-1-induced expression of early growth response protein 1 (Egr-1) which plays a pathogenic role in vascular dysfunctions, was also attenuated by curcumin. In conclusion, these results indicate that curcumin is a potent inhibitor of key components of the IGF-1-induced mitogenic and proliferative signaling system in VSMC, and suggest that curcumin-induced attenuation of these signaling components may constitute a potential mechanism for its vasculoprotective effects.
Collapse
Affiliation(s)
- Viktoria Youreva
- Laboratory of Cell Signaling, Montreal Diabetes Research Center, Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM) – Angus Campus, 2901 Rachel Est, and Department of Medicine, Université de Montréal, Montréal, QC H1W 4A4, Canada
| | - Georgia Kapakos
- Laboratory of Cell Signaling, Montreal Diabetes Research Center, Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM) – Angus Campus, 2901 Rachel Est, and Department of Medicine, Université de Montréal, Montréal, QC H1W 4A4, Canada
| | - Ashok K. Srivastava
- Laboratory of Cell Signaling, Montreal Diabetes Research Center, Research Centre of Centre Hospitalier de l'Université de Montréal (CRCHUM) – Angus Campus, 2901 Rachel Est, and Department of Medicine, Université de Montréal, Montréal, QC H1W 4A4, Canada
| |
Collapse
|
36
|
Kapakos G, Youreva V, Srivastava AK. Attenuation of endothelin-1-induced PKB and ERK1/2 signaling, as well as Egr-1 expression, by curcumin in A-10 vascular smooth muscle cells. Can J Physiol Pharmacol 2012; 90:1277-85. [DOI: 10.1139/y2012-059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Endothelin-1 (ET-1) is implicated in the pathogenesis of vascular abnormalities through the hyperactivation of growth promoting pathways, including protein kinase B (PKB) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. ET-1 has been shown to elicit its responses through the generation of reactive oxygen species (ROS). Curcumin, the main constituent of the spice turmeric, exhibits cardio-protective, anti-proliferative, and antioxidant properties; however, the precise molecular mechanism of its action is unclear. Therefore, in the present study, we investigated the effects of curcumin on ET-1-induced PKB and ERK1/2 signaling, as well as insulin-like growth factor type receptor (IGF-1R) phosphorylation. Curcumin dose-dependently inhibited ET-1-induced phosphorylation of PKB, ERK1/2, c-Raf, and insulin-like growth factor type 1 receptor (IGF-1R), in vascular smooth muscle cells (VSMC). Furthermore, curcumin also attenuated ET-1-induced expression of early growth response (Egr)-1, a transcription factor downstream of ERK1/2 that plays a regulatory role in several cardiovascular pathological processes. In conclusion, these data demonstrate that curcumin is a potent inhibitor of ET-1-induced mitogenic and proliferative signaling events in VSMC and suggest that the ability of curcumin to attenuate these events may contribute as a potential mechanism for its cardiovascular protective response.
Collapse
Affiliation(s)
- Georgia Kapakos
- Laboratory of Cell Signaling, Montreal Diabetes Research Center (MDRC), Research Center of Centre Hospitalier de l’Université de Montréal (CRCHUM) – Angus Campus, Department of Medicine, Université de Montréal, 2901 Rachel Est, Montréal, QC H1W 4A4, Canada
| | - Viktoria Youreva
- Laboratory of Cell Signaling, Montreal Diabetes Research Center (MDRC), Research Center of Centre Hospitalier de l’Université de Montréal (CRCHUM) – Angus Campus, Department of Medicine, Université de Montréal, 2901 Rachel Est, Montréal, QC H1W 4A4, Canada
| | - Ashok K. Srivastava
- Laboratory of Cell Signaling, Montreal Diabetes Research Center (MDRC), Research Center of Centre Hospitalier de l’Université de Montréal (CRCHUM) – Angus Campus, Department of Medicine, Université de Montréal, 2901 Rachel Est, Montréal, QC H1W 4A4, Canada
| |
Collapse
|
37
|
Nagajyothi F, Zhao D, Weiss LM, Tanowitz HB. Curcumin treatment provides protection against Trypanosoma cruzi infection. Parasitol Res 2012; 110:2491-9. [PMID: 22215192 DOI: 10.1007/s00436-011-2790-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas disease, causes an acute myocarditis and chronic cardiomyopathy. The current therapeutic agents for this disease are not always effective and often have severe side effects. Curcumin, a plant polyphenol, has demonstrated a wide range of potential therapeutic effects. In this study, we examined the effect of curcumin on T. cruzi infection in vitro and in vivo. Curcumin pretreatment of fibroblasts inhibited parasite invasion. Treatment reduced the expression of the low density lipoprotein receptor, which is involved in T. cruzi host cell invasion. Curcumin treatment of T. cruzi-infected CD1 mice reduced parasitemia and decreased the parasitism of infected heart tissue. This was associated with a significant reduction in macrophage infiltration and inflammation in both the heart and liver; moreover, curcumin-treated infected mice displayed a 100% survival rate in contrast to the 60% survival rate commonly observed in untreated infected mice. These data are consistent with curcumin modulating infection-induced changes in signaling pathways involved in inflammation, oxidative stress, and apoptosis. These data suggest that curcumin and its derivatives could be a suitable drug for the amelioration of chagasic heart disease.
