1
|
Feng Y, Li Y, Liu H. Adrenomedullin-mediated depressor response with visceral afferent-specific membrane depolarization in isolated nodose ganglion neurons from adult female rat. Neuropeptides 2024; 108:102476. [PMID: 39427564 DOI: 10.1016/j.npep.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Adrenomedullin (ADM) is an endogenous and vasoactive neuropeptide that possesses potent central/peripheral regulations on blood pressure (BP) and sex-related vasodilation under physiological conditions. However, the role of ADM on baroreflex afferent function is largely unknown. Here, BP was monitored in adult female rats while ADM was microinjected into the nodose ganglion (NG); Fluorescent intensity against ADM was analyzed in the tissue level and membrane responses elicited by ADM were tested in identified NG neurons isolated from adult female rats with gap-free protocol under current-clamp mode with or without ADM antagonist. The results showed that BP was reduced by ADM (30-300 nM) concentration-dependently; myelinated (HCN1-positive) neurons showed significantly higher fluorescent intensity against ADM antibody vs. unmyelinated (HCN1-negative) neurons. Interestingly, patch-clamp data indicated that membrane potential was not changed in 50 % (6/12) of identified A-types, only 4/12 was hyperpolarized by 30 nM ADM, while 100 nM ADM induced brief hyperpolarization followed by depolarization in 2/12 of recordings; Robustly, ADM depolarized 100 % tested myelinated Ah-type neurons with dramatic and concentration-dependent repetitive discharges; While, a majority (8/9) of unmyelinated C-types were depolarized and few with repetitive dischargers. By application of ADM (22-52), the depolarization elicited by ADM 100 nM was partially or completely abolished in Ah-types or C-types, respectively. These datasets demonstrated for the first time that baroreflex afferents especially female-distributed subpopulation of Ah-types would be a key player in ADM-mediated depressor response unveiling the dominate role of peripheral ADM in neurocontrol of hypotension via baroreflex afferent function and gender-dependent vasodilation promoted by female sex steroid.
Collapse
Affiliation(s)
- Yan Feng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ying Li
- Department of Pharmacy, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center For Cancer, Tianjin 300308, China
| | - Hua Liu
- General Department, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, 214151, China.
| |
Collapse
|
2
|
Bendowski K, Zhang Y, Bizanti A, Nguyen D, Nair A, Ma J, Chen J, Cheng ZJ. Distribution and morphology of CGRP-IR axons in flat-mounts of whole male and female mouse atria. Auton Neurosci 2024; 258:103221. [PMID: 39879734 DOI: 10.1016/j.autneu.2024.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 01/31/2025]
Abstract
Due to a lack of anatomical studies utilizing female specimens, it is unclear how the nociceptive innervation of the mouse heart compares between sexes. To address this, flat-mount preparations of the left and right atria of male and female mice were immunohistochemically labeled for calcitonin gene-related peptide (CGRP, a common marker for nociceptive nerves), imaged, and digitally traced in high quality. The results show that 1) A network of CGRP-IR axons densely innervated the right and left atria. Large nerve bundle entry points and regional concentration of CGRP-IR axons were similar in both sexes. 2) The detailed distribution of CGRP-IR bundles and axons were digitized and mapped using Arivis (Zeiss) Vision4D software. The general distribution patterns in male and female mice were comparable to one another. 3) The density of CGRP-IR axons in the sinoatrial (SA) node region (Male: 0.0258 μm/μm2 ± 0.003; Female: 0.0347 μm/μm2 ± 0.006) and atrioventricular (AV) node region (Male: 0.0138 μm/μm2 ± 0.001; Female: 0.0228 μm/μm2 ± 0.005) were not found to be significantly different. 4) The distance between adjacent varicosities in the auricle (Male: 4.049 μm ± 0.3; Female: 4.241 μm ± 0.34), SA node region (Male: 2.812 μm ± 0.21; Female: 3.352 μm ± 0.29), and AV node region (Male: 2.999 μm ± 0.3; Female: 3.526 μm ± 0.26) were not significantly different between sexes. 5) Likewise, maximum varicosity diameters in the auricle (Male: 0.5356 μm ± 0.04; Female: 0.5274 μm ± 0.03), SA node region (Male: 0.4714 μm ± 0.02; Female: 0.5634 μm ± 0.04), and AV node region (Male: 0.5103 μm ± 0.02; Female: 0.5103 μm ± 0.03) between male and female specimens were similar. Our data shows the comparable nature of the CGRP-IR axons in mouse atria in both sexes. Moreover, this is the first time we employed flat-mount preparations of whole atria to analyze the distribution of CGRP-IR axons in male and female mice.
Collapse
Affiliation(s)
- Kohlton Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Adhithyaa Nair
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
3
|
Ren SG, Li DM, Liu H. Baroreflex afferent function is a part of insights of Leptin-mediated blood pressure reduction and Leptin-resistance hypertension. Neuropeptides 2024; 105:102418. [PMID: 38442503 DOI: 10.1016/j.npep.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The aim of this study is to verify the impact of Leptin in blood pressure (BP) regulation and Leptin-resistance in metabolic/neurogenic hypertension through baroreflex afferents and dysregulation. Artery BP/heart rate (HR) were measured while nodose (NG) microinjection of Leptin, membrane depolarization/inward current were obtained by whole-cell patch from NG neurons isolated from adult female rats. Baroreflex sensitivity (BRS) tested with PE/SNP, distribution/expression of Leptin/receptors in the NG/nucleus tractus solitary (NTS) examined using immumostaining and qRT-PCR, and serum concentrations of Leptin/NE measured by ELISA were observed in control and high fructose-drinking induced hypertension (HTN-HFD) rats. The results showed that BP was significantly/dose-dependently reduced by Leptin NG microinjection likely through direct excitation of female-specific subpopulation of Ah-type neurons showing a potent membrane depolarization/inward currents. Sex-specific distribution/expression of OB-Ra/OB-Rb in the NG were detected with estrogen-dependent manner, similar observations were also confirmed in the NTS. As expected, BRS was dramatically decreased in the presence of PE/SNP in both male and female rats except for the female with PE at given concentrations. Additionally, serum concentration of Leptin was elevated in HFD-HTN model rats of either sex with more obvious in females. Under hypertensive condition, the mean fluorescent density of OB-R and mRNA expression for OB-Ra/OB-Rb in the NG/NTS were significantly down-regulated. These results have demonstrated that Leptin play a role in dominant parasympathetic drive via baroreflex afferent activation to buffer Leptin-mediated sympathetic activation systemically and Leptin-resistance is an innegligible mechanism for metabolic/neurogenic hypertension through baroreflex afferent dysregulation.
