1
|
Li Y, Li S, Wang Y, Zhou J, Yang J, Ma J. Effects of isometric resistance exercise of the lower limbs on intraocular pressure and ocular perfusion pressure among healthy adults: A meta-analysis. J Fr Ophtalmol 2021; 44:1596-1604. [PMID: 34454773 DOI: 10.1016/j.jfo.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The main risks for glaucoma are increased intraocular pressure (IOP) and decreased ocular perfusion pressure (OPP). This review aims to examine the potential impact of lower limb isometric resistance exercise on intraocular pressure and ocular perfusion pressure. METHOD A meta-analysis was conducted to determine the potential impact of isometric exercise on IOP and OPP. The literature on the relationship between isometric resistance exercise and IOP was systematically searched according to the "Cochrane Handbook" in the databases of Pubmed, Web of Science, EBSCO, and Scopus through December 31, 2020. The search terms used were "exercise," "train," "isometric," "intraocular pressure," and "ocular perfusion pressure," and the mean differences of the data were analyzed using the Stata 16.0 software, with a 95% confidence interval. RESULTS A total of 13 studies, which included 268 adult participants consisting of 162 men and 106 women, were selected. All the exercise programs that were included were isometric resistance exercises of the lower limbs with intervention times of 1min, 2min, or 6min. The increase in IOP after intervention was as follows: I2=87.1%, P=0.001 using random-effects model combined statistics, SMD=1.03 (0.48, 1.59), and the increase in OPP was as follows: I2=94.5%, P=0.001 using random-effects model combined statistics, SMD=2.94 (1.65, 4.22), with both results showing high heterogeneity. CONCLUSION As isometric exercise may cause an increase in IOP and OPP, therefore, people with glaucoma and related high risk should perform isometric exercise with caution.
Collapse
Affiliation(s)
- Y Li
- Zhengzhou Shengda University, Zhengzhou, China
| | - S Li
- Universiti Sains Malaysia, Kelantan, Malaysia
| | - Y Wang
- Inner Mongolia University, Inner Mongolia, China
| | - J Zhou
- Universiti Sains Malaysia, Kelantan, Malaysia
| | - J Yang
- Tangshan Hongci Hospital, Tangshan, China
| | - J Ma
- Hebei University of Architecture, Zhangjiakou, China.
| |
Collapse
|
2
|
Hommer N, Kallab M, Szegedi S, Puchner S, Stjepanek K, Bauer M, Werkmeister RM, Schmetterer L, Abensperg‐Traun M, Garhöfer G, Schmidl D. The Effect of Orally Administered Dronabinol on Optic Nerve Head Blood Flow in Healthy Subjects-A Randomized Clinical Trial. Clin Pharmacol Ther 2020; 108:155-161. [PMID: 31977076 PMCID: PMC7325313 DOI: 10.1002/cpt.1797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/04/2020] [Indexed: 02/04/2023]
Abstract
It has been hypothesized that besides its intraocular pressure (IOP) lowering potential, tetrahydrocannabinol (THC) may also improve ocular hemodynamics. The aim of the present study was to investigate whether single oral administration of dronabinol, a synthetic THC, alters optic nerve head blood flow (ONHBF) and its regulation in healthy subjects. The study was carried out in a randomized, placebo-controlled, double-masked, two-way crossover design in 24 healthy subjects. For each study participant, 2 study days were scheduled, on which they either received capsules containing 5 mg dronabinol or placebo. ONHBF was measured with laser Doppler flowmetry at rest and while the study participants performed isometric exercise for 6 minutes to increase mean arterial blood pressure (MAP). This was repeated 1 hour after drug intake. Ocular perfusion pressure (OPP) was calculated as 2/3MAP-IOP. Dronabinol was well tolerated and no cannabinoid-related psychoactive effects were reported. Neither administration of dronabinol nor placebo had an effect on IOP, MAP, or OPP. In contrast, dronabinol significantly increased ONHBF at rest by 9.5 ± 8.1%, whereas placebo did not show a change in ONHBF (0.3 ± 7.4% vs. baseline, P < 0.001 between study days). Dronabinol did not alter the autoregulatory response of ONHBF to isometric exercise. In conclusion, the present data indicate that low-dose dronabinol increases ONHBF in healthy subjects without affecting IOP, OPP, or inducing psychoactive side effects. In addition, dronabinol does not alter the autoregulatory response of ONHBF to an experimental increase in OPP. Further studies are needed to investigate whether this effect can also be observed in patients with glaucoma.