Collapse
Affiliation(s)
- Fnu Nagajyothi
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, NY, USA.
| | | | | | | |
Collapse
|
38
|
Soetikno V, Sari FR, Veeraveedu PT, Thandavarayan RA, Harima M, Sukumaran V, Lakshmanan AP, Suzuki K, Kawachi H, Watanabe K. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutr Metab (Lond) 2011; 8:35. [PMID: 21663638 PMCID: PMC3123175 DOI: 10.1186/1743-7075-8-35] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/10/2011] [Indexed: 12/28/2022] Open
Abstract
Background Chronic inflammation plays an important role in the progression of diabetic nephropathy (DN) and that the infiltration of macrophages in glomerulus has been implicated in the development of glomerular injury. We hypothesized that the plant polyphenolic compound curcumin, which is known to exert potent anti-inflammatory effect, would ameliorate macrophage infiltration in streptozotocin (STZ)-induced diabetic rats. Methods Diabetes was induced with STZ (55 mg/kg) by intraperitoneal injection in rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic, and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 weeks. The rats were sacrificed 11 weeks after induction of diabetes. The excised kidney was used to assess macrophage infiltration and expression of various inflammatory markers. Results At 11 weeks after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, blood urea nitrogen and proteinuria, along with marked reduction in the body weight. All of these abnormalities were significantly reversed by curcumin. Hyperglycemia induced the degradation of IκBα and NF-κB activation and as a result increased infiltration of macrophages (52%) as well as increased proinflammatory cytokines: TNF-α and IL-1β. Curcumin treatment significantly reduced macrophage infiltration in the kidneys of diabetic rats, suppressed the expression of above proinflammatory cytokines and degradation of IκBα. In addition, curcumin treatment also markedly decreased ICAM-1, MCP-1 and TGF-β1 protein expression. Moreover, at nuclear level curcumin inhibited the NF-κB activity. Conclusion Our results suggested that curcumin treatment protect against the development of DN in rats by reducing macrophage infiltration through the inhibition of NF-κB activation in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Vivian Soetikno
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mizobuchi M, Ogata H, Hosaka N, Kumata C, Nakazawa A, Kondo F, Koiwa F, Kinugasa E, Akizawa T. Effects of calcimimetic combined with an angiotensin-converting enzyme inhibitor on uremic cardiomyopathy progression. Am J Nephrol 2011; 34:256-67. [PMID: 21791922 DOI: 10.1159/000330188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Angiotensin-converting enzyme (ACE) inhibitors have cardioprotective properties and functional calcium-sensing receptors express in cardiac myocytes. METHODS Rats were made uremic by 5/6 nephrectomy and treated as follows: uremic rats were fed on a regular diet (UC), uremic + enalapril (E), uremic + calcimimetic agent R-568 (R-568), and uremic + enalapril + R-568 (E+R-568). A group of normal rats served as controls (NC). RESULTS Blood pressure (BP) and left ventricle mass were elevated significantly in the UC and R-568 groups compared with those in the NC group, but were indistinguishable from normal controls in the E and E+R-568 groups. Cardiac fibrosis was significantly increased in the UC group compared with that in the NC group. This increase was significantly attenuated in the R-568 and E groups, and the attenuation was further enhanced in the E+R-568 group. Factors associated with cardiac hypertrophy such as proliferating cell nuclear antigen, cyclin D1, and cyclin D2, as well as factors associated with cardiac fibrosis such as type I collagen, fibronectin, and transforming growth factor-β1 were significantly increased in the UC group compared with those in the NC group. Monotherapy with R-568 or E attenuated this increase and the combination further attenuated these measures. CONCLUSIONS Calcimimetics can suppress the progression of uremic cardiomyopathy and this effect is amplified when BP is controlled via renin-angiotensin system blockade.
Collapse
Affiliation(s)
- Masahide Mizobuchi
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|