Collapse
Affiliation(s)
- Shi-Gang Ren
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325025, China; South Zhejiang Institute of Radiation Medicine and Nuclear Technology Application, Wenzhou 325089, China
| | - Dong-Mei Li
- Basic Medical Department of Zhejiang University, Hangzhou 310030, China
| | - Hua Liu
- General Department, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi 214151, China.
| |
Collapse
|
4
|
Salman IM. Key challenges in exploring the rat as a preclinical neurostimulation model for aortic baroreflex modulation in hypertension. Hypertens Res 2024; 47:399-415. [PMID: 37919429 DOI: 10.1038/s41440-023-01486-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Electrode-based electrophysiological interfaces with peripheral nerves have come a long way since the 1960s, with several neurostimulation applications witnessing widespread clinical implementation since then. In resistant hypertension, previous clinical trials have shown that "carotid" baroreflex stimulation using device-based baroreflex activation therapy (BAT) can effectively lower blood pressure (BP). However, device-based "aortic" baroreflex stimulation remains untouched for clinical translation. The rat is a remarkable animal model that facilitates exploration of mechanisms pertaining to the baroreceptor reflex and preclinical development of novel therapeutic strategies for BP modulation and hypertension treatment. Specifically, the aortic depressor nerve (ADN) in rats carries a relatively pure population of barosensitive afferent neurons, which enable selective investigation of the aortic baroreflex function. In a rat model of essential hypertension, the spontaneously hypertensive rat (SHR), we have recently investigated the aortic baroreceptor afferents as an alternate target for BP modulation, and showed that "low intensity" stimulation is able to evoke clinically meaningful reductions in BP. Deriving high quality short-term and long-term data on aortic baroreflex modulation in rats is currently hampered by a number of unresolved experimental challenges, including anatomical variations across rats which complicates identification of the ADN, the use of unrefined neurostimulation tools or paradigms, and issues arising from anesthetized and conscious surgical preparations. With the goal of refining existing experimental protocols designed for preclinical investigation of the baroreflex, this review seeks to outline current challenges hindering further progress in aortic baroreflex modulation studies in rats and present some practical considerations and recently emerging ideas to overcome them. Aortic baroreflex modulation.
Collapse
Affiliation(s)
- Ibrahim M Salman
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Cui CP, Xiong X, Zhao JX, Fu DH, Zhang Y, Ma PB, Wu D, Li BY. Piezo1 channel activation facilitates baroreflex afferent neurotransmission with subsequent blood pressure reduction in control and hypertension rats. Acta Pharmacol Sin 2024; 45:76-86. [PMID: 37670136 PMCID: PMC10770313 DOI: 10.1038/s41401-023-01154-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/12/2023] [Indexed: 09/07/2023] Open
Abstract
Mechanosensitive cation channels such as Piezo1 and Piezo2 are activated by mechanical force like a starched wall of the aorta while blood pressure (BP) rising, which helps to elucidate the underlying mechanism of mechanotransduction of baroreceptor endings. In this study we investigated how Piezo1 channel activation-mediated gender- and afferent-specific BP regulation in rats. We established high-fat diet and fructose drink-induced hypertension model rats (HFD-HTN) and deoxycorticosterone (DOCA)-sensitive hypertension model rats. We showed that the expression levels of Piezo1 and Piezo2 were significantly up-regulated in left ventricle of HFD and DOCA hypertensive rats, whereas the down-regulation of Piezo1 was likely to be compensated by Piezo2 up-regulation in the aorta. Likewise, down-regulated Piezo1 was observed in the nodose ganglion (NG), while up-regulated Piezo2 was found in the nucleus tractus solitarius (NTS), which might synergistically reduce the excitatory neurotransmitter release from the presynaptic membrane. Notably, microinjection of Yoda1 (0.025-2.5 mg/ml) into the NG concentration-dependently reduced BP in both hypertensive rat models as well as in control rats with similar EC50; the effect of Yoda1 was abolished by microinjection of a Piezo1 antagonist GsMTx4 (1.0 μM). Functional analysis in an in vitro aortic arch preparation showed that instantaneous firing frequency of single Ah-fiber of aortic depressor nerve was dramatically increased by Yoda1 (0.03-1.0 μM) and blocked by GsMTx4 (1.0 μM). Moreover, spontaneous synaptic currents recorded from identified 2nd-order Ah-type baroreceptive neurons in the NTS was also facilitated over 100% by Yoda1 (1.0 μM) and completely blocked by GsMTx4 (3.0 μM). These results demonstrate that Piezo1 expressed on Ah-type baroreceptor and baroreceptive neurons in the NG and NTS plays a key role in a sexual-dimorphic BP regulation under physiological and hypertensive condition through facilitation of baroreflex afferent neurotransmission, which is presumably collaborated by Piezo2 expression at different level of baroreflex afferent pathway via compensatory and synergistic mechanisms.
Collapse
Affiliation(s)
- Chang-Peng Cui
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Xiong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jia-Xin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Dong-Hong Fu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Peng-Bo Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Di Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
6
|
Salman IM. Functional symmetry of the aortic baroreflex in female spontaneously hypertensive rats. J Hypertens 2023; 41:1456-1465. [PMID: 37382160 DOI: 10.1097/hjh.0000000000003493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND Altered baroreflex function is well documented in hypertension; however, the female sex remains far less studied compared with males. We have previously demonstrated a left-sided dominance in the expression of aortic baroreflex function in male spontaneously hypertensive rats (SHRs) and normotensive rats of either sex. If lateralization in aortic baroreflex function extends to hypertensive female rats remains undetermined. This study, therefore, assessed the contribution of left and right aortic baroreceptor afferents to baroreflex modulation in female SHRs. METHOD Anesthetized female SHRs (total n = 9) were prepared for left, right and bilateral aortic depressor nerve (ADN) stimulation (1-40 Hz, 0.2 ms, 0.4 mA for 20 s) and measurement of reflex mean arterial pressure (MAP), heart rate (HR), mesenteric vascular resistance (MVR) and femoral vascular resistance (FVR). All rats were also matched for the diestrus phase of the estrus cycle. RESULTS Reflex (%) reductions in MAP, HR, MVR and FVR were comparable for both left-sided and right-sided stimulation. Bilateral stimulation evoked slightly larger ( P = 0.03) reductions in MVR compared with right-sided stimulation; however, all other reflex hemodynamic measures were similar to both left-sided and right-sided stimulation. CONCLUSION These data show that female SHRs, unlike male SHRs, express similar central integration of left versus right aortic baroreceptor afferent input and thus show no laterization in the aortic baroreflex during hypertension. Marginal increases in mesenteric vasodilation following bilateral activation of the aortic baroreceptor afferents drive no superior depressor responses beyond that of the unilateral stimulation. Clinically, unilateral targeting of the left or right aortic baroreceptor afferents may provide adequate reductions in blood pressure in female hypertensive patients.
Collapse
Affiliation(s)
- Ibrahim M Salman
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Natriuretic Peptides—New Targets for Neurocontrol of Blood Pressure via Baroreflex Afferent Pathway. Int J Mol Sci 2022; 23:ijms232113619. [DOI: 10.3390/ijms232113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
Natriuretic peptides (NPs) induce vasodilation, natriuresis, and diuresis, counteract the renin–angiotensin–aldosterone system and autonomic nervous system, and are key regulators of cardiovascular volume and pressure homeostasis. Baroreflex afferent pathway is an important reflex loop in the neuroregulation of blood pressure (BP), including nodose ganglion (NG) and nucleus tractus solitarius (NTS). Dysfunction of baroreflex would lead to various hypertensions. Here, we carried out functional experiments to explore the effects of NPs on baroreflex afferent function. Under physiological and hypertensive condition (high-fructose drinking-induced hypertension, HFD), BP was reduced by NPs through NG microinjection and baroreflex sensitivity (BRS) was enhanced via acute intravenous NPs injection. These anti-hypertensive effects were more obvious in female rats with the higher expression of NPs and its receptor A/B (NPRA/NPRB) and lower expression of its receptor C (NPRC). However, these effects were not as obvious as those in HFD rats compared with the same gender control group, which is likely to be explained by the abnormal expression of NPs and NPRs in the hypertensive condition. Our data provide additional evidence showing that NPs play a crucial role in neurocontrol of BP regulation via baroreflex afferent function and may be potential targets for clinical management of metabolic-related hypertension.
