1
|
van Leeuwen JE, Ba-Alawi W, Branchard E, Cruickshank J, Schormann W, Longo J, Silvester J, Gross PL, Andrews DW, Cescon DW, Haibe-Kains B, Penn LZ, Gendoo DMA. Computational pharmacogenomic screen identifies drugs that potentiate the anti-breast cancer activity of statins. Nat Commun 2022; 13:6323. [PMID: 36280687 PMCID: PMC9592602 DOI: 10.1038/s41467-022-33144-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/02/2022] [Indexed: 12/25/2022] Open
Abstract
Statins, a family of FDA-approved cholesterol-lowering drugs that inhibit the rate-limiting enzyme of the mevalonate metabolic pathway, have demonstrated anticancer activity. Evidence shows that dipyridamole potentiates statin-induced cancer cell death by blocking a restorative feedback loop triggered by statin treatment. Leveraging this knowledge, we develop an integrative pharmacogenomics pipeline to identify compounds similar to dipyridamole at the level of drug structure, cell sensitivity and molecular perturbation. To overcome the complex polypharmacology of dipyridamole, we focus our pharmacogenomics pipeline on mevalonate pathway genes, which we name mevalonate drug-network fusion (MVA-DNF). We validate top-ranked compounds, nelfinavir and honokiol, and identify that low expression of the canonical epithelial cell marker, E-cadherin, is associated with statin-compound synergy. Analysis of remaining prioritized hits led to the validation of additional compounds, clotrimazole and vemurafenib. Thus, our computational pharmacogenomic approach identifies actionable compounds with pathway-specific activities.
Collapse
Affiliation(s)
- Jenna E. van Leeuwen
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Wail Ba-Alawi
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Emily Branchard
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Jennifer Cruickshank
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Wiebke Schormann
- grid.17063.330000 0001 2157 2938Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5 Canada
| | - Joseph Longo
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Jennifer Silvester
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Peter L. Gross
- grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8 Canada
| | - David W. Andrews
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5 Canada
| | - David W. Cescon
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 1A1 Canada
| | - Benjamin Haibe-Kains
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto, ON M5S 3G4 Canada ,grid.419890.d0000 0004 0626 690XOntario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3 Canada
| | - Linda Z. Penn
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Deena M. A. Gendoo
- grid.6572.60000 0004 1936 7486Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, Birmingham, B15 2TT UK ,grid.6572.60000 0004 1936 7486Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
2
|
Allahham M, Lerman A, Atar D, Birnbaum Y. Why Not Dipyridamole: a Review of Current Guidelines and Re-evaluation of Utility in the Modern Era. Cardiovasc Drugs Ther 2022; 36:525-532. [PMID: 34245446 PMCID: PMC8271326 DOI: 10.1007/s10557-021-07224-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
Dipyridamole is an old anti-platelet and coronary vasodilator agent that inhibits platelet phosphodiesterase and increases interstitial adenosine levels. Its use in coronary artery disease (CAD) has fallen out of practice in the modern era with the advent of new anti-platelet agents, and most modern guidelines on the management of CAD either neglect to comment on its utility or outright recommend against it. The majority of the studies used in these guidelines are outdated and took place in an era when high doses of aspirin were used and statins were not widely utilized. There is growing evidence in rat models of dipyridamole's synergy with statins through adenosine modulation resulting in significant myocardial protection against ischemia-reperfusion injury and limitation of infract size. The data in human studies are limited but show a similar potential synergy between dipyridamole and statins. It would thus be prudent to reconsider the recommendations against the use of dipyridamole in CAD and to re-evaluate its possible role and potential benefits through well-designed randomized trials combining it with statins, low-dose aspirin, and/or other anti-platelet agents.
Collapse
Affiliation(s)
- Mahmoud Allahham
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - A Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - D Atar
- Department of Cardiology, Oslo University Hospital Ulleval, Oslo, Norway
- Institute of Clinical Sciences, University of Oslo, Oslo, Norway
| | - Y Birnbaum
- Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Abstract
Ischemic necrosis has been most dreaded complication of flap reconstruction. Therefore, researchers have tried to improvise modalities to prevent or treat it since the onset of flap surgery. So far these researches have failed to identify a pharmacological therapy equally effective as surgical delay in augmenting skin flap viability. In the path of search for this substance, dipyridamole attracted our attention as an antiaggregant agent. Put together with pathophysiological mechanisms underlying ischemic flap necrosis, we concluded dipyridamole might have beneficial effect on survival of skin flaps. In this research random pattern dorsal rat skin flap model of McFarlane is used. Subjects are separated in a randomized fashion between two groups. Experiment group is given dipyridamole with a dose of 20 mg/kg twice daily. Control group is given same amount of saline. At seventh day viability of skin flaps is assessed and compared between groups. Also on 7th day, pathologic specimens are obtained and evaluated histopathologically in terms of neutrophil and lymphocyte infiltration, edema and fibrosis. Necrosis percentage in experiment group is found to be significantly lower than that of control group (p < 0.01*). Neutrophil infiltration and edema found to be significantly lower in dipyridamole group (p < 0.05*). No significant difference is observed in lymphocyte infiltration and fibrosis. Dipyridamole is shown in this research to be effective in augmenting viability of random pattern skin flaps in rats. Nevertheless, more extensive researches are needed to fully determine its precise mechanism, side effects and appropriate doses.
Collapse
Affiliation(s)
- Alper Burak Uslu
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ankara Numune Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
4
|
Yang XM, Gadde S, Audia JP, Alvarez DF, Downey JM, Cohen MV. Ticagrelor Does Not Protect Isolated Rat Hearts, Thus Clouding Its Proposed Cardioprotective Role Through ENT 1 in Heart Tissue. J Cardiovasc Pharmacol Ther 2019; 24:371-376. [PMID: 30744423 DOI: 10.1177/1074248419829169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
P2Y12 receptor-blocking drugs given at reperfusion offer protection against myocardial infarction in animal models of transient coronary occlusion. Two recent reports concluded that ticagrelor was more cardioprotective than clopidogrel and attributed this to ticagrelor's unique ability to raise tissue adenosine by blocking the equilibrative nucleoside transporter 1. Indeed, an adenosine receptor blocker attenuated ticagrelor's protection. The related P2Y12 inhibitor cangrelor, which does not block the transporter, protects hearts only when platelets are in the perfusate, while adenosine is known to protect equally in situ blood-perfused and crystalloid-perfused isolated hearts. We, therefore, tested whether ticagrelor liberates a sufficient amount of adenosine to protect a Krebs buffer-perfused isolated rat heart subjected to 40 minutes of global ischemia followed by 2 hours of reperfusion. In untreated hearts, 77.6% ± 4.0% of the ventricle was infarcted as measured by triphenyltetrazolium staining. Ischemically preconditioned hearts had only 32.7% ± 3.6% infarction ( P < .001 vs untreated), indicating that our model could be protected by preconditioning which is known to involve adenosine. Strikingly, hearts treated with 10 μmol/L ticagrelor in the buffer throughout the reperfusion period had 77.5% ± 2.4% infarction comparable to unprotected controls ( P = NS vs untreated). These data strongly suggest that ticagrelor was unable to release sufficient adenosine from the crystalloid-perfused rat heart to protect it against infarction. Our previous studies have found no difference in the anti-infarct potency among clopidogrel, cangrelor, and ticagrelor in open-chest rats and rabbits, and surprisingly adenosine receptor antagonists block protection from all 3 drugs. We have no explanation why ticagrelor is more protective in the pig than clopidogrel but suspect a species or perhaps a treatment schedule difference that may or may not involve adenosine.
Collapse
Affiliation(s)
- Xi-Ming Yang
- 1 Departments of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Sushee Gadde
- 2 Departments of Medicine, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Jonathon P Audia
- 3 Departments of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, USA.,4 Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Diego F Alvarez
- 1 Departments of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA.,4 Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - James M Downey
- 1 Departments of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Michael V Cohen
- 1 Departments of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA.,2 Departments of Medicine, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
5
|
Lee HR, Jo MK, Park KY, Jang YJ, Heo TH. Anti-TNF effect of combined pravastatin and cilostazol treatment in an in vivo mouse model. Immunopharmacol Immunotoxicol 2019; 41:179-184. [PMID: 30714456 DOI: 10.1080/08923973.2019.1569045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objectives: Pravastatin and cilostazol are used as lipid-lowering and antiplatelet agents, respectively. Regarding their well-known anti-inflammatory effects, the additive effect of the two drugs on anti-TNF functions has not yet been investigated. In the present investigation, the beneficial effect of combined pravastatin and cilostazol on their anti-TNF activities was assessed using an in vivo mouse model. Methods: Mice were pretreated with pravastatin and/or cilostazol (40 mg/kg of each), orally once two hour prior to an LPS (5 mg/kg, i.p.) challenge. One hour post challenge, blood and descending aorta were collected for serum TNF levels and immune cell infiltration analyses. For survival analysis, pravastatin and/or cilostazol (40 mg/kg of each) were administered 30 minutes prior to d-galactosamine administration (700 mg/kg, i.p.) and TNF (10 µg/kg, i.p.) challenge and mice survival was monitored. We also examined the effect of either drug or the combination of drugs on TNF-mediated MAPK and NF-κB signaling, using Western blot analysis. Results: Combined treatment of pravastatin and cilostazol significantly decreased serum TNF release and immune cell infiltration in the descending aorta following LPS administration, compared to each single treatment. Additionally, the combined drugs significantly decreased TNF-mediated mouse mortality and downregulated TNF-induced MAPK and NF-κB activation. Conclusions: These findings suggest that combined pravastatin and cilostazol is more effective for reducing TNF-driven inflammation through their anti-TNF activity than monotherapy.