Collapse
Affiliation(s)
- Nikolaus Hommer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Martin Kallab
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Stephan Szegedi
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Stefan Puchner
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Kristina Stjepanek
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Martin Bauer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Leopold Schmetterer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Singapore Eye Research InstituteSingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Ophthalmology and Visual Sciences Academic Clinical ProgramDuke‐NUS Medical SchoolSingaporeSingapore
- SERI‐NTU Advanced Ocular Engineering (STANCE)SingaporeSingapore
- Institute of OphthalmologyBaselSwitzerland
| | | | - Gerhard Garhöfer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Doreen Schmidl
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
3
|
Bata AM, Fondi K, Witkowska KJ, Werkmeister RM, Hommer A, Vass C, Resch H, Schmidl D, Popa‐Cherecheanu A, Chua J, Garhöfer G, Schmetterer L. Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma. Acta Ophthalmol 2019; 97:e36-e41. [PMID: 30218499 PMCID: PMC6492118 DOI: 10.1111/aos.13850] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/20/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE Abnormal autoregulation of optic nerve head blood flow (ONHBF) has been postulated to play an important role in primary open-angle glaucoma (POAG). We used laser Doppler flowmetry (LDF) to estimate quantitatively the ONHBF and compared ONHBF autoregulation between glaucoma patients and healthy controls during isometric exercise. METHODS Forty patients with POAG and 40 healthy age- and sex-matched subjects underwent three periods of isometric exercise, each consisting of 2 min of handgripping. Optic nerve head blood flow (ONHBF) was measured continuously using LDF. Systemic blood pressure, intraocular pressure and ocular perfusion pressure were assessed in all participants. RESULTS Isometric exercise was associated with an increase in ocular perfusion pressure during all handgripping periods in both groups (p < 0.001). However, there was no change in ONHBF in either group. Three of the glaucoma patients and two of the healthy subjects showed a consistent 10% decrease in blood flow during isometric exercise, in spite of an increase in their blood pressure. This difference between groups was not significant (p = 0.61). Four other glaucoma subjects showed a consistent increase in blood flow of more than 10% during isometric exercise, whereas this was not seen in healthy subjects (p = 0.035). CONCLUSION This study suggests that abnormal ONHBF autoregulation is more often seen in patients with POAG than healthy control subjects. The relationship to the glaucoma disease process is currently unknown and requires further investigation.
Collapse
Affiliation(s)
- Ahmed M. Bata
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Klemens Fondi
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | | | - René M. Werkmeister
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Anton Hommer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria,Department of OphthalmologySanatorium HeraViennaAustria
| | - Clemens Vass
- Department of OphthalmologyMedical University of ViennaViennaAustria
| | - Hemma Resch
- Department of OphthalmologyMedical University of ViennaViennaAustria
| | - Doreen Schmidl
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria,Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Alina Popa‐Cherecheanu
- Department of OphthalmologyEmergency University HospitalBucharestRomania,Carol Davila University of Medicine and PharmacyBucharestRomania
| | | | - Gerhard Garhöfer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Leopold Schmetterer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria,Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria,Singapore Eye Research InstituteSingaporeSingapore,Lee Kong School of MedicineNanyang Technological UniversitySingaporeSingapore,Ophthalmology and Visual Sciences Academic Clinical ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
4
|
Zhu MM, Lai JSM, Choy BNK, Shum JWH, Lo ACY, Ng ALK, Chan JCH, So KF. Physical exercise and glaucoma: a review on the roles of physical exercise on intraocular pressure control, ocular blood flow regulation, neuroprotection and glaucoma-related mental health. Acta Ophthalmol 2018; 96:e676-e691. [PMID: 29338126 DOI: 10.1111/aos.13661] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
The benefits of physical exercise on health and well-being have been studied in a wide range of systemic and ocular diseases, including glaucoma, a progressive optic neuropathy characterized by accelerated apoptosis of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) and insufficient ocular perfusion have been postulated to be the two main theories in glaucoma development and progression. The effects of exercise in these two aspects have been demonstrated by numerous researches. A review in 2009 focusing on these two theories concluded that exercise results in transient IOP reduction but an inconsistent elevation in ocular perfusion. However, the majority of the studies had been conducted in healthy subjects. Over the past decade, technological advancement has brought forth new and more detailed evidence regarding the effects of exercise. Moreover, the neuroprotective effect of exercise by upregulation of neurotrophin and enhancement of mitochondrial function has been a focus of interest. Apart from visual impairment, the mental health issues in patients with glaucoma, which include anxiety and depression, should also be addressed. In this review, we mainly focus on publications from the recent years, so as to provide a comprehensive review on the impact of physical exercise on IOP, ocular perfusion, neuroprotection and mental health in patients with glaucoma.