Collapse
|
8
|
Hemodynamic patterns associated with activation of bradykinin-sensitive pericardial afferents. Curr Res Physiol 2022; 5:73-78. [PMID: 35141530 PMCID: PMC8814590 DOI: 10.1016/j.crphys.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
The heart is endowed with reflexogenic areas capable of powerful blood pressure responses. Relatively little work has studied the hemodynamic mechanisms underlying these responses and whether these are sexually dimorphic. We hypothesized that activation of bradykinin-sensitive pericardial afferents would produce a sexually dimorphic cardiac output response. Male and female Sprague Dawley rats were anesthetized and instrumented with catheters for recording arterial pressure, with an aortic arch flow probe to record cardiac output and with a catheter in the pericardial sac. Mean arterial pressure (MAP), cardiac index (CI) and total peripheral resistance index (TPRI) responses to pericardial bradykinin injection (0.1, 1 μg/kg) were recorded. Pericardial bradykinin injection caused similar increases in MAP in male and female rats. However, the underlying hemodynamic patterns varied considerably. We identified a cluster of CI responders and TPRI responders in both male and female rats. Within CI responders, females exhibited greater CI increases than males. Conversely, in TPRI responders, males exhibited a greater TPRI increase than females. We conclude that aggregate activation of bradykinin-sensitive pericardial afferents is associated with a relatively uniform pressor response but different hemodynamic patterns with males exhibiting a more robust vascular response and females a more robust cardiac output response. Mixed cardiac afferent activation caused similar pressor responses in male and female rats. Subsets of cardiac output and vascular resistance responders were identified. Cardiac output responses were greater in female rats.
Collapse
|
9
|
Li KX, Feng Y, Fan XX, Sun X, Li Y, Wu D, Liu L, Cui CP, Xiong X, Li HD, Zhou M, Ma HL, Liu Y, Zhang R, Li BY. Bradykinin-mediated estrogen-dependent depressor response by direct activation of female-specific distribution of myelinated Ah-type baroreceptor neurons in rats. CNS Neurosci Ther 2021; 28:435-447. [PMID: 34964272 PMCID: PMC8841294 DOI: 10.1111/cns.13792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Aim To understand the direct impact of bradykinin in autonomic control of circulation through baroreflex afferent pathway. Methods The mean arterial pressure (MAP) was monitored while bradykinin and its agonists were applied via nodose (NG) microinjection, the expression of bradykinin receptors (BRs) in the NG (1st‐order) and nucleus tractus solitarius (NTS, 2nd‐order) were tested in adult male, age‐matched female, and ovariectomized rats under physiological and hypertensive conditions. Additionally, bradykinin‐induced depolarization was also tested in identified baroreceptor and baroreceptive neurons using whole‐cell patch‐clamp technique. Results Under physiological condition, bradykinin‐induced dose‐ and estrogen‐dependent reductions of MAP with lower estimated EC50 in females. B2R agonist mediated more dramatic MAP reduction with long‐lasting effect compared with B1R activation. These functional observations were consistent with the molecular and immunostaining evidences. However, under hypertensive condition, the MAP reduction was significantly less dramatic in N’‐Nitro‐L‐Arginine‐methyl ester (L‐NAME) induced secondary and spontaneous hypertension rats in males compared with female rats. Electrophysiological data showed that bradykinin‐elicited concentration‐dependent membrane depolarization with discharges during initial phase in identified myelinated Ah‐types baroreceptor neurons, not myelinated A‐types; while, higher concentration of bradykinin was required for depolarization of unmyelinated C‐types without initial discharges. Conclusion These datasets have demonstrated for the first time that bradykinin mediates direct activation of baroreflex afferent function to trigger estrogen‐dependent depressor response, which is due mainly to the direct activation/neuroexcitation of female‐specific myelinated Ah‐type baroreceptor neurons leading to a sexual dimorphism in parasympathetic domination of blood pressure regulation via activation of B2R/B1R expression in baroreflex afferent pathway.
Collapse
Affiliation(s)
- Ke-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiong-Xiong Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xun Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Di Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Li Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chang-Peng Cui
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xue Xiong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hu-Die Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Meng Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hai-Lan Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of clinical Laboratory, The 1st Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Wang LQ, Qian Z, Ma HL, Zhou M, Li HD, Cui CP, Luo DL, Li XL, Li BY. Estrogen-dependent KCa1.1 modulation is essential for retaining neuroexcitation of female-specific subpopulation of myelinated Ah-type baroreceptor neurons in rats. Acta Pharmacol Sin 2021; 42:2173-2180. [PMID: 34267344 PMCID: PMC8632902 DOI: 10.1038/s41401-021-00722-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Female-specific subpopulation of myelinated Ah-type baroreceptor neurons (BRNs) in nodose ganglia is the neuroanatomical base of sexual-dimorphic autonomic control of blood pressure regulation, and KCa1.1 is a key player in modulating the neuroexcitation in nodose ganglia. In this study we investigated the exact mechanisms underlying KCa1.1-mediated neuroexcitation of myelinated Ah-type BRNs in the presence or absence of estrogen. BRNs were isolated from adult ovary intact (OVI) or ovariectomized (OVX) female rats, and identified electrophysiologically and fluorescently. Action potential (AP) and potassium currents were recorded using whole-cell recording. Consistently, myelinated Ah-type BRNs displayed a characteristic discharge pattern and significantly reduced excitability after OVX with narrowed AP duration and faster repolarization largely due to an upregulated iberiotoxin (IbTX)-sensitive component; the changes in AP waveform and repetitive discharge of Ah-types from OVX female rats were reversed by G1 (a selective agonist for estrogen membrane receptor GPR30, 100 nM) and/or IbTX (100 nM). In addition, the effect of G1 on repetitive discharge could be completely blocked by G15 (a selective antagonist for estrogen membrane receptor GPR30, 3 μM). These data suggest that estrogen deficiency by removing ovaries upregulates KCa1.1 channel protein in Ah-type BRNs, and subsequently increases AP repolarization and blunts neuroexcitation through estrogen membrane receptor signaling. Intriguingly, this upregulated KCa1.1 predicted electrophysiologically was confirmed by increased mean fluorescent intensity that was abolished by estrogen treatment. These electrophysiological findings combined with immunostaining and pharmacological manipulations reveal the crucial role of KCa1.1 in modulation of neuroexcitation especially in female-specific subpopulation of myelinated Ah-type BRNs and extend our current understanding of sexual dimorphism of neurocontrol of BP regulation.
