1
|
Xu L, Tan X, Bai S, Wu H, Luo H, Ye Y, Fang L, Dai H, Huang L. L-arginine protects cementoblasts against hypoxia-induced apoptosis through Sirt1-enhanced autophagy. J Periodontol 2022; 93:1961-1973. [PMID: 34957557 DOI: 10.1002/jper.21-0473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND L-arginine (L-arg) can reduce apoptosis in a variety of cells. Cementoblast apoptosis is related to root resorption during orthodontic treatment. In the present study, we aimed to study the regulatory effect and potential mechanism of L-arg on cementoblast apoptosis and root resorption. METHODS The apoptosis-related mRNA and protein expression of murine cementoblast (OCCM-30) was assessed after L-arg treatment. To investigate the role of Sirtuin 1 (Sirt1) and autophagy in L-arg resistance to cementoblast apoptosis and root absorption, resveratrol, and EX527 were used to activate or inhibit Sirt1, and chloroquine (CQ) was used to inhibit autophagy. RESULTS In vitro, L-arg inhibited hypoxia-induced apoptosis in OCCM-30. Further, L-arg increased Sirt1 expression whereas Sirt1 suppression by EX527 reversed the inhibitory effect of L-arg on cell apoptosis. Sirt1 activator resveratrol increased the ratio of microtubule-associated protein light chain 3 (LC3) II/I and decreased the expression of SQSTM1/p62 (p62), suggesting autophagy activation. Autophagy enhancement could reduce apoptosis. Caspase-3 and Bax expression was decreased, and Bcl-2 expression was increased. When autophagy was inhibited by CQ, the positive effects of Sirt1 were attenuated. In vivo, L-arg application reduced root resorption in rats, as demonstrated by decreased root absorption volume. Similarly, L-arg upregulated Sirt1, which activated autophagy in the root resorption model, and less root resorption was observed in the Sirt1 activation group. CONCLUSION L-arg reduced cementoblast apoptosis in hypoxia and reduced root resorption induced by loading force in rats, which may be partly mediated by Sirt1-enhanced autophagy.
Collapse
Affiliation(s)
- Lei Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xi Tan
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Siyu Bai
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hongyan Wu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hong Luo
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yusi Ye
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lingli Fang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hongwei Dai
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lan Huang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
2
|
Abstract
Supplemental arginine has shown promise as a safe therapeutic option to improve endogenous nitric oxide (NO) regulation in cardiovascular diseases associated with endothelial dysfunction. In clinical studies in adults, L-arginine, an endogenous amino acid, was reported to improve cardiovascular function in hypertension, pulmonary hypertension, preeclampsia, angina, and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) syndrome. L-citrulline, a natural precursor of L-arginine, is more bioavailable than L-arginine because it avoids hepatic first-pass metabolism and has a longer circulation time. Although not yet well-studied, arginine/citrulline has immense therapeutic potential in some life-threatening diseases in children. However, the optimal clinical development of arginine or citrulline in children requires more information about pharmacokinetics and exposure-response relationships at appropriate ages and under relevant disease states. This article summarizes the preclinical and clinical studies of arginine/citrulline in both adults and children, including currently available pharmacokinetic information. The pharmacology of arginine/citrulline is confounded by several patient-specific factors such as variations in baseline arginine/citrulline due to developmental ages and disease states. Currently available pharmacokinetic studies are insufficient to inform the optimal design of clinical studies, especially in children. Successful bench-to-bedside clinical translation of arginine supplementation awaits information from well-designed pharmacokinetic/pharmacodynamic studies, along with pharmacometric approaches.