Collapse
Affiliation(s)
- Hae-Ri Lee
- a Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy , The Catholic University of Korea , Bucheon , Republic of Korea
| | - Min-Kyung Jo
- b College of Pharmacy , ILAb, Inc., NP513, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Kyung-Yeon Park
- a Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy , The Catholic University of Korea , Bucheon , Republic of Korea
| | - You-Jin Jang
- a Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy , The Catholic University of Korea , Bucheon , Republic of Korea
| | - Tae-Hwe Heo
- a Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy , The Catholic University of Korea , Bucheon , Republic of Korea
| |
Collapse
|
6
|
Weisshaar S, Litschauer B, Kerbel T, Wolzt M. Atorvastatin combined with ticagrelor prevent ischemia-reperfusion induced vascular endothelial dysfunction in healthy young males – A randomized, placebo-controlled, double-blinded study. Int J Cardiol 2018; 255:1-7. [DOI: 10.1016/j.ijcard.2017.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/28/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
|
7
|
Birnbaum Y, Birnbaum GD, Birnbaum I, Nylander S, Ye Y. Ticagrelor and Rosuvastatin Have Additive Cardioprotective Effects via Adenosine. Cardiovasc Drugs Ther 2017; 30:539-550. [PMID: 27830382 DOI: 10.1007/s10557-016-6701-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ticagrelor inhibits the equilibrative-nucleoside-transporter-1 and thereby, adenosine cell re-uptake. Ticagrelor limits infarct size (IS) in non-diabetic rats and the effect is adenosine-dependent. Statins, via ecto-5'-nucleotidase activation, also increase adenosine levels and limit IS. HYPOTHESIS Ticagrelor and rosuvastatin have additive effects on myocardial adenosine levels, and therefore, on IS and post-reperfusion activation of the NLRP3-inflammasome. METHODS Diabetic ZDF rats received via oral gavage; water (control), ticagrelor (150 mg/kg/d), prasugrel (7.5 mg/kg/d), rosuvastatin (5 mg/kg/d), ticagrelor + rosuvastatin and prasugrel + rosuvastatin for 3d. On day 4, rats underwent 30 min coronary artery occlusion and 24 h of reperfusion. Two additional groups received, ticagrelor + rosuvastatin or water in combination with CGS15943 (CGS, an adenosine receptor antagonist, 10 mg/kg i.p. 1 h before ischemia). RESULTS Both ticagrelor and rosuvastatin increased myocardial adenosine levels with an additive effect of the combination whereas prasugrel had no effect. Similarly, both ticagrelor and rosuvastatin significantly reduced IS with an additive effect of the combination whereas prasugrel had no effect. The effect on IS was adenosine dependent as CGS15943 reversed the effect of ticagrelor + rosuvastatin. The ischemia-reperfusion injury increased myocardial mRNA levels of NLRP3, ASC, IL-1β and IL-6. Ticagrelor and rosuvastatin, but not prasugrel, significantly decreased these pro-inflammatory mediators with a trend to an additive effect of the combination. The combination also increased the levels of anti-inflammatory 15-epilipoxin A4. CONCLUSIONS Ticagrelor and rosuvastatin when given in combination have an additive effect on local myocardial adenosine levels in the setting of ischemia reperfusion. This translates into an additive cardioprotective effect mediated by adenosine-induced effects including downregulation of pro- but upregulation of anti-inflammatory mediators.
Collapse
Affiliation(s)
- Yochai Birnbaum
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.,The section of Cardiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gilad D Birnbaum
- The Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Itamar Birnbaum
- The section of Cardiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
| |
Collapse
|
8
|
Balakumar P, WitnessKoe WE, Gan YS, JemayPuah SM, Kuganesswari S, Prajapati SK, Varatharajan R, Jayachristy SA, Sundram K, Bahari MB. Effects of pre and post-treatments with dipyridamole in gentamicin-induced acute nephrotoxicity in the rat. Regul Toxicol Pharmacol 2017; 84:35-44. [DOI: 10.1016/j.yrtph.2016.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/05/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023]
|
9
|
Statin-Induced Cardioprotection Against Ischemia-Reperfusion Injury: Potential Drug-Drug Interactions. Lesson to be Learnt by Translating Results from Animal Models to the Clinical Settings. Cardiovasc Drugs Ther 2016; 29:461-7. [PMID: 26303765 DOI: 10.1007/s10557-015-6615-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Numerous interventions have been shown to limit myocardial infarct size in animal models; however, most of these interventions have failed to have a significant effect in clinical trials. One potential explanation for the lack of efficacy in the clinical setting is that in bench models, a single intervention is studied without the background of other interventions or modalities. This is in contrast to the clinical setting in which new medications are added to the "standard of care" treatment that by now includes a growing number of medications. Drug-drug interaction may lead to alteration, dampening, augmenting or masking the effects of the intended intervention. We use the well described model of statin-induced myocardial protection to demonstrate potential interactions with agents which are commonly concomitantly used in patients with stable coronary artery disease and/or acute coronary syndromes. These interactions could potentially explain the reduced efficacy of statins in the clinical trials compared to the animal models. In particular, caffeine and aspirin could attenuate the infarct size limiting effects of statins; morphine could delay the onset of protection or mask the protective effect in patients with ST elevation myocardial infarction, whereas other anti-platelet agents (dipyridamole, cilostazol and ticagrelor) may augment (or mask) the effect due to their favorable effects on adenosine cell reuptake and intracellular cAMP levels. We recommend that after characterizing the effects of new modalities in single intervention bench research, studies should be repeated in the background of standard-of-care medications to assure that the magnitude of the effect is not altered before proceeding with clinical trials.
Collapse
|
10
|
Puri N, Mohey V, Singh M, Kaur T, Pathak D, Buttar HS, Singh AP. Dipyridamole attenuates ischemia reperfusion induced acute kidney injury through adenosinergic A1 and A2A receptor agonism in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:361-8. [PMID: 26728617 DOI: 10.1007/s00210-015-1206-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/21/2015] [Indexed: 01/16/2023]
Abstract
Dipyridamole (DYP) is an anti-platelet agent with marked vasodilator, anti-oxidant, and anti-inflammatory activity. The present study investigated the role of adenosine receptors in DYP-mediated protection against ischemia reperfusion-induced acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia for 40 min followed by reperfusion for 24 h. The renal damage induced by ischemia reperfusion injury (IRI) was assessed by measuring creatinine clearance, blood urea nitrogen, uric acid, plasma potassium, fractional excretion of sodium, and microproteinuria in rats. The oxidative stress in renal tissues was assessed by quantification of thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The hematoxylin-eosin staining was carried out to observe histopathological changes in renal tissues. DYP (10 and 30 mg/kg, intraperitoneal, i.p.) was administered 30 min before subjecting the rats to renal IRI. In separate groups, caffeine (50 mg/kg, i.p.), an adenosinergic A1 and A2A receptor antagonist was administered with and without DYP treatment before subjecting the rats to renal IRI. The ischemia reperfusion-induced AKI was demonstrated by significant changes in serum as well as urinary parameters, enhanced oxidative stress, and histopathological changes in renal tissues. The administration of DYP demonstrated protection against AKI. The prior treatment with caffeine abolished DYP-mediated reno-protection suggesting role of A1 and A2A adenosine receptors in DYP-mediated reno-protection in rats. It is concluded that adenosine receptors find their definite involvement in DYP-mediated anti-oxidative and reno-protective effect against ischemia reperfusion-induced AKI.
Collapse
Affiliation(s)
- Nikkita Puri
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Vinita Mohey
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Manjinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Tajpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.,Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Harpal Singh Buttar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
11
|
Ye Y, Birnbaum GD, Perez-Polo JR, Nanhwan MK, Nylander S, Birnbaum Y. Ticagrelor Protects the Heart Against Reperfusion Injury and Improves Remodeling After Myocardial Infarction. Arterioscler Thromb Vasc Biol 2015; 35:1805-14. [DOI: 10.1161/atvbaha.115.305655] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/18/2015] [Indexed: 12/31/2022]
Abstract
Objective—
In addition to P2Y
12
receptor antagonism, ticagrelor inhibits adenosine cell uptake. Prior data show that 7-day pretreatment with ticagrelor limits infarct size. We explored the acute effects of ticagrelor and clopidogrel on infarct size and potential long-term effects on heart function.