Collapse
Affiliation(s)
- Lu-Qi Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhao Qian
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacy, the First Affiliated Hospital of Harbin Medical University, Harbin, 150010, China
| | - Hai-Lan Ma
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meng Zhou
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hu-Die Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chang-Peng Cui
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Da-Li Luo
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xue-Lian Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Bai-Yan Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
11
|
Andrade DC, Melipillan C, Toledo C, Rios-Gallardo A, Marcus NJ, Ortiz FC, Martinez G, Muñoz Venturelli P, Del Rio R. Heart rate and cardiac autonomic responses to concomitant deep breathing, hand grip exercise, and circulatory occlusion in healthy young adult men and women. Biol Res 2021; 54:32. [PMID: 34565477 PMCID: PMC8474820 DOI: 10.1186/s40659-021-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deep breathing (DB) and handgrip (HG) exercise -with and without circulatory occlusion (OC) in muscle-, have been shown to have beneficial effects on cardiovascular function; however, the combination of these maneuvers on heart rate (HR) and cardiac sympathovagal balance have not been previously investigated. Therefore, the aim of the present study was to evaluate the effect of simultaneous DB, HG, and OC maneuvers on the sympathovagal balance in healthy women and men subjects. METHODS AND RESULTS Electrocardiogram and ventilation were measured in 20 healthy subjects (Women: n = 10; age = 27 ± 4 years; weight = 67.1 ± 8.4 kg; and height = 1.6 ± 0.1 m. Men: n = 10; age = 27 ± 3 years; weight = 77.5 ± 10.1 kg; and height = 1.7 ± 0.1 m) at baseline and during DB, DB + HG, or DB + HG + OC protocols. Heart rate (HR) and respiratory rate were continuously recorded, and spectral analysis of heart rate variability (HRV) were calculated to indirectly estimate cardiac autonomic function. Men and women showed similar HR responses to DB, DB + HG and DB + HG + OC. Men exhibited a significant HR decrease following DB + HG + OC protocol which was accompanied by an improvement in cardiac autonomic control evidenced by spectral changes in HRV towards parasympathetic predominance (HRV High frequency: 83.95 ± 1.45 vs. 81.87 ± 1.50 n.u., DB + HG + OC vs. baseline; p < 0.05). In women, there was a marked decrease in HR after completion of both DB + HG and DB + HG + OC tests which was accompanied by a significant increase in cardiac vagal tone (HRV High frequency: 85.29 ± 1.19 vs. 77.93 ± 0.92 n.u., DB + HG vs. baseline; p < 0.05). No adverse effects or discomfort were reported by men or women during experimental procedures. Independent of sex, combination of DB, HG, and OC was tolerable and resulted in decreases in resting HR and elevations in cardiac parasympathetic tone. CONCLUSIONS These data indicate that combined DB, HG and OC are effective in altering cardiac sympathovagal balance and reducing resting HR in healthy men and women.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Fisiología Y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia Melipillan
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Corporación de Rehabilitación Club de Leones Cruz del Sur, Punta Arenas, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Angélica Rios-Gallardo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Noah J Marcus
- Dept. of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Fernando C Ortiz
- Mechanism of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Gonzalo Martinez
- Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Muñoz Venturelli
- Centro de Estudios Clínicos, Instituto de Ciencias E Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. .,Centro de Envejecimiento Y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Muzquiz MI, Mintch L, Horn MR, Alhawwash A, Bashirullah R, Carr M, Schild JH, Yoshida K. A Reversible Low Frequency Alternating Current Nerve Conduction Block Applied to Mammalian Autonomic Nerves. SENSORS 2021; 21:s21134521. [PMID: 34282758 PMCID: PMC8271881 DOI: 10.3390/s21134521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
Electrical stimulation can be used to modulate activity within the nervous system in one of two modes: (1) Activation, where activity is added to the neural signalling pathways, or (2) Block, where activity in the nerve is reduced or eliminated. In principle, electrical nerve conduction block has many attractive properties compared to pharmaceutical or surgical interventions. These include reversibility, localization, and tunability for nerve caliber and type. However, methods to effect electrical nerve block are relatively new. Some methods can have associated drawbacks, such as the need for large currents, the production of irreversible chemical byproducts, and onset responses. These can lead to irreversible nerve damage or undesirable neural responses. In the present study we describe a novel low frequency alternating current blocking waveform (LFACb) and measure its efficacy to reversibly block the bradycardic effect elicited by vagal stimulation in anaesthetised rat model. The waveform is a sinusoidal, zero mean(charge balanced), current waveform presented at 1 Hz to bipolar electrodes. Standard pulse stimulation was delivered through Pt-Black coated PtIr bipolar hook electrodes to evoke bradycardia. The conditioning LFAC waveform was presented either through a set of CorTec® bipolar cuff electrodes with Amplicoat® coated Pt contacts, or a second set of Pt Black coated PtIr hook electrodes. The conditioning electrodes were placed caudal to the pulse stimulation hook electrodes. Block of bradycardic effect was assessed by quantifying changes in heart rate during the stimulation stages of LFAC alone, LFAC-and-vagal, and vagal alone. The LFAC achieved 86.2±11.1% and 84.3±4.6% block using hook (N = 7) and cuff (N = 5) electrodes, respectively, at current levels less than 110 µAp (current to peak). The potential across the LFAC delivering electrodes were continuously monitored to verify that the blocking effect was immediately reversed upon discontinuing the LFAC. Thus, LFACb produced a high degree of nerve block at current levels comparable to pulse stimulation amplitudes to activate nerves, resulting in a measurable functional change of a biomarker in the mammalian nervous system.
Collapse
Affiliation(s)
- M. Ivette Muzquiz
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (M.I.M.); (M.R.H.); (J.H.S.)
| | | | - M. Ryne Horn
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (M.I.M.); (M.R.H.); (J.H.S.)
| | - Awadh Alhawwash
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- Biomedical Technology Department, King Saud University, Riyadh 11362, Saudi Arabia
| | - Rizwan Bashirullah
- Galvani Bioelectronics Inc., Collegeville, PA 19426, USA; (R.B.); (M.C.)
| | - Michael Carr
- Galvani Bioelectronics Inc., Collegeville, PA 19426, USA; (R.B.); (M.C.)
| | - John H. Schild
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (M.I.M.); (M.R.H.); (J.H.S.)
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Ken Yoshida
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (M.I.M.); (M.R.H.); (J.H.S.)
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- Correspondence:
| |
Collapse
|
13
|
Estrogen-dependent MicroRNA-504 Expression and Related Baroreflex Afferent Neuroexcitation via Negative Regulation on KCNMB4 and KCa1.1 β4-subunit Expression. Neuroscience 2020; 442:168-182. [DOI: 10.1016/j.neuroscience.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 11/21/2022]
|
14
|
Salman IM, Ameer OZ, McMurray S, Giarola AS, Sridhar A, Lewis SJ, Hsieh YH. Laterality Influences Central Integration of Baroreceptor Afferent Input in Male and Female Sprague Dawley Rats. Front Physiol 2020; 11:499. [PMID: 32536876 PMCID: PMC7269127 DOI: 10.3389/fphys.2020.00499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/23/2020] [Indexed: 12/02/2022] Open
Abstract
We explored the effects of baroreceptor afferents laterality and sexual dimorphism on the expression of cardiovascular reflex responses to baroreflex activation in Sprague Dawley (SD) rats. Under urethane anesthesia, rats of either sex (total n = 18) were instrumented for left, right and bilateral aortic depressor nerve (ADN) stimulation (1–40 Hz, 0.2 ms, 0.4 mA for 20 s) and measurement of mean arterial pressure (MAP), heart rate (HR) and mesenteric (MVR) and femoral (FVR) vascular resistance. Female rats were matched for the diestrus phase of the estrus cycle. Left, right and bilateral ADN stimulation evoked frequency-dependent drops in MAP, HR, and MVR, and increases in FVR. Irrespective of sex, left and bilateral ADN stimulation as compared to right-sided stimulation mediated greater reflex reductions in MAP, HR, and MVR but not in FVR. In males, reflex bradycardic responses were greater in response to bilateral stimulation relative to both left- and right-sided stimulation. In females, left ADN stimulation evoked the largest increase in FVR. Left and bilateral ADN stimulations evoked greater reductions in MAP and MVR while left-sided stimulation produced larger increases in FVR in females compared with males. All other reflex responses to ADN stimulation were relatively comparable between males and females. These results show a differential baroreflex processing of afferent neurotransmission promoted by left versus right baroreceptor afferent inputs and sexual dimorphism in the expression of baroreflex responses in rats of either sex. Collectively, these data add to our understanding of physiological mechanisms pertaining to baroreflex control in both males and females.
