1
|
Jarius S, Bräuninger S, Chung HY, Geis C, Haas J, Komorowski L, Wildemann B, Roth C. Inositol 1,4,5-trisphosphate receptor type 1 autoantibody (ITPR1-IgG/anti-Sj)-associated autoimmune cerebellar ataxia, encephalitis and peripheral neuropathy: review of the literature. J Neuroinflammation 2022; 19:196. [PMID: 35907972 PMCID: PMC9338677 DOI: 10.1186/s12974-022-02545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background In 2014, we first described novel autoantibodies to the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1-IgG/anti-Sj) in patients with autoimmune cerebellar ataxia (ACA) in this journal. Here, we provide a review of the available literature on ITPR1-IgG/anti-Sj, covering clinical and paraclinical presentation, tumour association, serological findings, and immunopathogenesis. Methods Review of the peer-reviewed and PubMed-listed English language literature on ITPR1-IgG/anti-Sj. In addition, we provide an illustrative report on a new patient with ITPR1-IgG-associated encephalitis with cognitive decline and psychosis. Results So far, at least 31 patients with serum ITPR1-IgG/anti-Sj have been identified (clinical information available for 21). The most common manifestations were ACA, encephalopathy with seizures, myelopathy, and (radiculo)neuropathy, including autonomic neuropathy. In 45% of cases, an underlying tumour was present, making the condition a facultative paraneoplastic neurological disorder. The neurological syndrome preceded tumour diagnosis in all but one case. In most cases, immunotherapy had only moderate or no effect. The association of ITPR1-IgG/anti-Sj with manifestations other than ACA is corroborated by the case of a 48-year-old woman with high-titre ITPR1-IgG/anti-Sj antibodies and rapid cognitive decline, affecting memory, attention and executive function, and psychotic manifestations, including hallucinations, investigated here in detail. FDG-PET revealed right-temporal glucose hypermetabolism compatible with limbic encephalitis. Interestingly, ITPR1-IgG/anti-Sj mainly belonged to the IgG2 subclass in both serum and cerebrospinal fluid (CSF) in this and further patients, while it was predominantly IgG1 in other patients, including those with more severe outcome, and remained detectable over the entire course of disease. Immunotherapy with intravenous methylprednisolone, plasma exchange, and intravenous immunoglobulins, was repeatedly followed by partial or complete recovery. Long-term treatment with cyclophosphamide was paralleled by relative stabilization, although the patient noted clinical worsening at the end of each treatment cycle. Conclusions The spectrum of neurological manifestations associated with ITPR1 autoimmunity is broader than initially thought. Immunotherapy may be effective in some cases. Studies evaluating the frequency of ITPR1-IgG/anti-Sj in patients with cognitive decline and/or psychosis of unknown aetiology are warranted. Tumour screening is essential in patients presenting with ITPR1-IgG/anti-Sj.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | | | - Ha-Yeun Chung
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Lars Komorowski
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Christian Roth
- Department of Neurology, DRK-Kliniken Nordhessen, Kassel, Germany.
