1
|
Abstract
Vitamin C (Vit C) is an ideal antioxidant as it is easily available, water soluble, very potent, least toxic, regenerates other antioxidants particularly Vit E, and acts as a cofactor for different enzymes. It has received much attention due to its ability in limiting reactive oxygen species, oxidative stress, and nitrosative stress, as well as it helps to maintain some of the normal metabolic functions of the cell. However, over 140 clinical trials using Vit C in different pathological conditions such as myocardial infarction, gastritis, diabetes, hypertension, stroke, and cancer have yielded inconsistent results. Such a divergence calls for new strategies to establish practical significance of Vit C in heart failure or even in its prevention. For a better understanding of Vit C functioning, it is important to revisit its transport across the cell membrane and subcellular interactions. In this review, we have highlighted some historical details of Vit C and its transporters in the heart with a particular focus on heart failure in cancer chemotherapy.
Collapse
|
2
|
Saheera S, Krishnamurthy P. Cardiovascular Changes Associated with Hypertensive Heart Disease and Aging. Cell Transplant 2020; 29:963689720920830. [PMID: 32393064 PMCID: PMC7586256 DOI: 10.1177/0963689720920830] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and morbidity worldwide and account for more than 17.9 million deaths (World Health Organization report). Hypertension and aging are two major risk factors for the development of cardiac structural and functional abnormalities. Hypertension, or elevated blood pressure, if left untreated can result in myocardial hypertrophy leading to heart failure (HF). Left ventricular hypertrophy consequent to pressure overload is recognized as the most important predictor of congestive HF and sudden death. The pathological changes occurring during hypertensive heart disease are very complex and involve many cellular and molecular alterations. In contrast, the cardiac changes that occur with aging are a slow but life-long process and involve all of the structural components in the heart and vasculature. However, these structural changes in the cardiovascular system lead to alterations in overall cardiac physiology and function. The pace at which these pathophysiological changes occur varies between individuals owing to many genetic and environmental risk factors. This review highlights the molecular mechanisms of cardiac structural and functional alterations associated with hypertension and aging.
Collapse
Affiliation(s)
- Sherin Saheera
- Department of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, USA
| |
Collapse
|
3
|
Lu D, Zhang Y, Xue W, Sun J, Yang C, Lin C, Li Y, Liu T. Shenxiong Glucose Injection Protects H9c2 Cells From CoCl 2-Induced Oxidative Damage via Antioxidant and Antiapoptotic Pathways. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20920054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease has become one of the main diseases that endanger humans, and oxidative damage plays an important role in this. Shenxiong glucose injection (SGI) is a common clinical treatment in China for the treatment of this condition. To understand further the protective effects and related mechanisms of SGI on cardiovascular diseases, H9c2 cells were treated with SGI at different concentrations (0.5%, 1%, 2% [v/v]) before hypoxic damage was induced by treatment with CoCl2). In CoCl2-induced H9c2 cells, SGI treatment increased cell viability and the activity of superoxide dismutase, glutathione peroxidase, catalase, elevated mitochondrial membrane potential, and decreased the rate of cellular apoptosis, lactic dehydrogenase release, and the content of malondialdehyde and reactive oxygen species, while also upregulating Bcl-2 expression and downregulating Bax, Cyt-c, and cleaved caspase-3 expression. Together, these results suggested that SGI has a protective effect on CoCl2-induced damage, and its mechanism may be related to increased antioxidant and antiapoptosis capacity in H9c2 cells. This study provides the basis for further research and potential practical applications of SGI.