Collapse
Affiliation(s)
- Ibrahim M Salman
- College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia.,Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Omar Z Ameer
- College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
| | - Sheridan McMurray
- Department of Disease Biology, Galvani Bioelectronics, Hertfordshire, United Kingdom
| | - Alessandra S Giarola
- Department of Disease Biology, Galvani Bioelectronics, Hertfordshire, United Kingdom
| | - Arun Sridhar
- Department of Disease Biology, Galvani Bioelectronics, Hertfordshire, United Kingdom
| | - Stephen J Lewis
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
15
|
FGF-21 ameliorates essential hypertension of SHR via baroreflex afferent function. Brain Res Bull 2019; 154:9-20. [PMID: 31626954 DOI: 10.1016/j.brainresbull.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022]
Abstract
Hypertension is a common complication of metabolic abnormalities associated with cardiovascular system and characterized by sexual dimorphism in mammals. Fibroblast growth factor-21 (FGF-21) plays a critical role in metabolic-disorder related hypertension through the afferent loop of baroreflex. However, the gender difference in FGF-21-mediated blood pressure (BP) regulation via sexual dimorphic expression of FGFRs in the nodose (NG) and nucleus tractus solitarius (NTS) were not elucidated in physiological and genomic form of hypertension. The gene and protein expression of FGFRs were tested by qRT-PCR, immunoblotting and immunostaining; the serum level of FGF21 was tested using ELISA; The BP was monitored while FGF21 was nodose microinjected. The results showed that more potent BP reduction was confirmed in female vs. male rats by nodose microinjection of rhFGF-21 along with higher expression of FGFR2 and FGFR4 in the nodose compared with age-match male and ovariectomized (OVX) rats, rather than other receptor subtypes, which is consistent well with immunohistochemical analysis. Additionally, serum FGF-21 was significantly higher in female-WKY, and this level of FGF-21 was dramatically declined in spontaneous hypertensive rats (SHR) with significant down-regulation of FGFR1/R4 for male-SHR and FGFR2/FGFR4 for female-SHR, respectively. Apparently, high BP of SHR of either sex could be reduced by rhFGF-21 nodose microinjection. These data extends our current understanding that sexual-specific distribution/expression of FGF-21/FGFRs is likely to contribute at least partially to sexual dimorphism of baroreflex afferent function on BP regulation in rats. FGF-21-mdiated BP reduction sheds new light on clinical management of primary/genomic form of hypertension.
Collapse
|
16
|
Wen X, Yu X, Huo R, Yan QX, Wu D, Feng Y, Li Y, Sun X, Li XY, Sun J, Li KX, Li QY, Han LM, Lu XL, Liu Y, Shou W, Li BY. Serotonin-Mediated Cardiac Analgesia via Ah-Type Baroreceptor Activation Contributes to Silent Angina and Asymptomatic Infarction. Neuroscience 2019; 411:150-163. [DOI: 10.1016/j.neuroscience.2019.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
|
17
|
Xu WX, Yu JL, Feng Y, Yan QX, Li XY, Li Y, Liu Z, Wang D, Sun X, Li KX, Wang LQ, Qiao GF, Li BY. Spontaneous activities in baroreflex afferent pathway contribute dominant role in parasympathetic neurocontrol of blood pressure regulation. CNS Neurosci Ther 2018; 24:1219-1230. [PMID: 30044043 DOI: 10.1111/cns.13039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
AIM To study the dominant role of parasympathetic inputs at cellular level of baroreflex afferent pathway and underlying mechanism in neurocontrol of blood pressure regulation. METHODS Whole-cell patch-clamp and animal study were conducted. RESULTS For the first time, we demonstrated the spontaneous activities from resting membrane potential in myelinated A- and Ah-type baroreceptor neurons (BRNs, the 1st-order), but not in unmyelinated C-types, using vagus-nodose slice of adult female rats. These data were further supported by the notion that the spontaneous synaptic currents could only be seen in the pharmacologically and electrophysiologically defined myelinated A- and Ah-type baroreceptive neurons (the 2nd-order) of NTS using brainstem slice of adult female rats. The greater frequency and the larger amplitude of the spontaneous excitatory postsynaptic currents (EPSCs) compared with the inhibitory postsynaptic currents (IPSCs) were only observed in Ah-types. The ratio of EPSCs:IPSCs was estimated at 3:1 and higher. These results confirmed that the afferent-specific spontaneous activities were generated from baroreflex afferent pathway in female-specific subpopulation of myelinated Ah-type BRNs in nodose and baroreceptive neurons in NTS, which provided a novel insight into the dominant role of sex-specific baroreflex-evoked parasympathetic drives in retaining a stable and lower blood pressure status in healthy subjects, particularly in females. CONCLUSION The data from current investigations establish a new concept for the role of Ah-type baroreceptor/baroreceptive neurons in controlling blood pressure stability and provide a new pathway for pharmacological intervention for hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Wen-Xiao Xu
- Department of Orthopedic Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jin-Ling Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qiu-Xin Yan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin-Yu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhuo Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Di Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xun Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ke-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lu-Qi Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis School of Engineering and Technology, Indianapolis, Indiana
| | - Guo-Fen Qiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Yuan M, Ma MN, Wang TY, Feng Y, Chen P, He C, Liu S, Guo YX, Wang Y, Fan Y, Wang LQ, E XQ, Qiao GF, Li BY. Direct activation of tachykinin receptors within baroreflex afferent pathway and neurocontrol of blood pressure regulation. CNS Neurosci Ther 2018; 25:123-135. [PMID: 29900692 DOI: 10.1111/cns.12993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/12/2018] [Accepted: 05/20/2018] [Indexed: 12/16/2022] Open
Abstract
AIM Substance P (SP) causes vasodilation and blood pressure (BP) reduction. However, the involvement of tachykinin receptors (NKRs) within baroreflex afferent pathway in SP-mediated BP regulation is largely unknown. METHODS Under control and hypertensive condition, NKRs' expressions were evaluated in nodose (NG) and nucleus of tractus solitary (NTS) of male, female, and ovariectomized (OVX) rats; BP was recorded after microinjection of SP and NKRs agonists into NG; Baroreceptor sensitivity (BRS) was tested as well. RESULTS Immunostaining and immunoblotting data showed that NK1R and NK2R were estrogen-dependently expressed on myelinated and unmyelinated afferents in NG. A functional study showed that BP was reduced dose-dependently by SP microinjection, which was more dramatic in males and can be mimicked by NK1R and NK2R agonists. Notably, further BP elevation and BRS dysfunction were confirmed in desoxycorticosterone acetate (DOCA)-salt model in OVX compared with DOCA-salt model in intact female rats. Additionally, similar changes in NKRs' expression in NG were also detected using DOCA-salt and SHR. Compared with NG, inversed expression profiles of NKRs were also found in NTS with either gender. CONCLUSION The estrogen-dependent NKRs' expression in baroreflex afferent pathway participates at least partially in sexual-dimorphic and SP-mediated BP regulation under physiological and hypertensive conditions.