Approach and Results—
Rats underwent 30-minute ischemia per 24-hour reperfusion. (1) Ticagrelor (10 or 30 mg/kg) or clopidogrel (12.5 mg/kg) was given via intraperitoneal injection 5 minutes before reperfusion. (2) Rats received ticagrelor acute (intraperitoneal; 30 mg/kg), chronic (oral; 300 mg/kg per day) for 4 weeks starting 1 day after reperfusion or the combination (acute+chronic). Another group received clopidogrel (intraperitoneal [12.5 mg/kg]+oral [62.5 mg/kg per day]) for 4 weeks. (1) Ticagrelor dose-dependently reduced infarct size, 10 mg/kg (31.5%±1.8%;
P
<0.001) and 30 mg/kg (21.4%±2.6%;
P
<0.001) versus control (45.3±1.7%), whereas clopidogrel had no effect (42.4%±2.6%). Ticagrelor, but not clopidogrel, increased myocardial adenosine levels, increased phosphorylation of Akt, endothelial NO synthase, and extracellular-signal-regulated kinase 1/2 4 hours after reperfusion and decreased apoptosis. (2) After 4 weeks, left ventricular ejection fraction was reduced in the vehicle-treated group (44.8%±3.5%) versus sham (77.6%±0.9%). All ticagrelor treatments improved left ventricular ejection fraction, acute (69.5%±1.6%), chronic (69.2%±1.0%), and acute+chronic (76.3%±1.2%), whereas clopidogrel had no effect (37.4%±3.7%). Ticagrelor, but not clopidogrel, attenuated fibrosis and decreased collagen-III mRNA levels 4 weeks after ischemia/reperfusion. Ticagrelor, but not clopidogrel, attenuated the increase in proinflammatory tumor necrosis factor-α, interleukin-1β, and interleukin-18, and increased anti-inflammatory 15-epi-lipoxin-A
4
levels.
Conclusions—
Ticagrelor, but not clopidogrel, administered just before reperfusion protects against reperfusion injury. This acute treatment or chronic ticagrelor for 4 weeks or their combination improved heart function, whereas clopidogrel, despite achieving a similar degree of platelet inhibition, had no effect.
Collapse
Affiliation(s)
- Yumei Ye
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (Y.Y., J.R.P.-P., M.K.N., Y.B.); Section of Cardiology, Baylor College of Medicine, Houston, TX (G.D.B., Y.B.); and AstraZeneca R&D, Mölndal, Sweden (S.N.)
| | - Gilad D. Birnbaum
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (Y.Y., J.R.P.-P., M.K.N., Y.B.); Section of Cardiology, Baylor College of Medicine, Houston, TX (G.D.B., Y.B.); and AstraZeneca R&D, Mölndal, Sweden (S.N.)
| | - Jose R. Perez-Polo
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (Y.Y., J.R.P.-P., M.K.N., Y.B.); Section of Cardiology, Baylor College of Medicine, Houston, TX (G.D.B., Y.B.); and AstraZeneca R&D, Mölndal, Sweden (S.N.)
| | - Manjyot K. Nanhwan
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (Y.Y., J.R.P.-P., M.K.N., Y.B.); Section of Cardiology, Baylor College of Medicine, Houston, TX (G.D.B., Y.B.); and AstraZeneca R&D, Mölndal, Sweden (S.N.)
| | - Sven Nylander
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (Y.Y., J.R.P.-P., M.K.N., Y.B.); Section of Cardiology, Baylor College of Medicine, Houston, TX (G.D.B., Y.B.); and AstraZeneca R&D, Mölndal, Sweden (S.N.)
| | - Yochai Birnbaum
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (Y.Y., J.R.P.-P., M.K.N., Y.B.); Section of Cardiology, Baylor College of Medicine, Houston, TX (G.D.B., Y.B.); and AstraZeneca R&D, Mölndal, Sweden (S.N.)
| |
Collapse
|
12
|
Dolkart O, Amar E, Shapira S, Marmor S, Steinberg EL, Weinbroum AA. Protective effects of rosuvastatin in a rat model of lung contusion: Stimulation of the cyclooxygenase 2-prostaglandin E-2 pathway. Surgery 2015; 157:944-53. [PMID: 25724093 DOI: 10.1016/j.surg.2014.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Lung contusion, which can occur in patients with blunt thoracic trauma, is a leading risk factor for development of acute lung injury (ALI) and acute respiratory distress syndrome. Statins are lipid-lowering drugs with many beneficial antiinflammatory and antioxidative effects. We therefore hypothesized that the administration of statins immediately after trauma will inhibit the production of inflammatory mediators, and thereby alleviate the severity of lung injury. METHODS A model of blunt chest injury in rat was employed. The effects of statins (rosuvastatin) and cyclooxygenase-2 (COX-2) inhibitors (meloxicam) on ALI were assessed by measuring inflammatory mediator levels in the serum and in the bronchoalveolar space. Animals were killed at the end of day 3. Histologic evaluation of lung tissue was performed to confirm the presence and severity of lung contusion as well as the effects of statins, nonsteroidal antiinflammatory drugs, and their combination. RESULTS Administration of meloxicam after lung contusion decreased the amount of neutrophil infiltration; however, marked hemorrhage and edema were still noticed. Administration of rosuvastatin decreased significantly cytokine levels that were increased after the blunt chest trauma. Rosuvastatin increased the expression of inducible nitric oxide (iNOS), COX-2, heme oxygenase-1 (HO-1), and prostaglandin E2 (PGE-2) in the bronchoalveolar lavage fluid of the rat contused lungs. Coadministration of meloxicam prevented these changes. CONCLUSION Rosuvastatin treatment after lung contusion attenuated several features of ALI. The enhanced activity of iNOS, COX-2, and HO-1 in the lung may reflect the advent of protective processes that took place in the contused lung. To our knowledge, this is the first demonstration that prostaglandin pathways play an essential role in the effects of statins in lung injury.
Collapse
Affiliation(s)
- Oleg Dolkart
- Pre-Clinical Research Laboratory and Post-Anesthesia Care Unit, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Eyal Amar
- Pre-Clinical Research Laboratory and Post-Anesthesia Care Unit, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shiran Shapira
- Pre-Clinical Research Laboratory and Post-Anesthesia Care Unit, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sylvia Marmor
- Pathology Institute, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli L Steinberg
- Pre-Clinical Research Laboratory and Post-Anesthesia Care Unit, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi A Weinbroum
- Pre-Clinical Research Laboratory and Post-Anesthesia Care Unit, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Balakumar P, Varatharajan R, Nyo YH, Renushia R, Raaginey D, Oh AN, Akhtar SS, Rupeshkumar M, Sundram K, Dhanaraj SA. Fenofibrate and dipyridamole treatments in low-doses either alone or in combination blunted the development of nephropathy in diabetic rats. Pharmacol Res 2014; 90:36-47. [PMID: 25263930 DOI: 10.1016/j.phrs.2014.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/20/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
Abstract
Low-doses of fenofibrate and dipyridamole have pleiotropic renoprotective actions in diabetic rats. This study investigated their combined effect relative to their individual treatments and lisinopril in rats with diabetic nephropathy. Streptozotocin (55mg/kg, i.p., once)-administered diabetic rats were allowed for 10 weeks to develop nephropathy. Diabetic rats after 10 weeks developed nephropathy with discernible renal structural and functional changes as assessed in terms of increase in kidney weight to body weight ratio (KW/BW), and elevations of serum creatinine, urea and uric acid, which accompanied with elevated serum triglycerides and decreased high-density lipoproteins. Hematoxylin-eosin, periodic acid Schiff and Masson trichrome staining confirmed renal pathological changes in diabetic rats that included glomerular capsular wall distortion, mesangial cell expansion, glomerular microvascular condensation, tubular damage and degeneration and fibrosis. Low-dose fenofibrate (30mg/kg, p.o., 4 weeks) and low-dose dipyridamole (20mg/kg, p.o., 4 weeks) treatment either alone or in combination considerably reduced renal structural and functional abnormalities in diabetic rats, but without affecting the elevated glucose level. Fenofibrate, but not dipyridamole, significantly prevented the lipid alteration and importantly the uric acid elevation in diabetic rats. Lisinopril (5mg/kg, p.o., 4 weeks, reference compound), prevented the hyperglycemia, lipid alteration and development of diabetic nephropathy. Lipid alteration and uric acid elevation, besides hyperglycemia, could play key roles in the development of nephropathy. Low-doses of fenofibrate and dipyridamole treatment either alone or in combination markedly prevented the diabetes-induced nephropathy. Their combination was as effective as to their individual treatment, but not superior in preventing the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia.
| | - Rajavel Varatharajan
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia
| | - Ying Hui Nyo
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia
| | - Raja Renushia
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia
| | - Devarajan Raaginey
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia
| | - Ann Nah Oh
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia
| | - Shaikh Sohrab Akhtar
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia
| | - Mani Rupeshkumar
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia
| | - Karupiah Sundram
- Pharmaceutical Chemistry Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia
| | - Sokkalingam A Dhanaraj
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia
| |
Collapse
|
14
|
Pecoraro V, Moja L, Dall'Olmo L, Cappellini G, Garattini S. Most appropriate animal models to study the efficacy of statins: a systematic review. Eur J Clin Invest 2014; 44:848-71. [PMID: 25066257 DOI: 10.1111/eci.12304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 07/21/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND In animal models and clinical trials, statins are reported as effective in reducing cholesterol levels and lowering the risk of cardiovascular diseases. We have aggregated the findings in animal models - mice, rats and rabbits - using the technique of systematic review and meta-analysis to highlight differences in the efficacy of statins. MATERIALS AND METHODS We searched Medline and Embase. After examining all eligible articles, we extracted results about total cholesterol and other blood parameters, blood pressure, myocardial infarction and survival. Weighted and standard mean difference random effects meta-analysis was used to measure overall efficacy in prespecified species, strains and subgroups. RESULTS We included in systematic review 161 animal studies and we analysed 120 studies, accounting for 2432 animals. Statins lowered the total cholesterol across all species, although with large differences in the effect size: -30% in rabbits, -20% in mice and -10% in rats. The reduction was larger in animals fed on a high-cholesterol diet. Statins reduced infarct volume but did not consistently reduce the blood pressure or effect the overall survival. Few studies considered strains at high risk of cardiovascular diseases or hard outcomes. CONCLUSIONS Although statins showed substantial efficacy in animal models, few preclinical data considered conditions mimicking human pathologies for which the drugs are clinically indicated and utilized. The empirical finding that statins are more effective in lowering cholesterol derived from an external source (i.e. diet) conflicts with statin's supposed primary mechanism of action.