Collapse
Affiliation(s)
- Dingyan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Yubin Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, P. R. China
- School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Weina Xue
- School of Medicine and Health Management, Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Changhu Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| |
Collapse
|
4
|
Lubrano V, Vergaro G, Maltinti M, Ghionzoli N, Emdin M, Papa A. α-1 Antitrypsin as a potential biomarker in chronic heart failure. J Cardiovasc Med (Hagerstown) 2020; 21:209-215. [DOI: 10.2459/jcm.0000000000000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
5
|
Potential role of microRNA-10b down-regulation in cardiomyocyte apoptosis in aortic stenosis patients. Clin Sci (Lond) 2016; 130:2139-2149. [DOI: 10.1042/cs20160462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
Myocardial miR-10b down-regulation may be involved in the increase in cardiomyocyte apoptosis in AS patients, probably through apoptosis protease-activating factor-1 (Apaf-1) regulation. In turn, increased cardiomyocyte apoptosis contributes to cardiomyocyte damage and heart failure (HF) development.
Collapse
|
6
|
Treskatsch S, Shakibaei M, Feldheiser A, Shaqura M, Dehe L, Roepke TK, Spies C, Schäfer M, Mousa SA. Ultrastructural changes associated with myocardial apoptosis, in failing rat hearts induced by volume overload. Int J Cardiol 2015; 197:327-32. [PMID: 26159040 DOI: 10.1016/j.ijcard.2015.06.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/19/2015] [Accepted: 06/23/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Myocardial apoptosis has been discussed to play a pivotal role in the development and progression of congestive heart failure (CHF). However, recently there is doubt on the evidence of myocardial apoptosis in heart failure as information on ultrastructural changes by electron microscopy is still scarce. This project therefore aimed to detect direct morphological evidence of myocardial apoptosis in an experimental heart failure model. METHOD Following IRB approval, an aortocaval fistula (ACF) was induced in male Wistar rats using a 16G needle. 28±2days following ACF rats were examined by hemodynamic measurements, Western blot, immunofluorescence confocal and electron microscopic analysis. RESULTS Within 28±2days of ACF heart (3.8±0.1 vs. 6.6±0.3mg/g) and lung (3.7±0.2 vs. 6.9±0.5mg/g) weight indices significantly increased in the ACF group accompanied by a restriction in systolic (LVEF: 72±2 vs. 39±3%) and diastolic (dP/dtmin.: -10,435±942 vs. -5982±745mmHg/s) function (p<0.01). Activated caspase-3 was significantly increased in failing hearts concomitant with mitochondrial leakage of cytochrome c into the cytosol. Finally, electron microscopy of the left ventricle (LV) of ACF rats revealed pronounced ultrastructural changes in >70% of examined cardiomyocytes, such as nuclear chromatin condensation, myofibril loss and disarray, contour irregularities and amorphous dense bodies, mitochondriosis and damaged cell-cell-contacts between cardiomyocytes. CONCLUSIONS Volume overload induced heart failure is associated with activation of the mitochondrial apoptotic pathway. In addition, electron microscopy of the LV revealed direct ultrastructural evidence of extended myocardial apoptosis in ACF rats.
Collapse
Affiliation(s)
- S Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - M Shakibaei
- Institute of Anatomy, Ludwig-Maximilians-Universität München, München, Germany
| | - A Feldheiser
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - M Shaqura
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - L Dehe
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - T K Roepke
- Department of Cardiology, Campus Charité Mitte, Charité - Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - C Spies
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - M Schäfer
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - S A Mousa
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
7
|
Jain A, Atale N, Kohli S, Bhattacharya S, Sharma M, Rani V. An assessment of norepinephrine mediated hypertrophy to apoptosis transition in cardiac cells: A signal for cell death. Chem Biol Interact 2015; 225:54-62. [DOI: 10.1016/j.cbi.2014.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022]
|
8
|
Mitochondrial targets for arrhythmia suppression: is there a role for pharmacological intervention? J Interv Card Electrophysiol 2013; 37:249-58. [PMID: 23824789 DOI: 10.1007/s10840-013-9809-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/03/2013] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction is a hallmark of common cardiovascular disorders, including ischemia-reperfusion injury, hypertrophy, heart failure, and diabetes mellitus. While the role of the mitochondrial network in regulating energy production and cell death pathways is well established, its active control of other critical cellular functions, including excitation-contraction coupling and excitability, is less understood. The purpose of this focused review article is to highlight the growing mechanistic link between mitochondrial dysfunction and arrhythmogenesis. The goal is not to provide a comprehensive listing of all factors by which mitochondrial bioenergetics and altered cellular redox status affect ion channel function but rather to focus on one central mechanism of arrhythmogenesis which arises from a mitochondrial origin. In doing so, we discuss the role of mitochondrial targets for suppressing arrhythmias through this mechanism.