Collapse
Affiliation(s)
- Ming Ming Zhu
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Jimmy Shiu Ming Lai
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Bonnie Nga Kwan Choy
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Jennifer Wei Huen Shum
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Alex Lap Ki Ng
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Jonathan Cheuk Hung Chan
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Kwok Fai So
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
- School of Biomedical Sciences; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
- State Key Laboratory of Brain and Cognitive Sciences; The University of Hong Kong; Hong Kong SAR China
- GHM Institute of CNS Regeneration; Ministry of Education CNS Regeneration Collaborative Joint Laboratory; Jinan University; Guangzhou China
| |
Collapse
|
5
|
Mottet B, Aptel F, Geiser M, Romanet J, Chiquet C. Facteurs vasculaires du glaucome. J Fr Ophtalmol 2015; 38:983-95. [DOI: 10.1016/j.jfo.2015.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 11/25/2022]
|
6
|
Schmidl D, Schmetterer L, Garhöfer G, Popa-Cherecheanu A. Pharmacotherapy of glaucoma. J Ocul Pharmacol Ther 2015; 31:63-77. [PMID: 25587905 PMCID: PMC4346603 DOI: 10.1089/jop.2014.0067] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/31/2014] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a group of diseases involving the optic nerve and associated structures, which is characterized by progressive visual field loss and typical changes of the optic nerve head (ONH). The only known treatment of the disease is reduction of intraocular pressure (IOP), which has been shown to reduce glaucoma progression in a variety of large-scale clinical trials. Nowadays, a relatively wide array of topical antiglaucoma drugs is available, including prostaglandin analogues, carbonic anhydrase inhibitors, beta-receptor antagonists, adrenergic agonists, and parasympathomimetics. In clinical routine, this allows for individualized treatment taking risk factors, efficacy, and safety into account. A major challenge is related to adherence to therapy. Sustained release devices may help minimize this problem but are not yet available for clinical routine use. Another hope arises from non-IOP-related treatment concepts. In recent years, much knowledge has been gained regarding the molecular mechanisms that underlie the disease process in glaucoma. This also strengthens the hope that glaucoma therapy beyond IOP lowering will become available. Implementing this concept with clinical trials remains, however, a challenge.
Collapse
Affiliation(s)
- Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
7
|
Abstract
Gender medicine has been a major focus of research in recent years. The present review focuses on gender differences in the epidemiology of the most frequent ocular diseases that have been found to be associated with impaired ocular blood flow, such as age-related macular degeneration, glaucoma and diabetic retinopathy. Data have accumulated indicating that hormones have an important role in these diseases, since there are major differences in the prevalence and incidence between men and pre- and post-menopausal women. Whether this is related to vascular factors is, however, not entirely clear. Interestingly, the current knowledge about differences in ocular vascular parameters between men and women is sparse. Although little data is available, estrogen, progesterone and testosterone are most likely important regulators of blood flow in the retina and choroid, because they are key regulators of vascular tone in other organs. Estrogen seems to play a protective role since it decreases vascular resistance in large ocular vessels. Some studies indicate that hormone therapy is beneficial for ocular vascular disease in post-menopausal women. This evidence is, however, not sufficient to give any recommendation. Generally, remarkably few data are available on the role of sex hormones on ocular blood flow regulation, a topic that requires more attention in the future.