| |
Collapse
|
2
|
Datta T, Przyklenk K, Datta NS. Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning Mimetic". J Cardiovasc Pharmacol Ther 2017; 22:529-537. [PMID: 28403647 DOI: 10.1177/1074248417702976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An as-yet limited body of evidence suggests that calcium-regulating endocrine hormones-in particular, parathyroid hormone-related peptide (PTHrP)-may have unappreciated cardioprotective effects. The current review focuses on the concept that PTHrP may, via modulation of classic cardioprotective signaling pathways, provide a novel strategy to attenuate myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tanuka Datta
- 1 Department of Internal Medicine, George Washington University, Washington, DC, USA
| | - Karin Przyklenk
- 2 Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA.,3 Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.,4 Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nabanita S Datta
- 2 Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA.,5 Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
3
|
Shahvazian N, Rafiee M, Rahmanian M, Razavi-Ratki SK, Farahzadi MH. Repeated Remote Ischemic Conditioning Effect on Ankle-brachial Index in Diabetic Patients - A Randomized Control Trial. Adv Biomed Res 2017; 6:28. [PMID: 28401075 PMCID: PMC5360001 DOI: 10.4103/2277-9175.201685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Remote ischemic preconditioning (RIPC) is a phenomenon where a short period of ischemia in one organ protects against further ischemia in the other organs. We hypothesized that RIPC occurring in diabetic patients with ankle brachial index (ABI) between 0.70 and 0.90 were included with peripheral arterial disease, would make the better coronary flow resulted in the increasing ABI. Materials and Methods: This randomized clinical trial study was done in the Afshar Cardiovascular Hospital in Yazd between 2013 and 2014. Sixty participants were randomly divided into two groups (intervention and control groups). The intervention group was undergoing RIPC, and the control group was tested without RIPC. RIPC was stimulated by giving three cycles of 5 min of ischemia followed by 5 min of reperfusion of both upper arms using a blood pressure cuff inflated to 200 mm Hg (n = 30). This was compared with no RIPC group which consisted of placing a deflated blood pressure cuff on the upper limbs (n = 30). Results: The mean of ABI level before intervention in the RIPC and control group group was 0.82 ± 0.055 and 0.83 ± 0.0603 (P = 0.347) respectively, with no significant difference. It was 0.86 ± 0.066 in the RIPC group compared the control 0.83 ± 0.0603 (P = 0.046). So levels of ABI were greater after intervention in the RIPC group. The mean of ABI level increase from 0.82 ± 0.05 to 0.86 ± 0.06 in RIPC group (P = 0.008). So the intervention group showed a significant increase in ABI. Conclusions: RIPC through using a simple, noninvasive technique, composing three cycles of 5 min-ischemia of both upper arms, showing a significant increase in ABI level in diabetic patients.
Collapse
Affiliation(s)
- Najmeh Shahvazian
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mansour Rafiee
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Masoud Rahmanian
- Department of Endocrinology and Metabolism, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Kazem Razavi-Ratki
- Department of Nuclear Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Hadi Farahzadi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Jarius S, Ringelstein M, Haas J, Serysheva II, Komorowski L, Fechner K, Wandinger KP, Albrecht P, Hefter H, Moser A, Neuen-Jacob E, Hartung HP, Wildemann B, Aktas O. Inositol 1,4,5-trisphosphate receptor type 1 autoantibodies in paraneoplastic and non-paraneoplastic peripheral neuropathy. J Neuroinflammation 2016; 13:278. [PMID: 27776522 PMCID: PMC5078930 DOI: 10.1186/s12974-016-0737-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, we described a novel autoantibody, anti-Sj/ITPR1-IgG, that targets the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) in patients with cerebellar ataxia. However, ITPR1 is expressed not only by Purkinje cells but also in the anterior horn of the spinal cord, in the substantia gelatinosa and in the motor, sensory (including the dorsal root ganglia) and autonomic peripheral nervous system, suggesting that the clinical spectrum associated with autoimmunity to ITPR1 may be broader than initially thought. Here we report on serum autoantibodies to ITPR1 (up to 1:15,000) in three patients with (radiculo)polyneuropathy, which in two cases was associated with cancer (ITPR1-expressing adenocarcinoma of the lung, multiple myeloma), suggesting a paraneoplastic aetiology. METHODS Serological and other immunological studies, and retrospective analysis of patient records. RESULTS The clinical findings comprised motor, sensory (including severe pain) and autonomic symptoms. While one patient presented with subacute symptoms mimicking Guillain-Barré syndrome (GBS), the symptoms progressed slowly in two other patients. Electrophysiology revealed delayed F waves; a decrease in motor and sensory action potentials and conduction velocities; delayed motor latencies; signs of denervation, indicating