Collapse
Affiliation(s)
- Valentina Pecoraro
- Clinical Epidemiology Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | | | | | | | | |
Collapse
|
15
|
Nanhwan MK, Ling S, Kodakandla M, Nylander S, Ye Y, Birnbaum Y. Chronic Treatment With Ticagrelor Limits Myocardial Infarct Size. Arterioscler Thromb Vasc Biol 2014; 34:2078-85. [DOI: 10.1161/atvbaha.114.304002] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objective—
In a phase III clinical trial (PLATelet inhibition and patient Outcomes, PLATO), ticagrelor provided better clinical outcomes than clopidogrel in patients with acute coronary syndromes. In addition to P2Y
12
-receptor antagonism, ticagrelor prevents cell uptake of adenosine and has proven able to augment adenosine effects. Adenosine protects the heart against ischemia–reperfusion injury. We compared the effects of clopidogrel and ticagrelor on myocardial infarct size (IS).
Approach and Results—
Rats received oral ticagrelor (0, 75, 150, or 300 mg/kg/d) or clopidogrel (30 or 90 mg/kg/d) for 7 days and underwent 30-minute coronary artery ligation and 24-hour reperfusion. Area at risk was assessed by blue dye and IS by 2,3,5-triphenyl-tetrazolium-chloride. Cyclooxygenase-2 (COX2) enzyme activity was assessed by ELISA and expression by real-time polymerase chain reaction. Mechanism responsible was explored using adenosine-receptor antagonist (CGS15943, an A
2A
/A
1
antagonist) or cyclooxygenase inhibition by either aspirin (5, 10, or 25 mg/kg) or specific cyclooxygenase-1 (SC560) or COX2 (SC5815) inhibitors. Ticagrelor, dose-dependently, reduced IS, whereas clopidogrel had no effect. Adenosine-receptor antagonism blocked the ticagrelor effect and COX2 inhibition by SC5815, or high-dose aspirin attenuated the IS-limiting effect of ticagrelor, whereas cyclooxygenase-1 inhibition or low-dose aspirin had no effect. Ticagrelor, but not clopidogrel, upregulated COX2 expression and activity. Also this effect was blocked by adenosine-receptor antagonism. Ticagrelor, but not clopidogrel, increased Akt and endothelial nitric oxide synthase phosphorylation.
Conclusions—
Ticagrelor, but not clopidogrel, reduces myocardial IS. The protective effect of ticagrelor was dependent on adenosine-receptor activation with downstream upregulation of endothelial nitric oxide synthase and COX2 activity.
Collapse
Affiliation(s)
- Manjyot K. Nanhwan
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Shukuan Ling
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Monica Kodakandla
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Sven Nylander
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Yumei Ye
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| | - Yochai Birnbaum
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston (M.K.N., S.L., M.K., Y.Y., Y.B.); State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China (S.L.); AstraZeneca R&D, Mölndal, Sweden (S.N.); and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (Y.B.)
| |
Collapse
|
16
|
Balakumar P, Nyo YH, Renushia R, Raaginey D, Oh AN, Varatharajan R, Dhanaraj SA. Classical and pleiotropic actions of dipyridamole: Not enough light to illuminate the dark tunnel? Pharmacol Res 2014; 87:144-50. [PMID: 24861566 DOI: 10.1016/j.phrs.2014.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/01/2014] [Accepted: 05/13/2014] [Indexed: 12/01/2022]
Abstract
Dipyridamole is a platelet inhibitor indicated for the secondary prevention of transient ischemic attack. It inhibits the enzyme phosphodiesterase, elevates cAMP and cGMP levels and prevents platelet aggregation. Dipyridamole inhibits the cellular uptake of adenosine into red blood cells, platelets and endothelial cells that results in increased extracellular availability of adenosine, leading to modulation of cardiovascular function. The antiplatelet action of dipyridamole might offer therapeutic benefits in secondary stroke prevention in combination with aspirin. Inflammation and oxidative stress play an important role in atherosclerosis and thrombosis development, leading to stroke progression. Studies demonstrated anti-inflammatory, anti-oxidant and anti-proliferative actions of dipyridamole. These pleiotropic potentials of dipyridamole might contribute to improved therapeutic outcomes when used with aspirin in preventing secondary stroke. Dipyridamole was documented as a coronary vasodilator 5 decades ago. The therapeutic failure of dipyridamole as a coronary vasodilator is linked with induction of 'coronary steal' phenomenon in which by dilating resistance vessels in non-ischemic zone, dipyridamole diverts the already reduced blood flow away from the area of ischemic myocardium. Dipyridamole at high-dose could cause a marked 'coronary steal' effect. Dipyridamole, however, at low-dose could have a minimal hemodynamic effect. Low-dose dipyridamole treatment has a therapeutic potential in partially preventing diabetes mellitus-induced experimental vascular endothelial and renal abnormalities by enhancing endothelial nitric oxide signals and inducing renovascular reduction of oxidative stress. In spite of plenteous research on dipyridamole's use in clinics, its precise clinical application is still obscure. This review sheds lights on pleiotropic pharmacological actions and therapeutic potentials of dipyridamole.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia.
| | - Ying Hui Nyo
- Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Raja Renushia
- Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Devarajan Raaginey
- Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Ann Nah Oh
- Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Rajavel Varatharajan
- Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Sokkalingam A Dhanaraj
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| |
Collapse
|
17
|
Sharma AK, Khanna D, Balakumar P. Low-dose dipyridamole treatment partially prevents diabetes mellitus-induced vascular endothelial and renal abnormalities in rats. Int J Cardiol 2014; 172:530-2. [DOI: 10.1016/j.ijcard.2014.01.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/12/2014] [Indexed: 10/25/2022]
|
18
|
Comparison of the protective effect of dipyridamole and acetylsalicylic acid on long-term histologic damage in a rat model of testicular ischemia-reperfusion injury. J Pediatr Surg 2012; 47:1716-23. [PMID: 22974612 DOI: 10.1016/j.jpedsurg.2012.01.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/05/2012] [Accepted: 01/31/2012] [Indexed: 11/23/2022]
Abstract
PURPOSE Ischemia reperfusion injury arising from testicular torsion results in a loss of spermatogenesis and a significant increase in germ cell apoptosis. We investigated the effects of dipyridamole and acetylsalicylic acid (ASA), 2 well-known platelet inhibitors, on testicular ischemia reperfusion injury. METHODS Thirty adult male Sprague-Dawley rats were randomly divided into 5 groups (n = 6 for each group): control, sham-operated, torsion/detorsion (T/D), T/D + dipyridamole, and T/D + ASA. Testicular ischemia was achieved by rotating the left testis 720° clockwise for 2 hours. Thirty minutes before torsion, 10 mg/kg dipyridamole was injected transperitoneally in the T/D + dipyridamole group, and 100 mg/kg ASA was injected transperitoneally in the T/D + ASA group. Sixty days after the initial surgical procedure, ipsilateral orchiectomies were performed for histopathologic examination to determine Johnsen's mean testicular biopsy score (MTBS), mean seminiferous tubular diameter (MSTD), and apoptotic index (AI) in all groups. RESULTS Unilateral testicular torsion-detorsion led to a significant decrease in Johnsen's MTBS and MSTD values in the ipsilateral testis and a significant increase in AI values of the T/D group. There were no significant differences between the T/D + dipyridamole and control groups in terms of MSTD and MTBS values. Although an amount of improvement exits in T/D + ASA group, there were significant differences between the T/D + ASA and control group MSTD and MTBS values. There was no significant difference between the T/D + dipyridamole and control groups in terms of AI values (P > .05), but the differences between the T/D + ASA and control groups were significant despite a slight decline in AI values of the T/D + ASA group. CONCLUSIONS Our findings show that the use of dipyridamole before testicular reperfusion has a potentially protective effect against long-term injury in testicular ischemia reperfusion injury.