Collapse
Affiliation(s)
- Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna , Vienna , Austria
| | | | | | | |
Collapse
|
8
|
Boltz A, Told R, Napora KJ, Palkovits S, Werkmeister RM, Schmidl D, Popa-Cherecheanu A, Garhöfer G, Schmetterer L. Optic nerve head blood flow autoregulation during changes in arterial blood pressure in healthy young subjects. PLoS One 2013; 8:e82351. [PMID: 24324774 PMCID: PMC3855769 DOI: 10.1371/journal.pone.0082351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/23/2013] [Indexed: 12/21/2022] Open
Abstract
AIM In the present study the response of optic nerve head blood flow to an increase in ocular perfusion pressure during isometric exercise was studied. Based on our previous studies we hypothesized that subjects with an abnormal blood flow response, defined as a decrease in blood flow of more than 10% during or after isometric exercise, could be identified. METHODS A total of 40 healthy subjects were included in this study. Three periods of isometric exercise were scheduled, each consisting of 2 minutes of handgripping. Optic nerve head blood flow was measured continuously before, during and after handgripping using laser Doppler flowmetry. Blood pressure was measured non-invasively in one-minute intervals. Intraocular pressure was measured at the beginning and the end of the measurements and ocular perfusion pressure was calculated as 2/3*mean arterial pressure -intraocular pressure. RESULTS Isometric exercise was associated with an increase in ocular perfusion pressure during all handgripping periods (p < 0.001). By contrast no change in optic nerve head blood flow was seen. However, in a subgroup of three subjects blood flow showed a consistent decrease of more than 10% during isometric exercise although their blood pressure values increased. In addition, three other subjects showed a consistent decline of blood flow of more than 10% during the recovery periods. CONCLUSION Our data confirm previous results indicating that optic nerve head blood flow is autoregulated during an increase in perfusion pressure. In addition, we observed a subgroup of 6 subjects (15%) that showed an abnormal response, which is in keeping with our previous data. The mechanisms underlying this abnormal response remain to be shown.
Collapse
Affiliation(s)
- Agnes Boltz
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria ; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Role of nitric oxide in optic nerve head blood flow regulation during an experimental increase in intraocular pressure in healthy humans. Exp Eye Res 2013; 116:247-53. [PMID: 24060346 DOI: 10.1016/j.exer.2013.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 08/27/2013] [Accepted: 09/11/2013] [Indexed: 12/31/2022]
Abstract
The present study set out to investigate whether nitric oxide, a potent vasodilator, is involved in the regulatory processes in optic nerve head blood flow during an experimental increase in intraocular pressure (IOP). The study was conducted in a randomized, double-masked, placebo-controlled, three way cross-over design. 12 healthy subjects were scheduled to receive either L-NMMA (an unspecific nitric oxide synthase inhibitor), phenylephrine (an α-adrenoceptor agonist) or placebo on three different study days. Optic nerve head blood flow was measured using laser Doppler flowmetry and IOP was increased stepwise with a suction cup. Mean arterial pressure (MAP) and IOP were measured non-invasively and ocular perfusion pressure (OPP) was calculated as OPP = 2/3 MAP-IOP. Administration of L-NMMA and phenylephrine significantly increased MAP and therefore OPP at rest (p < 0.01). L-NMMA significantly reduced baseline blood flow in the optic nerve head (p < 0.01). Application of the suction cup induced a significant increase in IOP and a decrease in OPP (p < 0.01). During the stepwise increase in IOP, some autoregulatory potential was observed until OPP decreased approximately -30% below baseline. None of the administered substances had an effect on this autoregulatory behavior (p = 0.49). The results of the present study confirm that the human optic nerve head shows some regulatory capacity during a decrease in OPP. Nitric oxide is involved in the regulation of basal vascular tone in the optic nerve head but does not seem to be involved in the regulatory mechanisms during an acute increase in IOP in young healthy subjects.
Collapse
|