sensorimotor radiculopolyneuropathy of the mixed type; and no conduction blocks. ITPR1-IgG belonged to the complement-activating IgG1 subclass in the severely affected patient but exclusively to the IgG2 subclass in the two more mildly affected patients. Cerebrospinal fluid ITPR1-IgG was found to be of predominantly extrathecal origin. A 3H-thymidine-based proliferation assay confirmed the presence of ITPR1-reactive lymphocytes among peripheral blood mononuclear cells (PBMCs). Immunophenotypic profiling of PBMCs protein demonstrated predominant proliferation of B cells, CD4 T cells and CD8 memory T cells following stimulation with purified ITPR1 protein. Patient ITPR1-IgG bound both to peripheral nervous tissue and to lung tumour tissue. A nerve biopsy showed lymphocyte infiltration (including cytotoxic CD8 cells), oedema, marked axonal loss and myelin-positive macrophages, indicating florid inflammation. ITPR1-IgG serum titres declined following tumour removal, paralleled by clinical stabilization. CONCLUSIONS Our findings expand the spectrum of clinical syndromes associated with ITPR1-IgG and suggest that autoimmunity to ITPR1 may underlie peripheral nervous system diseases (including GBS) in some patients and may be of paraneoplastic origin in a subset of cases.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Lars Komorowski
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany
| | - Kai Fechner
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany
| | - Klaus-Peter Wandinger
- Department of Neurology, University of Schleswig Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Harald Hefter
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Andreas Moser
- Department of Neurology, University of Schleswig Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Eva Neuen-Jacob
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
5
|
Saes GF, Zerati AE, Wolosker N, Ragazzo L, Rosoky RMA, Ritti-Dias RM, Cucato GG, Chehuen M, Farah BQ, Puech-Leão P. Remote ischemic preconditioning in patients with intermittent claudication. Clinics (Sao Paulo) 2013; 68:495-9. [PMID: 23778346 PMCID: PMC3634960 DOI: 10.6061/clinics/2013(04)10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/19/2012] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE Remote ischemic preconditioning (RIPC) is a phenomenon in which a short period of sub-lethal ischemia in one organ protects against subsequent bouts of ischemia in another organ. We hypothesized that RIPC in patients with intermittent claudication would increase muscle tissue resistance to ischemia, thereby resulting in an increased ability to walk. METHODS In a claudication clinic, 52 ambulatory patients who presented with complaints of intermittent claudication in the lower limbs associated with an absent or reduced arterial pulse in the symptomatic limb and/or an ankle-brachial index <0.90 were recruited for this study. The patients were randomly divided into three groups (A, B and C). All of the patients underwent two tests on a treadmill according to the Gardener protocol. Group A was tested first without RIPC. Group A was subjected to RIPC prior to the second treadmill test. Group B was subjected to RIPC prior to the first treadmill test and then was subjected to a treadmill test without RIPC. In Group C (control group), both treadmill tests were performed without RIPC. The first and second tests were conducted seven days apart. Brazilian Clinical Trials: RBR-7TF6TM. RESULTS Group A showed a significant increase in the initial claudication distance in the second test compared to the first test. CONCLUSION RIPC increased the initial claudication distance in patients with intermittent claudication; however, RIPC did not affect the total walking distance of the patients.
Collapse
Affiliation(s)
- Glauco Fernandes Saes
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Disciplina de Cirurgia Vascular, Ambulatório de Claudicação, São Paulo/SP, Brasil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Przyklenk K. Efficacy of cardioprotective 'conditioning' strategies in aging and diabetic cohorts: the co-morbidity conundrum. Drugs Aging 2011; 28:331-43. [PMID: 21542657 DOI: 10.2165/11587190-000000000-00000] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence obtained in multiple experimental models has revealed that cardiac 'conditioning' strategies--including ischaemic preconditioning, postconditioning, remote conditioning and administration of pharmacological conditioning mimetics--are profoundly protective and significantly attenuate myocardial ischaemia-reperfusion injury. As a result, there is considerable interest in translating these cardioprotective paradigms from the laboratory to patients. However, the majority of studies investigating conditioning-induced cardioprotection have utilized healthy adult animals devoid of the risk factors and co-morbidities associated with cardiovascular disease and acute myocardial infarction. The aim of this article is to summarize the growing consensus that two well established risk factors, aging and diabetes mellitus, may render the heart refractory to the favourable effects of myocardial conditioning, and discuss the clinical implications of a loss in efficacy of cardiac conditioning paradigms in these patient populations.