Collapse
Affiliation(s)
- Mei Yuan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mei-Na Ma
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ting-Yu Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Feng
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Pei Chen
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chao He
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Sijie Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yun-Xia Guo
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yao Fan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lu-Qi Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiao-Qiang E
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guo-Fen Qiao
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bai-Yan Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Liu Y, Wu D, Qu MY, He JL, Yuan M, Zhao M, Wang JX, He J, Wang LQ, Guo XJ, Zuo M, Zhao SY, Ma MN, Li JN, Shou W, Qiao GF, Li BY. Neuropeptide Y-mediated sex- and afferent-specific neurotransmissions contribute to sexual dimorphism of baroreflex afferent function. Oncotarget 2018; 7:66135-66148. [PMID: 27623075 PMCID: PMC5323221 DOI: 10.18632/oncotarget.11880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/16/2016] [Indexed: 01/19/2023] Open
Abstract
Background Molecular and cellular mechanisms of neuropeptide-Y (NPY)-mediated gender-difference in blood pressure (BP) regulation are largely unknown. Methods Baroreceptor sensitivity (BRS) was evaluated by measuring the response of BP to phenylephrine/nitroprusside. Serum NPY concentration was determined using ELISA. The mRNA and protein expression of NPY receptors were assessed in tissue and single-cell by RT-PCR, immunoblot, and immunohistochemistry. NPY was injected into the nodose while arterial pressure was monitored. Electrophysiological recordings were performed on nodose neurons from rats by patch-clamp technique. Results The BRS was higher in female than male and ovariectomized rats, while serum NPY concentration was similar among groups. The sex-difference was detected in Y1R, not Y2R protein expression, however, both were upregulated upon ovariectomy and canceled by estrogen replacement. Immunostaining confirmed Y1R and Y2R expression in myelinated and unmyelinated afferents. Single-cell PCR demonstrated that Y1R expression/distribution was identical between A- and C-types, whereas, expressed level of Y2R was ∼15 and ∼7 folds higher in Ah- and C-types than A-types despite similar distribution. Activation of Y1R in nodose elevated BP, while activation of Y2R did the opposite. Activation of Y1R did not alter action potential duration (APD) of A-types, but activation of Y2R- and Y1R/Y2R in Ah- and C-types frequency-dependently prolonged APD. N-type ICa was reduced in A-, Ah- and C-types when either Y1R, Y2R, or both were activated. The sex-difference in Y1R expression was also observed in NTS. Conclusions Sex- and afferent-specific expression of Neuropeptide-Y receptors in baroreflex afferent pathway may contribute to sexual-dimorphic neurocontrol of BP regulation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Di Wu
- Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Mei-Yu Qu
- Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Jian-Li He
- Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Mei Yuan
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Miao Zhao
- Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Jian-Xin Wang
- Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Jian He
- Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Lu-Qi Wang
- Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Xin-Jing Guo
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Meng Zuo
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Shu-Yang Zhao
- Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Mei-Na Ma
- Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Jun-Nan Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Weinian Shou
- Riley Heart Research Center, Division of Pediatric Cardiology, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guo-Fen Qiao
- Department of Pharmacology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Bai-Yan Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Onishi M, Yamanaka K, Miyamoto Y, Waki H, Gouraud S. Trpv4 involvement in the sex differences in blood pressure regulation in spontaneously hypertensive rats. Physiol Genomics 2018; 50:272-286. [PMID: 29373075 DOI: 10.1152/physiolgenomics.00096.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Arterial pressure (AP) is lower in premenopausal women than in men of a similar age. Premenopausal women exhibit a lower sympathetic activity and a greater baroreceptor reflex; however, mechanisms controlling sex differences in blood pressure regulation are not well understood. We hypothesized that different neuronal functions in the cardiovascular centers of the brains of men and women may contribute to the sex difference in cardiovascular homeostasis. Our previous studies on male spontaneously hypertensive rats (SHRs) and their normotensive counterparts, Wistar Kyoto (WKY) rats, revealed that the gene-expression profile of the nucleus tractus solitarius (NTS), a region of the medulla oblongata that is pivotal for regulating the set point of AP, is strongly associated with AP. Thus, we hypothesized that gene-expression profiles in the rat NTS are related to sex differences in AP regulation. Because female SHRs clearly exhibit lower AP than their male counterparts of a similar age, we investigated whether SHR NTS exhibits sex differences in gene expression by using microarray and RT-qPCR experiments. The transcript for transient receptor potential cation channel subfamily V member 4 ( Trpv4) was found to be upregulated in SHR NTS in females compared with that in males. The channel was expressed in neurons and glial cells within NTS. The TRPV4 agonist 4-alpha-phorbol-12,13-didecanoate (4α-PDD) decreased blood pressure when injected into NTS of rats. These findings suggest that altered TRPV4 expression might be involved in the sex differences in blood pressure regulation.
Collapse
Affiliation(s)
- Makiko Onishi
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan.,Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Inzai-city, Chiba , Japan
| | - Yasunori Miyamoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan.,Program for Leading Graduate Schools, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan.,Institute for Human Life Innovation, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Inzai-city, Chiba , Japan
| | - Sabine Gouraud
- Program for Leading Graduate Schools, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan.,Department of Biology, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo , Japan
| |
Collapse
|
21
|
Wang LQ, Liu SZ, Wen X, Wu D, Yin L, Fan Y, Wang Y, Chen WR, Chen P, Liu Y, Lu XL, Sun HL, Shou W, Qiao GF, Li BY. Ketamine-mediated afferent-specific presynaptic transmission blocks in low-threshold and sex-specific subpopulation of myelinated Ah-type baroreceptor neurons of rats. Oncotarget 2016; 6:44108-22. [PMID: 26675761 PMCID: PMC4792545 DOI: 10.18632/oncotarget.6586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/29/2015] [Indexed: 01/19/2023] Open
Abstract
Background Ketamine enhances autonomic activity, and unmyelinated C-type baroreceptor afferents are more susceptible to be blocked by ketamine than myelinated A-types. However, the presynaptic transmission block in low-threshold and sex-specific myelinated Ah-type baroreceptor neurons (BRNs) is not elucidated. Methods Action potentials (APs) and excitatory post-synaptic currents (EPSCs) were investigated in BRNs/barosensitive neurons identified by conduction velocity (CV), capsaicin-conjugated with Iberiotoxin-sensitivity and fluorescent dye using intact nodose slice and brainstem slice in adult female rats. The expression of mRNA and targeted protein for NMDAR1 was also evaluated. Results Ketamine time-dependently blocked afferent CV in Ah-types in nodose slice with significant changes in AP discharge. The concentration-dependent inhibition of ketamine on AP discharge profiles were also assessed and observed using isolated Ah-type BRNs with dramatic reduction in neuroexcitability. In brainstem slice, the 2nd-order capsaicin-resistant EPSCs were identified and ∼50% of them were blocked by ketamine concentration-dependently with IC50 estimated at 84.4 μM compared with the rest (708.2 μM). Interestingly, the peak, decay time constant, and area under curve of EPSCs were significantly enhanced by 100 nM iberiotoxin in ketamine-more sensitive myelinated NTS neurons (most likely Ah-types), rather than ketamine-less sensitive ones (A-types). Conclusions These data have demonstrated, for the first time, that low-threshold and sex-specific myelinated Ah-type BRNs in nodose and Ah-type barosensitive neurons in NTS are more susceptible to ketamine and may play crucial roles in not only mean blood pressure regulation but also buffering dynamic changes in pressure, as well as the ketamine-mediated cardiovascular dysfunction through sexual-dimorphic baroreflex afferent pathway.