Collapse
|
19
|
Phosphorylation of endothelial NOS contributes to simvastatin protection against myocardial no-reflow and infarction in reperfused swine hearts: partially via the PKA signaling pathway. Acta Pharmacol Sin 2012; 33:879-87. [PMID: 22659627 DOI: 10.1038/aps.2012.27] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM The cholesterol-lowering drugs statins could enhance the activities of endothelial nitric oxide synthase (eNOS) and protect myocardium during ischemia and reperfusion. The aim of this study was to examine whether protein kinase A (PKA) was involved in statin-mediated eNOS phosphorylation and cardioprotection. METHODS 6-Month-old Chinese minipigs (20-30 kg) underwent a 1.5-h occlusion and 3-h reperfusion of the left anterior descending coronary artery (LAD). In the sham group, the LAD was encircled by a suture but not occluded. Hemodynamic and cardiac function was monitored using a polygraph. Plasma activity of creatine kinase and the tissue activities of PKA and NOS were measured spectrophotometrically. p-CREB, eNOS and p-eNOS levels were detected using Western blotting. Sizes of the area at risk, the area of no-reflow and the area of necrosis were measured morphologically. RESULTS Pretreatment of the animals with simvastatin (SIM, 2 mg/kg, po) before reperfusion significantly decreased the plasma activity of creatine kinase, an index of myocardial necrosis, and reduced the no-reflow size (from 50.4%±2.4% to 36.1%±2.1%, P<0.01) and the infarct size (from 79.0%±2.7% to 64.1%±4.5%, P<0.01). SIM significantly increased the activities of PKA and constitutive NOS, and increased Ser(133) p-CREB protein, Ser(1179) p-eNOS, and Ser(635) p-eNOS in ischemic myocardium. Intravenous infusion of the PKA inhibitor H-89 (1 μg·kg(-1)·min(-1)) partially abrogated the SIM-induced cardioprotection and eNOS phosphorylation. In contrast, intravenous infusion of the eNOS inhibitor L-NNA (10 mg·kg(-1)) completely abrogated the SIM-induced cardioprotection and eNOS phosphorylation during ischemia and reperfusion, but did not affect the activity of PKA. CONCLUSION Pretreatment with a single dose of SIM 2.5 h before reperfusion attenuates myocardial no-reflow and infarction through increasing eNOS phosphorylation at Ser(1179) and Ser(635) that was partially mediated via the PKA signaling pathway.
Collapse
|
20
|
Riksen NP, Rongen GA. Targeting adenosine receptors in the development of cardiovascular therapeutics. Expert Rev Clin Pharmacol 2012; 5:199-218. [PMID: 22390562 DOI: 10.1586/ecp.12.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine receptor stimulation has negative inotropic and dromotropic actions, reduces cardiac ischemia-reperfusion injury and remodeling, and prevents cardiac arrhythmias. In the vasculature, adenosine modulates vascular tone, reduces infiltration of inflammatory cells and generation of foam cells, and may prevent the development of atherosclerosis as a result. Modulation of insulin sensitivity may further add to the anti-atherosclerotic properties of adenosine signaling. In the kidney, adenosine plays an important role in tubuloglomerular feedback and modulates tubular sodium reabsorption. The challenge is to take advantage of the beneficial actions of adenosine signaling while preventing its potential adverse effects, such as salt retention and sympathoexcitation. Drugs that interfere with adenosine formation and elimination or drugs that allosterically enhance specific adenosine receptors seem to be most promising to meet this challenge.
Collapse
Affiliation(s)
- Niels P Riksen
- Department of Pharmacology-Toxicology 149 and Internal Medicine 463, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
21
|
Srivastava K, Bath PMW, Bayraktutan U. Current therapeutic strategies to mitigate the eNOS dysfunction in ischaemic stroke. Cell Mol Neurobiol 2012; 32:319-36. [PMID: 22198555 DOI: 10.1007/s10571-011-9777-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/29/2011] [Indexed: 12/22/2022]
Abstract
Impairment of endothelial nitric oxide synthase (eNOS) activity is implicated in the pathogenesis of endothelial dysfunction in many diseases including ischaemic stroke. The modulation of eNOS during and/or following ischaemic injury often represents a futile compensatory mechanism due to a significant decrease in nitric oxide (NO) bioavailability coupled with dramatic increases in the levels of reactive oxygen species that further neutralise NO. However, applications of a number of therapeutic agents alone or in combination have been shown to augment eNOS activity under a variety of pathological conditions by potentiating the expression and/or activity of Akt/eNOS/NO pathway components. The list of these therapeutic agents include NO donors, statins, angiotensin-converting enzyme inhibitors, calcium channel blockers, phosphodiesterase-3 inhibitors, aspirin, dipyridamole and ellagic acid. While most of these compounds exhibit anti-platelet properties and are able to up-regulate eNOS expression in endothelial cells and platelets, others suppress eNOS uncoupling and tetrahydrobiopterin (an eNOS stabiliser) oxidation. As the number of therapeutic molecules that modulate the expression and activity of eNOS increases, further detailed research is required to reveal their mode of action in preventing and/or reversing the endothelial dysfunction.
Collapse
Affiliation(s)
- Kirtiman Srivastava
- Division of Stroke, Clinical Sciences Building, Nottingham City Hospital Campus, The University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
22
|
Balakumar P, Kathuria S, Taneja G, Kalra S, Mahadevan N. Is targeting eNOS a key mechanistic insight of cardiovascular defensive potentials of statins? J Mol Cell Cardiol 2012; 52:83-92. [DOI: 10.1016/j.yjmcc.2011.09.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 09/16/2011] [Indexed: 01/14/2023]
|
23
|
Abstract
PURPOSE Statins protect against ischemia-reperfusion injury and limit myocardial infarct size (IS). This effect is dependent on increased generation of adenosine by ecto-5' nucleotidase and downstream activation of cyclooxygenase-2 (COX2). Dipyridamole (DIP) augments the IS-limiting effects of statins by blocking the cellular reuptake of adenosine; whereas aspirin (ASA) attenuates the effect by inhibiting COX2. We studied the effect of acute administration of DIP, ASA and their combination on the IS-limiting effect of simvastatin (SIM). METHODS Rats received oral SIM (10 mg/kg/d) or vehicle for 3 days. Rats underwent 30 min of coronary artery occlusion and 4 h reperfusion. After 5 min of ischemia rats received i.v. DIP (5 mg/kg), ASA (20 mg/kg or 2 mg/kg) or DIP+ASA (2 mg/kg) or vehicle alone. Ischemia area at risk (AR) was assessed by blue dye and IS by TTC. Myocardial samples were analyzed for the activation of Akt, ERK 1/2, endothelial nitric oxide synthase (eNOS), and cyclic-AMP-response-element-binding-protein (CREB). RESULTS SIM limited IS. High- or low-dose ASA alone had no effect on IS. DIP alone or with low-dose ASA significantly reduced IS. Low-dose ASA did not attenuate the SIM effect, whereas high-dose ASA completely blocked the effect. The combination of DIP+low-dose ASA+SIM resulted in the smallest IS. Both SIM and DIP+low-dose ASA augmented Akt phosphorylation and their effect was additive. Both SIM and DIP+low-dose ASA augmented eNOS, ERK 1/2 and CREB phosphorylation. CONCLUSIONS During acute myocardial ischemia, DIP alone or with low-dose ASA limits IS and does not attenuate the IS-limiting effect of SIM as high-dose ASA.
Collapse
|
24
|
Ye Y, Perez-Polo JR, Birnbaum Y. Protecting against ischemia-reperfusion injury: antiplatelet drugs, statins, and their potential interactions. Ann N Y Acad Sci 2010; 1207:76-82. [PMID: 20955429 DOI: 10.1111/j.1749-6632.2010.05725.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Statins and antiplatelet agents are currently used as therapeutic agents for patients with acute myocardial infarction. Statins limit myocardial infarct size by activating phosphatidylinositol-3-kinase (PI3K), ecto-5'-nucleotidase, Akt/endothelial nitric oxide synthase (eNOS), and the downstream effectors inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Inhibition of PI3K, adenosine receptors, eNOS, iNOS, or COX-2 abrogates the protective effects of statins. At >5 mg/kg, aspirin attenuates the myocardial infarct-size-limiting effect of statins. In contrast, the combination of low-dose atoravastatin with either the phosphodiesterase-III inhibitor cilostazol or the adenosine reuptake inhibitor dipyridamole synergistically limits infarct size. Low-dose aspirin with dipyridamole started during ischemia augmented the infarct-size-limiting effects of simvastatin. In contrast, high-dose aspirin blocked the protective effect of simvastatin. The combination of dipyridamole with low-dose aspirin and simvastatin resulted in the smallest infarct size. According to the most current data available, we believe that antiplatelet regimens may require modification for patients who are receiving statins.
Collapse
Affiliation(s)
- Yumei Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | | | | |
Collapse
|
25
|
Meijer P, Wouters CW, van den Broek PHH, de Rooij M, Scheffer GJ, Smits P, Rongen GA. Upregulation of ecto-5'-nucleotidase by rosuvastatin increases the vasodilator response to ischemia. Hypertension 2010; 56:722-7. [PMID: 20679180 DOI: 10.1161/hypertensionaha.110.155689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins) are effective in the primary and secondary prevention of cardiovascular events. Although originally developed to improve lipid profile, statins have demonstrated a surplus of beneficial pleiotropic effects, including improved endothelial function, reduced inflammation, and increased tolerance to ischemia-reperfusion injury. In preclinical studies, increased ecto-5'-nucleotidase activity, the key enzyme in extracellular adenosine formation, plays an important role in these effects. Because human data are absent, we explored the effects of rosuvastatin on ecto-5'-nucleotidase activity and the clinical relevance of increased extracellular adenosine during ischemia in humans in vivo. The forearm vasodilator responses to 3 increasing periods of forearm ischemia (2, 5, and 13 minutes) were determined during placebo and caffeine (an adenosine receptor antagonist) infusion into the brachial artery. At the end of an 8-day treatment period with rosuvastatin (20 mg per day), this whole procedure was repeated. During both experiments, ecto-5'-nucleotidase activity was determined. Vasodilator responses are expressed as the percentage increase in forearm blood flow ratio from baseline. Rosuvastatin increased ecto-5'-nucleotidase activity by 49±17% and enhanced the vasodilator response after 2, 5, and 13 minutes of ischemia in the absence (146±19, 330±26, and 987±133 to 312±77, 566±107, and 1533±267) but not in the presence of caffeine (98±25, 264±54, and 727±111 versus 95±19, 205±34, and 530±62). Rosuvastatin increases extracellular formation of adenosine in humans in vivo probably by enhancing ecto-5'-nucleotidase activity. This action results in the improvement of reactive hyperemia and may further enhance the clinical benefit of statins, in particular in conditions of ischemia.