Collapse
|
3
|
Liu B, Wang D, Luo E, Hou J, Qiao Y, Yan G, Wang Q, Tang C. Role of TG2-Mediated SERCA2 Serotonylation on Hypoxic Pulmonary Vein Remodeling. Front Pharmacol 2020; 10:1611. [PMID: 32116663 PMCID: PMC7026497 DOI: 10.3389/fphar.2019.01611] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pumps take up Ca2+ from the cytoplasm to maintain the balance of intracellular Ca2+. A decline in expression or activity of SERCA results in persistent store-operated calcium entry (SOCE). In cardiomyocytes as well as vascular smooth muscle cells (SMCs), SERCA2 acts as an important regulator of calcium cycling. The purpose of this study is to identify and better understand the role of transglutaminases2 (TG2) as a key factor involved in SERCA2 serotonination (s-SERCA2) and to elucidate the underlying mechanism of action. Human pulmonary venous smooth muscle cell in normal pulmonary lobe were isolated and cultured in vitro. Establishment of hypoxic pulmonary hypertension model in wild type and TG2 knockout mice. SERCA2 serotonylation was analyzed by co-(immunoprecipitation) IP when the TG2 gene silenced or overexpressed under normoxia and hypoxia in vivo and in vitro. Intracellular calcium ion was measured by using Fluo-4AM probe under normoxia and hypoxia. Real-time (RT)-PCR and Western blot analyzed expression of TG2, TRPC1, and TRPC6 under normoxia and hypoxia. Bioactivity of cells were analyzed by using Cell Counting Kit (CCK)-8, flow cytometry, wound healing, RT-PCR, and Western blot under PST-2744 and cyclopiazonic acid. We confirmed that 1) hypoxia enhanced the expression and activity of TG2, and 2) hypoxia increased the basal intracellular Ca2+ concentration ([Ca2+]i) and SOCE through activating TRPC6 on human pulmonary vein smooth muscle cells (hPVSMC). Then, we investigated the effects of overexpression and downregulation of the TG2 gene on the activity of SERCA2, s-SERCA2, basal [Ca2+]i, and SOCE under normoxia and hypoxia in vitro, and investigated the activity of SERCA2 and s-SERCA2 in vivo, respectively. We confirmed that SERCA2 serotonylation inhibited the activity of SERCA2 and increased the Ca2+ influx, and that hypoxia induced TG2-mediated SERCA2 serotonylation both in vivo and in vitro. Furthermore, we investigated the effect of TG2 activity on the biological behavior of hPVSMC by using an inhibitor and agonist of SERCA2, respectively. Finally, we confirmed that chronic hypoxia cannot increase vessel wall thickness, the right ventricular systolic pressure (RVSP), and right ventricular hypertrophy index (RVHI) of vascular smooth muscle-specific Tgm2−/− mice. These results indicated that hypoxia promoted TG2-mediated SERCA2 serotonylation, thereby leading to inhibition of SERCA2 activity, which further increased the calcium influx through the TRPC6 channel. Furthermore, tissue-specific conditional TG2 knockout mice prevents the development of pulmonary hypertension caused by hypoxia. In summary, we uncovered a new target (TG2) for treatment of chronic hypoxic pulmonary hypertension (CHPH).
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Erfei Luo
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jiantong Hou
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Qingjie Wang
- Department of Cardiology, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Jin Y, Liu Y, Nelin LD. Deficiency of cationic amino acid transporter-2 protects mice from hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2019; 316:L598-L607. [PMID: 30628488 DOI: 10.1152/ajplung.00223.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The pathology of acute lung injury (ALI) involves inducible nitric oxide (NO) synthase (iNOS)-derived NO-induced apoptosis of pulmonary endothelial cells. In vitro, iNOS-derived NO production has been shown to depend on the uptake of l-arginine by the cationic amino acid transporters (CAT). To test the hypothesis that mice deficient in CAT-2 ( slc7a2-/- on a C57BL/6 background) would be protected from hyperoxia-induced ALI, mice ( slc7a2-/- or wild-type) were placed in >95% oxygen (hyperoxia) or 21% oxygen (control) for 60 h. In wild-type mice exposed to hyperoxia, the exhaled nitric oxide (exNO) was twofold greater than in wild-type mice exposed to normoxia ( P < 0.005), whereas in slc7a2-/- mice there was no significant difference between exNO in animals exposed to hyperoxia or normoxia ( P = 0.95). Hyperoxia-exposed wild-type mice had greater ( P < 0.05) lung resistance and a lower ( P < 0.05) lung compliance than did hyperoxia-exposed slc7a2-/- mice. The lung wet-to-dry weight ratio was greater ( P < 0.005) in the hyperoxia-exposed wild-type mice than in hyperoxia-exposed slc7a2-/- mice. Neutrophil infiltration was lower ( P < 0.05) in the hyperoxia-exposed slc7a2-/- mice than in the hyperoxia-exposed wild-type mice as measured by myeloperoxidase activity. The protein concentration in bronchoalveolar lavage fluid was lower ( P < 0.001) in the hyperoxia-exposed slc7a2-/- mice than in similarly exposed wild-type mice. The percent of TUNEL-positive cells in the lung following hyperoxia exposure was significantly lower ( P < 0.001) in the slc7a2-/- mice than in the wild-type mice. These results are consistent with our hypothesis that lack of CAT-2 protects mice from acute lung injury.