Collapse
Affiliation(s)
- Lu-Qi Wang
- Department of Pharmacology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Sheng-Zhi Liu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Xin Wen
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Di Wu
- Key Laboratory of Cardiovascular Medicine Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Lei Yin
- Key Laboratory of Cardiovascular Medicine Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Yao Fan
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Ye Wang
- Department of Pharmacology, Daqing Campus of Harbin Medical University, Daqing, China
| | - Wei-Ran Chen
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Pei Chen
- Key Laboratory of Cardiovascular Medicine Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Xiao-Long Lu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Hong-Li Sun
- Department of Pharmacology, Daqing Campus of Harbin Medical University, Daqing, China
| | - Weinian Shou
- Riley Heart Research Center, Division of Pediatric Cardiology, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guo-Fen Qiao
- Department of Pharmacology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Bai-Yan Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Sturdy J, Ottesen JT, Olufsen MS. Modeling the differentiation of A- and C-type baroreceptor firing patterns. J Comput Neurosci 2016; 42:11-30. [PMID: 27704337 DOI: 10.1007/s10827-016-0624-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 12/17/2022]
Abstract
The baroreceptor neurons serve as the primary transducers of blood pressure for the autonomic nervous system and are thus critical in enabling the body to respond effectively to changes in blood pressure. These neurons can be separated into two types (A and C) based on the myelination of their axons and their distinct firing patterns elicited in response to specific pressure stimuli. This study has developed a comprehensive model of the afferent baroreceptor discharge built on physiological knowledge of arterial wall mechanics, firing rate responses to controlled pressure stimuli, and ion channel dynamics within the baroreceptor neurons. With this model, we were able to predict firing rates observed in previously published experiments in both A- and C-type neurons. These results were obtained by adjusting model parameters determining the maximal ion-channel conductances. The observed variation in the model parameters are hypothesized to correspond to physiological differences between A- and C-type neurons. In agreement with published experimental observations, our simulations suggest that a twofold lower potassium conductance in C-type neurons is responsible for the observed sustained basal firing, where as a tenfold higher mechanosensitive conductance is responsible for the greater firing rate observed in A-type neurons. A better understanding of the difference between the two neuron types can potentially be used to gain more insight about pathophysiology and treatment of diseases related to baroreflex function, e.g. in patients with autonomic failure, a syndrome that is difficult to diagnose in terms of its pathophysiology.
Collapse
Affiliation(s)
- Jacob Sturdy
- Department of Structural Engineering, Norwegian University of Science and Technology, Richard Birkelandsvei 1A, 7491, Trondheim, Norway
| | - Johnny T Ottesen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh, NC, 27695-8205, USA.
| |
Collapse
|
23
|
Cao L, Graham SL, Pilowsky PM. Carbohydrate ingestion induces sex-specific cardiac vagal inhibition, but not vascular sympathetic modulation, in healthy older women. Am J Physiol Regul Integr Comp Physiol 2016; 311:R49-56. [PMID: 27147618 DOI: 10.1152/ajpregu.00486.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/29/2016] [Indexed: 11/22/2022]
Abstract
The role of vagal function in cardiovascular risk in older women remains unclear. Autonomic modulation following carbohydrate ingestion (CI) and postural stress (PS) were investigated in 14 healthy men and 21 age-matched postmenopausal women (age: 65.0 ± 2.1 vs. 64.1 ± 1.6 years), with normal and comparable insulin sensitivity. Continuous noninvasive finger arterial pressure and ECG were recorded in the lying and the standing positions before and after ingestion of a carbohydrate-rich meal (600 kcal, carbohydrate 78%, protein 13%, and fat 8%). Low-frequency (LF, 0.04-0.15 Hz) and high-frequency (HF, 0.15-0.4 Hz) components (ms(2)) of heart rate variability (HRV), low-frequency power (mmHg(2)) of systolic blood pressure variability (SBP LF power), and the sequence method for spontaneous baroreflex sensitivity (BRS, ms/mmHg) were used to quantify autonomic modulation. In response to CI and PS, mean arterial pressure maintained stable, and heart rate increased in women and men in the lying and standing positions. Following CI (60, 90, and 120 min postprandially) in the standing position, SBP LF power increased by 40% in men (P = 0.02), with unchanged HRV parameters; in contrast, in women, HRV HF power halved (P = 0.02), with unaltered SBP LF power. During PS before and after CI, similar magnitude of SBP LF power, HRV, and BRS changes was observed in men and women. In conclusion, CI induces sex-specific vascular sympathetic activation in healthy older men, and cardiac vagal inhibition in healthy older women; this CI-mediated efferent vagal inhibition may suggest differential cardiovascular risk factors in women, irrespective of insulin resistance, and impairment of autonomic control.
Collapse
Affiliation(s)
- Lei Cao
- The Heart Research Institute and The University of Sydney, New South Wales, Australia; and
| | - Stuart L Graham
- Australian School of Advanced Medicine, Macquarie University, New South Wales, Australia
| | - Paul M Pilowsky
- The Heart Research Institute and The University of Sydney, New South Wales, Australia; and
| |
Collapse
|
24
|
Liu H, Duan SR. Prostaglandin E2-mediated upregulation of neuroexcitation and persistent tetrodotoxin-resistant Na(+) currents in Ah-type trigeminal ganglion neurons isolated from adult female rats. Neuroscience 2016; 320:194-204. [PMID: 26868972 DOI: 10.1016/j.neuroscience.2016.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/31/2016] [Accepted: 02/03/2016] [Indexed: 11/16/2022]
Abstract
Prostaglandin-E2 (PGE2) is a very important inflammatory mediator and PGE2-mediated neuroexcitation in sex-specific distribution of Ah-type trigeminal ganglion neurons (TGNs) isolated from adult female rats is not fully addressed. The whole-cell patch-clamp experiment was performed to verify the effects of PGE2, forskolin, and GPR30-selective agonist (G-1) on action potential (AP) and tetrodotoxin-resistant (TTX-R) Na(+) currents in identified Ah-type TGNs. The results showed that the firing frequency was increased in Ah- and C-types by PGE2, which was simulated by forskolin and inhibited by Rp-cyclic adenosine monophosphate (cAMP), while G-1 mimicked this effect only in Ah-types, which was abolished by GPR30-selective antagonist (G-15). Although the amplitude of AP was increased in Ah- and C-types, increased maximal upstroke velocity was confirmed only in Ah-types, suggesting distinct alternations in current density and/or voltage-dependent property of Na(+) channels. With 1.0 μM PGE2, TTX-R Na(+) currents were upregulated without changing the current-voltage relationship and voltage-dependent activation in C-types, however, the TTX-R Na(+) current was augmented in Ah-types, peaked voltage and the voltage-dependent activation were both shifted toward hyperpolarized direction with faster slope. Intriguingly, the low-threshold persistent TTX-R component was activated from -60 mV and increased almost double at -30 mV compared with ∼30-40% increment of TTX-R component being activated at ∼-10 mV. Additionally, the change in TTX-R component of Ah-types was equivalent well with that in C-type TGNs. Taken these data together, we conclude that PGE2 modulates the neuroexcitation via cAMP-mediated upregulation of TTX-R Na(+) currents in both cell-types with hormone-dependent feature, especially persistent TTX-R Na(+) currents in sex-specific distribution of myelinated Ah-type TGNs.