Collapse
Affiliation(s)
- Patrick Meijer
- Departments of Pharmacology-Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YT. Role of Endothelial Cells in Myocardial Ischemia-Reperfusion Injury. ACTA ACUST UNITED AC 2010; 7:1-14. [PMID: 25558187 PMCID: PMC4280830 DOI: 10.2174/1874120701007010001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Minimizing myocardial ischemia-reperfusion injury has broad clinical implications and is a critical mediator of cardiac surgical outcomes. “Ischemic injury” results from a restriction in blood supply leading to a mismatch between oxygen supply and demand of a sufficient intensity and/or duration that leads to cell necrosis, whereas ischemia-reperfusion injury occurs when blood supply is restored after a period of ischemia and is usually associated with apoptosis (i.e. programmed cell death). Compared to vascular endothelial cells, cardiac myocytes are more sensitive to ischemic injury and have received the most attention in preventing myocardial ischemia-reperfusion injury. Many comprehensive reviews exist on various aspects of myocardial ischemia-reperfusion injury. The purpose of this review is to examine the role of vascular endothelial cells in myocardial ischemia-reperfusion injury, and to stimulate further research in this exciting and clinically relevant area. Two specific areas that are addressed include: 1) data suggesting that coronary endothelial cells are critical mediators of myocardial dysfunction after ischemia-reperfusion injury; and 2) the involvement of the mitochondrial permeability transition pore in endothelial cell death as a result of an ischemia-reperfusion insult. Elucidating the cellular signaling pathway(s) that leads to endothelial cell injury and/or death in response to ischemia-reperfusion is a key component to developing clinically applicable strategies that might minimize myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Arun K Singhal
- Cardiothoracic Division, Edward J. Hines Veterans Administration Hospital, and Loyola University, Chicago, IL, USA
| | - J David Symons
- College of Health and Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bharat Jaishy
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yan-Ting Shiu
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
27
|
Xu Y, Xue F, Liao X, Xiong J, Yang Q, Wang W, Zhang Y. Combined morphine and limb remote ischaemia postconditioning may produce an enhanced cardioprotection. Med Hypotheses 2009; 73:302-5. [DOI: 10.1016/j.mehy.2009.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 03/22/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
|
28
|
Meijer P, Oyen WJG, Dekker D, van den Broek PHH, Wouters CW, Boerman OC, Scheffer GJ, Smits P, Rongen GA. Rosuvastatin increases extracellular adenosine formation in humans in vivo: a new perspective on cardiovascular protection. Arterioscler Thromb Vasc Biol 2009; 29:963-8. [PMID: 19359665 DOI: 10.1161/atvbaha.108.179622] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Statins may increase extracellular adenosine formation from adenosine monophosphate by enhancing ecto-5'-nucleotidase activity. This theory was tested in humans using dipyridamole-induced vasodilation as a read-out for local adenosine formation. Dipyridamole inhibits the transport of extracellular adenosine into the cytosol resulting in increased extracellular adenosine and subsequent vasodilation. In addition, we studied the effect of statin therapy in a forearm model of ischemia-reperfusion injury. METHODS AND RESULTS Volunteers randomly received rosuvastatin or placebo in a double-blind parallel design (n=21). The forearm vasodilator response to intraarterial dipyridamole was determined in the absence and presence of the adenosine antagonist caffeine. During a separate visit the vasodilator response to nitroprusside and adenosine was established. In addition, healthy men were randomly divided in 3 groups to receive either placebo (n=10), rosuvastatin (n=22), or rosuvastatin combined with intravenous caffeine (n=12). Subsequently, volunteers performed forearm ischemic exercise. At reperfusion, Tc-99m-labeled annexin A5 was infused intravenously and scintigraphic images were acquired, providing an early marker of cell injury. Rosuvastatin treatment significantly increased the vasodilator response to dipyridamole, which was prevented by caffeine. Rosuvastatin did not influence the response to either sodium nitroprusside or adenosine indicating a specific interaction between rosuvastatin and dipyridamole, which does not result from an effect of rosuvastatin on adenosine clearance nor adenosine-receptor affinity or efficacy. Rosuvastatin increased tolerance to ischemia-reperfusion injury, which was attenuated by caffeine. CONCLUSIONS Rosuvastatin increases extracellular adenosine formation, which provides protection against ischemia-reperfusion injury in humans in vivo. Therefore, statins and dipyridamole may interact synergistically.
Collapse
Affiliation(s)
- Patrick Meijer
- Radboud University Nijmegen Medical Centre, Department of Pharmacology and Toxicology, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ludman A, Venugopal V, Yellon DM, Hausenloy DJ. Statins and cardioprotection — More than just lipid lowering? Pharmacol Ther 2009; 122:30-43. [DOI: 10.1016/j.pharmthera.2009.01.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Indexed: 11/29/2022]
|
30
|
Mohan IK, Khan M, Wisel S, Selvendiran K, Sridhar A, Carnes CA, Bognar B, Kálai T, Hideg K, Kuppusamy P. Cardioprotection by HO-4038, a novel verapamil derivative, targeted against ischemia and reperfusion-mediated acute myocardial infarction. Am J Physiol Heart Circ Physiol 2008; 296:H140-51. [PMID: 18978191 DOI: 10.1152/ajpheart.00687.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many cardiac interventional procedures, such as coronary angioplasty, stenting, and thrombolysis, attempt to reintroduce blood flow (reperfusion) to an ischemic region of myocardium. However, the reperfusion is accompanied by a complex cascade of cellular and molecular events resulting in oxidative damage, termed myocardial ischemia-reperfusion (I/R) injury. In this study, we evaluated the ability of HO-4038, an N-hydroxypiperidine derivative of verapamil, on the modulation of myocardial tissue oxygenation (Po(2)), I/R injury, and key signaling molecules involved in cardioprotection in an in vivo rat model of acute myocardial infarction (MI). MI was created in rats by ligating the left anterior descending coronary artery (LAD) for 30 min followed by 24 h of reperfusion. Verapamil or HO-4038 was infused through the jugular vein 10 min before the induction of ischemia. Myocardial Po(2) and the free-radical scavenging ability of HO-4038 were measured using electron paramagnetic resonance spectroscopy. HO-4038 showed a significantly better scavenging ability of reactive oxygen radicals compared with verapamil. The cardiac contractile functions in the I/R hearts were significantly higher recovery in HO-4038 compared with the verapamil group. A significant decrease in the plasma levels of creatine kinase and lactate dehydrogenase was observed in the HO-4038 group compared with the verapamil or untreated I/R groups. The left ventricular infarct size was significantly less in the HO-4038 (23 +/- 2%) compared with the untreated I/R (36 +/- 4%) group. HO-4038 significantly attenuated the hyperoxygenation (36 +/- 1 mmHg) during reperfusion compared with the untreated I/R group (44 +/- 2 mmHg). The HO-4038-treated group also markedly attenuated superoxide production, increased nitric oxide generation, and enhanced Akt and Bcl-2 levels in the reperfused myocardium. Overall, the results demonstrated that HO-4038 significantly protected hearts against I/R-induced cardiac dysfunction and damage through the combined beneficial actions of calcium-channel blocking, antioxidant, and prosurvival signaling activities.
Collapse
Affiliation(s)
- Iyyapu K Mohan
- Davis Heart and Lung Research Institute, The Ohio State Univ., Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bibliography. Current world literature. Diseases of the aorta, pulmonary, and peripheral vessels. Curr Opin Cardiol 2008; 23:646-7. [PMID: 18830082 DOI: 10.1097/hco.0b013e328316c259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Ye Y, Lin Y, Perez-Polo JR, Birnbaum Y. Oral glyburide, but not glimepiride, blocks the infarct-size limiting effects of pioglitazone. Cardiovasc Drugs Ther 2008; 22:429-36. [PMID: 18825491 DOI: 10.1007/s10557-008-6138-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/10/2008] [Indexed: 12/26/2022]
Abstract
BACKGROUND Many patients with type 2 diabetes mellitus receive several oral hypoglycemic agents, including sulfonylurea drugs. Intravenous glyburide (Glyb), a sulfonylurea agent, blocks the protective effects of "ischemic" and pharmacologic preconditioning in various animal models without affecting myocardial infarct size when administered alone. However, there are conflicting results when other sulfonylurea drugs are used. Pioglitazone (PIO) reduces infarct size in the rat. We asked whether oral Glyb and glimepiride (Glim) affect the infarct size-limiting effects of PIO. METHODS Sprague-Dawley rats received 3-day oral treatment with: PIO (5 mg/kg/day); PIO + Glyb (10 mg/kg/day); PIO + Glim (4 mg/kg/day) or water alone (experiment 1) or PIO (5 mg/kg/day) with or without 5-hydroxydecanoate (5HD, 10 mg/kg), a specific mitochondrial ATP-sensitive K+ channels inhibitor, administered intravenously 30 min before coronary artery ligation. PIO, Glyb and Glim were administered by oral gavage. Sugar 5% was added to water to prevent hypoglycemia. Rats underwent 30 min coronary artery occlusion and 4 h reperfusion (n = 6 in each group). Ischemic area at risk was assessed by blue dye and infarct size by triphenyl-tetrazolium-chloride. RESULTS Body weight and the size of the area at risk were comparable among groups. Infarct size (% of the area at risk) was significantly smaller in the PIO (14.3 +/- 1.1%; p < 0.001) and PIO + Glim (13.2 +/- 0.8%; p < 0.001) groups than in the control group (37.7 +/- 1.2%). Glyb completely blocked the effect of PIO (43.0 +/- 1.7%; p < 0.001). Glim did not affect the protective effect of PIO (p = 0.993). 5HD blocked the protective effect of PIO (infarct size 48.5 +/- 0.8% versus 14.8 +/- 0.6%, respectively; p < 0.0001). In conclusion, the infarct size limiting effects of PIO are dependent on activation of mitochondrial ATP-sensitive K+ channels. Oral Glyb, but not Glim, blocks the infarct size limiting effects of PIO. It is plausible that Glyb affects other pleiotropic effects of PIO and thus may attenuate favorable effects on cardiovascular outcomes. In contrast, Glim does not attenuate the protective effect of PIO.