Collapse
|
9
|
Abstract
It is believed that cardiac remodeling due to geometric and structural changes is a major mechanism for the progression of heart failure in different pathologies including hypertension, hypertrophic cardiomyopathy, dilated cardiomyopathy, diabetic cardiomyopathy, and myocardial infarction. Increases in the activities of proteolytic enzymes such as matrix metalloproteinases, calpains, cathepsins, and caspases contribute to the process of cardiac remodeling. In addition to modifying the extracellular matrix, both matrix metalloproteinases and cathepsins have been shown to affect the activities of subcellular organelles in cardiomyocytes. The activation of calpains and caspases has been identified to induce subcellular remodeling in failing hearts. Proteolytic activities associated with different proteins including caspases, calpain, and the ubiquitin-proteasome system have been shown to be involved in cardiomyocyte apoptosis, which is an integral part of cardiac remodeling. This article discusses and compares how the activities of various proteases are involved in different cardiac abnormalities with respect to alterations in apoptotic pathways, cardiac remodeling, and cardiac dysfunction. An imbalance appears to occur between the activities of some proteases and their endogenous inhibitors in various types of hypertrophied and failing hearts, and this is likely to further accentuate subcellular remodeling and cardiac dysfunction. The importance of inhibiting the activities of both extracellular and intracellular proteases specific to distinct etiologies, in attenuating cardiac remodeling and apoptosis as well as biochemical changes of subcellular organelles, in heart failure has been emphasized. It is suggested that combination therapy to inhibit different proteases may prove useful for the treatment of heart failure.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | |
Collapse
|
10
|
Perlini S, Chung ES, Aurigemma GP, Meyer TE. Alterations in Early Filling Dynamics Predict the Progression of Compensated Pressure Overload Hypertrophy to Heart Failure Better than Abnormalities in Midwall Systolic Shortening. Clin Exp Hypertens 2012; 35:401-11. [DOI: 10.3109/10641963.2012.739235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Consoli C, Gatta L, Iellamo F, Molinari F, Rosano GMC, Marlier LNJL. Severity of left ventricular dysfunction in heart failure patients affects the degree of serum-induced cardiomyocyte apoptosis. Importance of inflammatory response and metabolism. Int J Cardiol 2012; 167:2859-66. [PMID: 22882964 DOI: 10.1016/j.ijcard.2012.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/10/2012] [Accepted: 07/21/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND/OBJECTIVES In heart failure pro-inflammatory cytokines contribute to cardiomyocytes loss by apoptosis and play a role in the remodelling of the extracellular matrix (ECM). Myocardial injury recruits endothelial progenitor cells (EPCs) to the site of damage and stimulates their differentiation, contributing to myocardial tissue repair. We investigated if the severity of left ventricular dysfunction in heart failure patients (HF) may influence the ability of serum to induce cardiomyocytes death and whether this effect is affected by inflammation and intracellular oxidative stress pathways. METHODS Adult murine cardiomyocytes HL-5 were incubated with 2% human serum from patients with heart failure (NYHA classes I to IV). Apoptosis was analysed by two different methods. TNF-α, IL-1β, IL-6, matrix metalloproteinase 1 (MMP-1) and tissue inhibitor of metalloproteinases 1 (TIMP-1) were measured in sera from patients. RESULTS Cytokine levels were higher in sera from moderate-severe CHF compared to that of patients with mild CHF. Levels of CD117(+) (c-Kit(+)) cells and EPCs were significantly lower in blood from moderate-severe HF patients. Serum from HF patients induced a significantly higher ROS production involving p38 MAPK signalling and apoptosis in cardiomyocytes. NAC treatment prevented serum-induced oxidative effects. The increase of AMPK phosphorylation showed an involvement of FFA β-oxidation during apoptotic stress. CONCLUSIONS All these alterations could be used as predictive factors of worsening in heart failure and culture of cardiomyocytes could be employed to test pharmacological effects.