Collapse
Affiliation(s)
- Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University , Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University , Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University , Columbus, Ohio
| |
Collapse
|
5
|
Rowan SC, Keane MP, Gaine S, McLoughlin P. Hypoxic pulmonary hypertension in chronic lung diseases: novel vasoconstrictor pathways. THE LANCET RESPIRATORY MEDICINE 2016; 4:225-36. [PMID: 26895650 DOI: 10.1016/s2213-2600(15)00517-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022]
Abstract
Pulmonary hypertension is a well recognised complication of chronic hypoxic lung diseases, which are among the most common causes of death and disability worldwide. Development of pulmonary hypertension independently predicts reduced life expectancy. In chronic obstructive pulmonary disease, long-term oxygen therapy ameliorates pulmonary hypertension and greatly improves survival, although the correction of alveolar hypoxia and pulmonary hypertension is only partial. Advances in understanding of the regulation of vascular smooth muscle tone show that chronic vasoconstriction plays a more important part in the pathogenesis of hypoxic pulmonary hypertension than previously thought, and that structural vascular changes contribute less. Trials of existing vasodilators show that pulmonary hypertension can be ameliorated and systemic oxygen delivery improved in carefully selected patients, although systemic hypotensive effects limit the doses used. Vasoconstrictor pathways that are selective for the pulmonary circulation can be blocked to reduce hypoxic pulmonary hypertension without causing systemic hypotension, and thus provide potential targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Simon C Rowan
- UCD School of Medicine, Conway Institute, Dublin, Ireland
| | - Michael P Keane
- UCD School of Medicine, Respiratory Medicine, St Vincent's University Hospital, Dublin, Ireland
| | - Seán Gaine
- National Pulmonary Hypertension Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | | |
Collapse
|
6
|
Singh M, Padhy G, Vats P, Bhargava K, Sethy NK. Hypobaric hypoxia induced arginase expression limits nitric oxide availability and signaling in rodent heart. Biochim Biophys Acta Gen Subj 2014; 1840:1817-24. [PMID: 24440670 DOI: 10.1016/j.bbagen.2014.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND This study was aimed to evaluate regulation of cardiac arginase expression during hypobaric hypoxia and subsequent effect on nitric oxide availability and signaling. METHODS Rats were exposed to hypobaric hypoxia (282mmHg for 3h) and ARG1 expression was monitored. The expression levels of eNOS and eNOS(Ser1177) were determined by Western blotting, cGMP levels were measured by ELISA and amino acid concentrations were measured by HPLC analysis. Transcription regulation of arginase was monitored by chromatin immunoprecipitation (ChIP) assay with anti-c-Jun antibody for AP-1 consensus binding site on ARG1 promoter. Arginase activity was inhibited by intra-venous dose of N-(ω)-hydroxy-nor-l-arginine (nor-NOHA) prior to hypoxia exposure and subsequent effect on NO availability and oxidative stress were evaluated. RESULTS Hypobaric hypoxia induced cardiac arginase expression by recruiting c-Jun to AP-1 binding site on ARG1 promoter. This increased expression redirected l-arginine towards arginase and resulted in limited endothelial nitric oxide synthase (eNOS) activity, nitric oxide (NO) availability and cGMP mediated signaling. Inhibition of arginase restored the eNOS activity, promoted cardiac NO availability and ameliorated peroxynitrite formation during hypoxia. CONCLUSIONS Hypoxic induced arginase under transcription control of AP-1 reciprocally regulates eNOS activity and NO availability in the heart. This also results in cardiac oxidative stress. GENERAL SIGNIFICANCE This study provides understanding of hypoxia-mediated transcriptional regulation of arginase expression in the heart and its subsequent effect on eNOS activity, NO availability and signaling as well as cardiac oxidative stress. This information will support the use of arginase inhibitors as therapeutics for pathological hypoxia.
Collapse
Affiliation(s)
- Manjulata Singh
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organisation, Lucknow Road, Timarpur, Delhi 110054, India
| | - Gayatri Padhy
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organisation, Lucknow Road, Timarpur, Delhi 110054, India
| | - Praveen Vats
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organisation, Lucknow Road, Timarpur, Delhi 110054, India
| | - Kalpana Bhargava
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organisation, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Niroj Kumar Sethy
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organisation, Lucknow Road, Timarpur, Delhi 110054, India.
| |
Collapse
|