Collapse
Affiliation(s)
- Yumei Ye
- The Division of Cardiology, University of Texas Medical Branch, 5.106 John Sealy Annex, 301 University Blvd, Galveston, TX 77555-0553, USA
| | | | | | | |
Collapse
|
33
|
Filusch A, Buss S, Hardt S, Katus HA, Kuecherer HF, Hansen A. Evaluation cardioprotective effects of atorvastatin in rats by real time myocardial contrast echocardiography. Echocardiography 2008; 25:974-81. [PMID: 18771549 DOI: 10.1111/j.1540-8175.2008.00724.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The ability to assess myocardial perfusion in small animals is important, especially to investigate models of myocardial ischemia. Myocardial perfusion is usually assessed by postmortem techniques, eliminating the possibility of follow-up in intervention studies. The purpose of the study was to examine the feasibility of real time myocardial contrast echocardiography (MCE) to evaluate cardioprotective effects of atorvastatin in a rat model of acute ischemia-reperfusion injury. METHODS The rats (n=15) underwent 20 minutes of mechanical left descending coronary artery (LAD) occlusion followed by 180 minutes of reperfusion. The animals received either atorvastatin (10 mg/kg), atorvastatin and the nitric oxide synthase (NOS)-inhibitor N-Nitro-L-Argininemethylester (L-NAME) (15 mg/kg), or vehicle. MCE was performed to assess the size of the perfusion defect and the myocardial signal intensities (A(max)) at the baseline, during occlusion, and during reperfusion. For comparison, the infarct size, risk area, and regional myocardial blood flow (MBF) were determined by the standard techniques as well. RESULTS The dynamics of ischemia-reperfusion injury could be visualized serially by MCE. The infarct size-to-risk area ratio progressively increased during reperfusion and was markedly reduced in the atorvastatin group. Triphenyltetrazolium chloride (TTC) staining confirmed a 23% reduction in the infarct size by atorvastatin. The infarct size by MCE correlated well with the histological methods (r=0.86, P < 0.001). A(max) was reduced in the anterior segments during LAD occlusion (0.08 +/- 0.01 dB) compared to the baseline (2.9 +/- 0.4 dB), approached higher levels post revascularization of LAD (3.22 +/- 0.50 dB), but decreased during 180 minutes of reperfusion (2.32 +/- 0.40 dB). After 180 minutes of reperfusion, A(max) in the risk area was significantly higher in the atorvastain-treated group compared to the vehicle-treated group (2.32 +/- 0.40 dB vs 1.3 +/- 0.4 dB, P <or= 0.05), indicating preserved MBF. The L-NAME-treated group showed no significant difference compared to the vehicle-treated group (A(max) 1.12 +/- 0.60 dB vs 1.3 +/- 0.4 dB). The regional blood flow ratio (ischemic-to-nonischemic wall) measured by the microspheres was significantly higher in the atorvastatin group compared to the control and the L-NAME groups, respectively (0.92 +/- 0.13 vs 0.45 +/- 0.23 vs 0.51 +/- 0.16, P <or= 0.05). CONCLUSIONS Atorvastatin has cardioprotective effects in acute reperfusion injury. Contrast echocardiography allows visual and quantitative evaluation of the dynamics of myocardial ischemia-reperfusion injury and can be used to monitor cardioprotective effects during pharmacological interventions even in small animals.
Collapse
Affiliation(s)
- Arthur Filusch
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Recent studies suggest that dipyridamole (DP) may exert stroke protective effects beyond platelet inhibition. The purpose of this study is to determine whether statin and DP could enhance stroke protection through nitric oxide (NO)-dependent vascular effects. Mice were pretreated with DP (10 to 60 mg/kg, q 12 h, 3 days) alone or in combination with a statin (simvastatin; 0.1 to 20 mg/kg per day, 14 days) before transient intraluminal middle cerebral artery occlusion. Although simvastatin (1 mg/kg per day, 14 days) increased endothelial NO synthase (eNOS) activity by 25% and DP (30 mg/kg, q12 h, 3 days) increased aortic cGMP levels by 55%, neither statin nor DP alone, at these subtherapeutic doses, increased absolute cerebral blood flow (CBF) or conferred stroke protection. However, the combination of subtherapeutic doses of simvastatin and DP increased CBF by 50%, decreased stroke volume by 54%, and improved neurologic motor deficits, all of which were absent in eNOS-deficient mice. In contrast, treatment with aspirin (10 mg/kg per day, 3 days) did not augment the neuroprotective effects of DP and/or simvastatin. These findings indicate that statin and DP exert additive NO-dependent vascular effects and suggest that the combination of statin and DP has greater benefits in stroke protection than statin alone through vascular protection.
Collapse
|
35
|
Matsuhisa S, Otani H, Okazaki T, Yamashita K, Akita Y, Sato D, Moriguchi A, Imamura H, Iwasaka T. Angiotensin II type 1 receptor blocker preserves tolerance to ischemia-reperfusion injury in Dahl salt-sensitive rat heart. Am J Physiol Heart Circ Physiol 2008; 294:H2473-9. [DOI: 10.1152/ajpheart.91533.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress is involved in the tolerance to ischemia-reperfusion (I/R) injury. Because angiotensin II type 1 receptor blockers (ARBs) inhibit oxidative stress, there is concern that ARBs abolish the tolerance to I/R injury. Dahl salt-sensitive (DS) hypertensive and salt-resistant (DR) normotensive rats received an antioxidant, 2-mercaptopropionylglycine (MPG), or an ARB, losartan, for 7 days. Losartan and MPG significantly inhibited oxidative stress as determined by tissue malondialdehyde + 4-hydroxynoneal and increased expression of inducible nitric oxide synthase (iNOS) in the DS rat heart. However, losartan but not MPG activated endothelial nitric oxide synthase (eNOS) as assessed by phosphorylation of eNOS on Ser1177. Infarct size after 30-min left coronary artery occlusion followed by 2-h reperfusion was comparable between DS and DR rat hearts. Although MPG and losartan had no effect on infarct size in the DR rat heart, MPG but not losartan significantly increased infarct size in the DS rat heart. A selective iNOS inhibitor, 1400W, increased infarct size in the DS rat heart, but it had no effect on infarct size in the losartan-treated DS rat heart. However, a nonselective NOS inhibitor, Nω-nitro-l-arginine methyl ester, increased infarct size in the losartan-treated DS rat heart. These results suggest that losartan preserves the tolerance to I/R injury by activating eNOS despite elimination of redox-sensitive upregulation of iNOS and iNOS-dependent cardioprotection in the DS rat heart.
Collapse
|
36
|
Riksen NP, Hausenloy DJ, Yellon DM. Wake up and smell the coffee: yet another no go for cardiac patients? : editorial to "caffeinated coffee blunts the myocardial protective effects of statins against ischemia-reperfusion injury in the rat" by Ye et al. Cardiovasc Drugs Ther 2008; 22:257-9. [PMID: 18415673 PMCID: PMC2493530 DOI: 10.1007/s10557-008-6108-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 03/24/2008] [Indexed: 12/01/2022]
Affiliation(s)
- Niels P. Riksen
- Department of Pharmacology–Toxicology 149, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX UK
| | - Derek J. Hausenloy
- Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX UK
| | - Derek M. Yellon
- Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX UK
| |
Collapse
|
37
|
Dipyridamole, cerebrovascular disease, and the vasculature. Vascul Pharmacol 2008; 48:143-9. [DOI: 10.1016/j.vph.2007.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/30/2007] [Accepted: 12/18/2007] [Indexed: 11/15/2022]
|
38
|
Ye Y, Abu Said GH, Lin Y, Manickavasagam S, Hughes MG, McAdoo DJ, Perez-Polo RJ, Birnbaum Y. Caffeinated Coffee Blunts the Myocardial Protective Effects of Statins against Ischemia–Reperfusion Injury in the Rat. Cardiovasc Drugs Ther 2008; 22:275-82. [DOI: 10.1007/s10557-008-6105-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/21/2008] [Indexed: 11/24/2022]
|
39
|
Pretreatment With High-Dose Statin, But Not Low-Dose Statin, Ezetimibe, or the Combination of Low-Dose Statin and Ezetimibe, Limits Infarct Size in the Rat. J Cardiovasc Pharmacol Ther 2008; 13:72-9. [DOI: 10.1177/1074248407312839] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Statins reduce infarct size by upregulating nitric oxide synthases and PGI2 production. In this article, the infarct size-limiting effect of low-dose simvastatin + ezetimibe, ezetimibe, and high-dose statins were compared. Rats received 3-day water, atorvastatin (10 mg/kg/d), simvastatin (10 mg/kg/d), simvastatin (2 mg/kg/d), simvastatin (2 mg/kg/d) + ezetimibe (1 mg/kg/d), or ezetimibe. Rats underwent 30-minute coronary artery occlusion and 4-hour reperfusion. Atorvastatin and simvastatin 10 reduced infarct size, whereas simvastatin 2, ezetimibe, and simvastatin 2 + ezetimibe had no effect. Atorvastatin and simvastatin 10 increased nitric oxide synthases activity, whereas simvastatin-2, ezetimibe, and simvastatin-2 + ezetimibe had only a small effect. Atorvastatin and simvastatin 10 significantly increased myocardial 6-ketoprostaglandin F1α levels, whereas simvastatin 2, ezetimibe, and simvastatin 2 + ezetimibe had no effect. High-dose statin is required to decrease infarct size, upregulate myocardial nitric oxide synthases activities, and increase 6-keto prostaglandin F1α levels. Combination of ezetimibe and low-dose statin is ineffective in modulating myocardial biochemical changes associated with cardioprotection.