Collapse
Affiliation(s)
- Claudia Consoli
- Centre for Clinical & Basic Research, Cardiovascular Research Unit, Department. of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Blagonravov ML. Induction of caspase cascade as a nonspecific response to myocardial damage. Bull Exp Biol Med 2012; 151:167-70. [PMID: 22238742 DOI: 10.1007/s10517-011-1281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In three experimental series, acute hemodynamic overload of the left ventricle, focal ischemia of the left ventricle, and diphtheritic intoxication were modeled in rabbits. On days 1, 3, and 5 of the experiments, activity of myocardial caspase-3 and caspase-8 were measured separately in the left and right ventricles. In the left ventricle, caspase-3 activity increased in all 3 modeled pathological processes, while in the right ventricle this parameter increased during acute overload and ischemic injury to the left ventricle. Caspase-8 activity increased only in the left ventricle during its hemodynamic overload and remained unchanged in other cases. It was concluded that induction of the caspase cascade can be considered as a nonspecific response to myocardial damage. In this case, specific mechanisms responsible for generation and transmission of apoptotic stimuli in cardiomyocytes have unique features.
Collapse
Affiliation(s)
- M L Blagonravov
- Department of General Pathology and Pathophysiology, People's Friendship University of Russia, Moscow, Russia.
| |
Collapse
|
13
|
Subcellular basis of vitamin C protection against doxorubicin-induced changes in rat cardiomyocytes. Mol Cell Biochem 2011; 360:215-24. [DOI: 10.1007/s11010-011-1059-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
|
14
|
The Cardioprotective Role of Probucol Against Anthracycline and Trastuzumab-Mediated Cardiotoxicity. J Am Soc Echocardiogr 2011; 24:699-705. [DOI: 10.1016/j.echo.2011.01.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Indexed: 11/18/2022]
|
15
|
Park M, Youn B, Zheng XL, Wu D, Xu A, Sweeney G. Globular adiponectin, acting via AdipoR1/APPL1, protects H9c2 cells from hypoxia/reoxygenation-induced apoptosis. PLoS One 2011; 6:e19143. [PMID: 21552570 PMCID: PMC3084258 DOI: 10.1371/journal.pone.0019143] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/20/2011] [Indexed: 01/01/2023] Open
Abstract
Cardiomyocyte apoptosis is an important remodeling event contributing to heart failure and adiponectin may mediate cardioprotective effects at least in part via attenuating apoptosis. Here we used hypoxia-reoxygenation (H/R) induced apoptosis in H9c2 cells to examine the effect of adiponectin and cellular mechanisms of action. We first used TUNEL labeling in combination with laser scanning cytometry to demonstrate that adiponectin prevented H/R-induced DNA fragmentation. The anti-apoptotic effect of adiponectin was also verified via attenuation of H/R-induced phosphatidylserine exposure using annexin V binding. H/R-induced apoptosis via the mitochondrial-mediated intrinsic pathway of apoptosis as assessed by cytochrome c release into cytosol and caspase-3 activation, both of which were attenuated by adiponectin. Mechanistically, we demonstrated that adiponectin enhanced anti-oxidative potential in these cells which led to attenuation of the increase in intracellular reactive oxygen species (ROS) caused by H/R. To further address the mechanism of adiponctins anti-apoptotic effects we used siRNA to efficiently knockdown adiponectin receptor (AdipoR1) expression and found that this attenuated the protective effects of adiponectin on ROS production and caspase 3 activity. Knockdown of APPL1, an important intracellular binding partner for AdipoR, also significantly reduced the ability of adiponectin to prevent H/R-induced ROS generation and caspase 3 activity. In summary, H/R-induced ROS generation and activation of the intrinsic apoptotic pathway was prevented by adiponectin via AdipoR1/APPL1 signaling and increased anti-oxidant potential.