Collapse
Affiliation(s)
- H Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - S-R Duan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Liu Y, Zhou JY, Zhou YH, Wu D, He JL, Han LM, Liang XB, Wang LQ, Lu XL, Chen H, Qiao GF, Shou W, Li BY. Unique Expression of Angiotensin Type-2 Receptor in Sex-Specific Distribution of Myelinated Ah-Type Baroreceptor Neuron Contributing to Sex-Dimorphic Neurocontrol of Circulation. Hypertension 2016; 67:783-91. [DOI: 10.1161/hypertensionaha.115.06815] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/26/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Yang Liu
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Jia-Ying Zhou
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Yu-Hong Zhou
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Di Wu
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Jian-Li He
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Li-Min Han
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Xiao-Bo Liang
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Lu-Qi Wang
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Xiao-Long Lu
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Hanying Chen
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Guo-Fen Qiao
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Weinian Shou
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Bai-Yan Li
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| |
Collapse
|
26
|
Zhang YY, Yan ZY, Qu MY, Guo XJ, Li G, Lu XL, Liu Y, Ban T, Sun HL, Qiao GF, Li BY. KCa1.1 is potential marker for distinguishing Ah-type baroreceptor neurons in NTS and contributes to sex-specific presynaptic neurotransmission in baroreflex afferent pathway. Neurosci Lett 2015. [DOI: 10.1016/j.neulet.2015.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Li JN, Li XL, He J, Wang JX, Zhao M, Liang XB, Zhao SY, Ma MN, Liu Y, Wang YB, Chen H, Qiao GF, Li BY. Sex- and afferent-specific differences in histamine receptor expression in vagal afferents of rats: A potential mechanism for sexual dimorphism in prevalence and severity of asthma. Neuroscience 2015; 303:166-77. [PMID: 26141840 DOI: 10.1016/j.neuroscience.2015.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
The incidence of asthma is more common in boys than in girls during the childhood, and more common in premenopausal female than age-matched males. Our previous study demonstrated a gender difference in histamine-mediated neuroexcitability in nodose ganglia neurons (NGNs), highlighting a possibility of histamine-mediated gender difference in asthma via visceral afferent function. In the present study, we aimed to explore the gender difference in expression profiles of histamine receptors (HRs) in nodose ganglia (NG) and individual identified NGNs to provide deeper insights into the mechanisms involved in sexual dimorphism of asthma. Western-blot and SYBR green RT-PCR showed that H2R and H3R were highly expressed in NG of females compared with males and downregulated in ovariectomized females. H1R was equally expressed in NG of both sexes and not altered by ovariectomy. Furthermore, this highly expressive H2R and H3R were distributed in both myelinated and unmyelinated NGNs isolated from adult female rats by immunofluorescence and single-cell RT-PCR. H3R widely distributed in all tested neuron subtypes and its expression did not show significant difference among neuron subtypes. H2R was widely and highly expressed in low-threshold and sex-specific subpopulation of myelinated Ah-types compared with myelinated A- and unmyelinated C-type NGNs. Unexpectedly, weak expression of H1R was detected in both myelinated and unmyelinated NGNs by immunofluorescence, which was further confirmed by single-cell RT-PCR. Our results suggest that the sexual dimorphism in the expression of H2R and H3R in vagal afferents very likely contributes, at least partially, to the gender difference in prevalence and severity of asthma.
Collapse
Affiliation(s)
- J N Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - X L Li
- Department of Pharmacology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - J He
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - J X Wang
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - M Zhao
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - X B Liang
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - S Y Zhao
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - M N Ma
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - Y Liu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Y B Wang
- Department of Cerebral Surgery, Harbin Municipal First Hospital, Harbin, China
| | - H Chen
- Riley Heart Research Center, Division of Pediatric Cardiology, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - G F Qiao
- Department of Pharmacology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China.
| | - B Y Li
- Department of Pharmacology, Harbin Medical University, Harbin, China.
| |
Collapse
|
28
|
Xia N, Xu JM, Zhao N, Zhao QS, Li M, Cheng ZF. Human mesenchymal stem cells improve the neurodegeneration of femoral nerve in a diabetic foot ulceration rats. Neurosci Lett 2015; 597:84-9. [PMID: 25916880 DOI: 10.1016/j.neulet.2015.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
Neuropathy is observed in 50% of diabetic patients with diabetic foot. This study attempted to explore the potential role of human mesenchymal stem cells-umbilical cord blood (hMSCs-UC) in femoral nerve (FN) neuropathy. The model rats were established by one time administration of streptozotocin and empyrosis on the dorsal hind foot. At 3d, 7d, 14d after treatment with hMSCs-UC or saline through left femoral artery, the serum NGF was examined by ELISA; NF-200 expression in FN was evaluated by immunohistochemistry; the diameter and roundness of FN, the ratio of capillary and muscular fiber of gastrocnemius were calculated under light microscope; and neuronal degenerations, such as demyelization, axonal atrophy, and loose arrangement of nerve fibers, were observed by electronic microscope. The results showed that, in hMSCs-UC-treated model rats, serum NGF was increased with higher positive rate of NF-200. Although the difference in FN diameters was not established among groups, improvement of roundness of FN was confirmed with increase in the numbers of capillary in FN-innervated gastrocnemius; additionally, degenerative neuropathy was significantly improved. Importantly, the functional study of electroneurogram (ENG) showed that, slowed conduction of FN in model rats was significantly restored by hMSCs-CU treatment. These data suggested that hMSCs-UC-treatment partially reverse the neuronal degeneration and nerve function of FN, which might be contributed by the upregulation of NGF with dramatic angiogenesis in FN-innervated gastrocnemius, consequently reversing neuronal structure and function, preventing or curing foot ulceration.
Collapse
Affiliation(s)
- Nan Xia
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jin-Mei Xu
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Zhao
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing-Song Zhao
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Li
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhi-Feng Cheng
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
29
|
KCa1.1-mediated frequency-dependent central and peripheral neuromodulation via Ah-type baroreceptor neurons located within nodose ganglia and nucleus of solitary tract of female rats. Int J Cardiol 2015; 185:84-7. [DOI: 10.1016/j.ijcard.2015.03.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/07/2015] [Indexed: 11/18/2022]
|
30
|
He JL, Li JN, Zuo CM, Wang LQ, Wen X, Zuo M, Guan J, Wu D, Song DX, Yu X, Qu MY, Liu Y, Qiao GF, Li BY. Potentiation of 17β-estradiol on neuroexcitability by HCN-mediated neuromodulation of fast-afterhyperpolarization and late-afterdepolarization in low-threshold and sex-specific myelinated Ah-type baroreceptor neurons via GPR30 in female rats. Int J Cardiol 2015; 182:174-8. [DOI: 10.1016/j.ijcard.2014.12.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
|