Collapse
|
40
|
Manickavasagam S, Ye Y, Lin Y, Perez-Polo RJ, Huang MH, Lui CY, Hughes MG, McAdoo DJ, Uretsky BF, Birnbaum Y. The cardioprotective effect of a statin and cilostazol combination: relationship to Akt and endothelial nitric oxide synthase activation. Cardiovasc Drugs Ther 2008; 21:321-30. [PMID: 17620005 DOI: 10.1007/s10557-007-6036-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Atorvastatin (ATV) protects against ischemia-reperfusion by upregulating Akt and subsequently, endothelial nitric oxide synthase (eNOS) phosphorylation at Ser-1177. However, when given orally, high doses of ATV (10 mg/kg/d) are needed to achieve maximal protective effect in the rat. Protein kinase A (PKA) also phosphorylates eNOS at Ser-1177. As PKA activity depends on cAMP, cilostazol (CIL), a phosphodiesterase type III inhibitor, may stimulate NO production by activating PKA. HYPOTHESIS CIL and ATV may have synergistic effects on eNOS phosphorylation and myocardial infarct size (IS) reduction. METHODS Sprague-Dawley rats received 3-day oral pretreatment with: (1) water; (2) low dose ATV (2 mg/kg/d); (3) CIL (20 mg/kg/d): (4) ATV+CIL. Rats underwent 30 min coronary artery occlusion and 4 h reperfusion, or hearts explanted for immunoblotting without being subjected to ischemia. Area at risk (AR) was assessed by blue dye and IS by triphenyl-tetrazolium-chloride. RESULTS Body weight and the size of AR were comparable among groups. There were no significant differences among groups in mean blood pressure and heart rate. CIL, but not ATV, reduced IS. IS in the ATV+CIL group was significantly smaller than the other three groups (P < 0.001 for each comparison). ATV, CIL and their combination did not affect total eNOS expression. ATV at 2 mg/kg/d did not affect Ser-1177 P-eNOS levels, whereas CIL increased it (258 +/- 15%). The level of myocardial P-eNOS levels was highest in the ATV+CIL group (406 +/- 7%). CONCLUSIONS ATV and CIL have synergistic effect on eNOS phosphorylation and IS reduction. By increased activation of eNOS, CIL may augment the pleiotropic effects of statins.
Collapse
|
41
|
Abstract
Dipyridamole (DP) is a phosphodiesterase inhibitor that increases the intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanine monophosphate (cGMP) by preventing their conversion to AMP and GMP, respectively. By increasing cAMP and cGMP levels in platelets, DP reversibly inhibits platelet aggregation and platelet-mediated thrombotic disease. In addition, DP may potentiate some of the vascular protective effects of endothelium-derived nitric oxide (NO), which increases cGMP by stimulating soluble guanylyl cyclase. Endothelium-derived NO is an important regulator of vascular tone, blood flow, and tissue perfusion. Indeed, endothelial NO synthase-deficient (eNOS-/-) mice exhibit elevated systemic blood pressure and have larger myocardial and cerebral infarct size after ischemic injury. Other NO/cGMP-dependent effects that may be potentiated by DP include inhibition of vascular smooth muscle proliferation and prevention of endothelial-leukocyte interaction. In addition, DP increases local concentrations of adenosine and prostacyclin, which could affect vascular tone and inflammation. Finally, DP has antioxidant properties, which could stabilize platelet and vascular membranes as well as prevent the oxidation of low-density lipoprotein. These platelet and nonplatelet actions of DP may contribute to some of its therapeutic benefits in vascular disease.
Collapse
Affiliation(s)
- Hyung-Hwan Kim
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
42
|
Merla R, Ye Y, Lin Y, Manickavasagam S, Huang MH, Perez-Polo RJ, Uretsky BF, Birnbaum Y. The central role of adenosine in statin-induced ERK1/2, Akt, and eNOS phosphorylation. Am J Physiol Heart Circ Physiol 2007; 293:H1918-28. [PMID: 17616749 DOI: 10.1152/ajpheart.00416.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Statins activate phosphatidylinositol-3-kinase, which activates ecto-5′-nucleotidase and phosphorylates 3-phosphoinositide-dependent kinase-1 (PDK-1). Phosphorylated (P-)PDK-1 phosphorylates Akt, which phosphorylates endothelial nitric oxide synthase (eNOS). We asked if the blockade of adenosine receptors (A1, A2A, A2B, or A3 receptors) could attenuate the induction of Akt and eNOS by atorvastatin (ATV) and whether ERK1/2 is involved in the ATV regulation of Akt and eNOS. In protocol 1, mice received intraperitoneal ATV, theophylline (TH), ATV + TH, or vehicle. In protocol 2, mice received intraperitoneal injections of ATV, U0126 (an ERK1/2 inhibitor), ATV + U0126, or vehicle; 8 h later, hearts were assessed by immunoblot analysis. In protocol 3, mice received intraperitoneal ATV alone or with 8-sulfophenyltheophylline (SPT); 1, 3, and 6 h after injection, hearts were assessed by immunoblot analysis. In protocol 4, mice received intraperitoneal ATV alone or with SPT, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), alloxazine, or MRS-1523; 3 h after injection, hearts were assessed by immunoblot analysis. ATV increased P-ERK, P-PDK-1, Ser473 P-Akt, Thr308 P-Akt, and P-eNOS levels. TH blocked ATV-induced increases in P-ERK, Ser473 P-Akt, Thr308 P-Akt, and P-eNOS levels without affecting the induction of P-PDK-1 by ATV. U0126 blocked the ATV induction of Ser473 P-Akt and Thr308 P-Akt while attenuating the induction of P-eNOS. A detectable increase in P-ERK, Ser473 P-Akt and P-eNOS was seen 3 and 6 h after injection but not at 1 h. DPCPX, CSC, and alloxazine partially blocked the ATV induction of P-ERK, Ser473 P-Akt, and P-eNOS. In conclusion, blockade of adenosine A1, A2A, and A2B receptors but not A3 receptors inhibited the induction of Akt and eNOS by statins. Adenosine was required for ERK1/2 activation by statins, which resulted in Akt and eNOS phosphorylation.
Collapse
Affiliation(s)
- Ramanna Merla
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-0553, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Merla R, Daher IN, Ye Y, Uretsky BF, Birnbaum Y. Pretreatment with statins may reduce cardiovascular morbidity and mortality after elective surgery and percutaneous coronary intervention: clinical evidence and possible underlying mechanisms. Am Heart J 2007; 154:391-402. [PMID: 17643594 DOI: 10.1016/j.ahj.2007.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 04/11/2007] [Indexed: 11/27/2022]
Abstract
After Murry et al (Circulation 1986;74:1124) described ischemic preconditioning in 1986, numerous pharmacologic agents with effects simulating ischemic preconditioning have been identified. With the exception of beta-blockers, most such agents have no proven clinical benefit in the setting of myocardial ischemia. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been consistently demonstrated to reduce myocardial injury, morbidity, and mortality in the clinical setting, both perioperatively and after percutaneous coronary intervention. Although the precise mechanism underlying their additional protective effect is not yet fully understood, it appears to be immediate in action and independent of cholesterol lowering. Experimental data from several animal models of ischemia and reperfusion have demonstrated an infarct size reduction with prior statin administration. At the cellular level, statins activate the phosphoinositol-3 kinase and Akt signaling cascade. Statins also increase expression and activity of endothelial nitric oxide synthase, inducible nitric oxide synthase, ecto-5'-nucleotidase, cyclooxygenase-2, and other prostaglandin synthesis pathway enzymes. However, when given by oral route to animals, relatively high dose of statins is needed to exert maximal protective effect. Understanding the underlying mechanism may enable to maximize the protective effect by using drug combination with synergistic activity and to avoid medications that may interfere with the protective effect of statins (ie, selective and nonselective cyclooxygenase-2 inhibition). Future clinical applications include preoperative and periprocedural risk reduction.
Collapse
Affiliation(s)
- Ramanna Merla
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|