Collapse
Affiliation(s)
- Karin Przyklenk
- Cardiovascular Research Institute and Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
7
|
Przyklenk K, Maynard M, Greiner DL, Whittaker P. Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal 2011; 14:781-90. [PMID: 20578962 PMCID: PMC3052273 DOI: 10.1089/ars.2010.3343] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Postconditioning (PostC), or relief of myocardial ischemia in a stuttered manner, has been shown to reduce infarct size, due in part to upregulation of survival kinase signaling. Virtually all of these data have, however, been obtained in healthy adult cohorts; the question of whether PostC-induced cardioprotection is maintained in the setting of clinically relevant comorbidities has remained largely unexplored. Accordingly, our aim was to assess the consequences of a major risk factor-diabetes-on the infarct-sparing effect of stuttered reflow. Isolated buffer-perfused hearts were obtained from normoglycemic C57BL/6J mice, BKS.Cg-m+/+Lepr(db)/J (db/db) mice (model of type-2 diabetes), C57BL/6J mice injected with streptozotocin (model of type-1 diabetes), and streptozotocin-injected mice in which normoglycemia was re-established by islet cell transplantation. All hearts underwent 30 min of ischemia and, within each cohort, hearts received either standard (control) reperfusion or three to six 10-s cycles of stuttered reflow. PostC reduced infarct size via upregulation of extracellular signal-regulated kinase 1/2 in normoglycemic mice. In contrast, diabetic hearts were refractory to PostC-induced cardioprotection-an effect that, in the type-1 model, was reversed by restoration of normoglycemia. We provide novel evidence for a profound-but potentially reversible-diabetes-induced defect in the cardioprotective efficacy of PostC.
Collapse
Affiliation(s)
- Karin Przyklenk
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | | | | | | |
Collapse
|
8
|
Opening of the mitoKATP channel and decoupling of mitochondrial complex II and III contribute to the suppression of myocardial reperfusion hyperoxygenation. Mol Cell Biochem 2009; 337:25-38. [PMID: 19851835 DOI: 10.1007/s11010-009-0283-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/08/2009] [Indexed: 02/07/2023]
Abstract
Diazoxide, a mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener, protects the heart from ischemia-reperfusion injury. Diazoxide also inhibits mitochondrial complex II-dependent respiration in addition to its preconditioning effect. However, there are no prior studies of the role of diazoxide on post-ischemic myocardial oxygenation. In the current study, we determined the effect of diazoxide on the suppression of post-ischemic myocardial tissue hyperoxygenation in vivo, superoxide (O(2)(-*)) generation in isolated mitochondria, and impairment of the interaction between complex II and complex III in purified mitochondrial proteins. It was observed that diazoxide totally suppressed the post-ischemic myocardial hyperoxygenation. With succinate but not glutamate/malate as the substrate, diazoxide significantly increased ubisemiquinone-dependent O(2)(-*) generation, which was not blocked by 5-HD and glibenclamide. Using a model system, the super complex of succinate-cytochrome c reductase (SCR) hosting complex II and complex III, we also observed that diazoxide impaired complex II and its interaction with complex III with no effect on complex III. UV-visible spectral analysis revealed that diazoxide decreased succinate-mediated ferricytochrome b reduction in SCR. In conclusion, our results demonstrated that diazoxide suppressed the in vivo post-ischemic myocardial hyperoxygenation through opening the mitoK(ATP) channel and ubisemiquinone-dependent O(2)(-*) generation via inhibiting mitochondrial complex II-dependent respiration.
Collapse
|