Collapse
Affiliation(s)
- Min Park
- Department of Biology, York University, Toronto, Canada
- Institut Pasteur Korea, Seoul, South Korea
| | - ByungSoo Youn
- AdipoGen Inc., Songdo Technopark, Incheon, South Korea
| | - Xi-long Zheng
- The Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Donghai Wu
- Guangzhou Institute of Biomedicine and Health, Guangzhou, China
| | - Aimin Xu
- Department of Pharmacology, Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada
- Institut Pasteur Korea, Seoul, South Korea
- * E-mail:
| |
Collapse
|
16
|
Abstract
Despite advances in treatment of patients who suffer from ischemic heart disease, morbidity related to myocardial infarction is increasing in Western societies. Acute and chronic immune responses elicited by myocardial ischemia have an important role in the functional deterioration of the heart. Research on modulation of the inflammatory responses was focused on effector mediators such as leukocytes. However, increasing evidence indicates that various endogenous ligands that act as 'danger signals', also called danger-associated molecular patterns (DAMPs), are released upon injury and modulate inflammation. Originally described as part of the first-line defense against invading microorganisms, several Toll-like receptors (TLRs) on leukocytes and parenchymal cells have now been shown to respond to such signals and to have a pivotal role in noninfectious pathological cardiovascular conditions, such as ischemia-reperfusion injury and heart failure. From a therapeutic perspective, DAMPs are attractive targets owing to their specific induction after injury. In this Review, we will discuss innate immune activation through TLRs in cardiac ischemia mediated by DAMPs.
Collapse
Affiliation(s)
- Fatih Arslan
- University Medical Center Utrecht, Laboratory of Experimental Cardiology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | |
Collapse
|
17
|
Ko ML, Shi L, Grushin K, Nigussie F, Ko GYP. Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways. Chronobiol Int 2011; 27:1673-96. [PMID: 20969517 DOI: 10.3109/07420528.2010.514631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circadian clocks exist in the heart tissue and modulate multiple physiological events, from cardiac metabolism to contractile function and expression of circadian oscillator and metabolic-related genes. Ample evidence has demonstrated that there are endogenous circadian oscillators in adult mammalian cardiomyocytes. However, mammalian embryos cannot be entrained independently to light-dark (LD) cycles in vivo without any maternal influence, but circadian genes are well expressed and able to oscillate in embryonic stages. The authors took advantage of using chick embryos that are independent of maternal influences to investigate whether embryonic hearts could be entrained under LD cycles in ovo. The authors found circadian regulation of L-type voltage-gated calcium channels (L-VGCCs), the ion channels responsible for the production of cardiac muscle contraction in embryonic chick hearts. The mRNA levels and protein expression of VGCCα1C and VGCCα1D are under circadian control, and the average L-VGCC current density is significantly larger when cardiomyocytes are recorded during the night than day. The phosphorylation states of several kinases involved in insulin signaling and cardiac metabolism, including extracellular signal-regulated kinase (Erk), stress-activated protein kinase (p38), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), are also under circadian control. Both Erk and p38 have been implicated in regulating cardiac contractility and in the development of various pathological states, such as cardiac hypertrophy and heart failure. Even though both Erk and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways participate in complex cellular processes regarding physiological or pathological states of cardiomyocytes, the circadian oscillators in the heart regulate these pathways independently, and both pathways contribute to the circadian regulation of L-VGCCs.
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
18
|
Gelpi RJ, Park M, Gao S, Dhar S, Vatner DE, Vatner SF. Apoptosis in severe, compensated pressure overload predominates in nonmyocytes and is related to the hypertrophy but not function. Am J Physiol Heart Circ Physiol 2010; 300:H1062-8. [PMID: 21148760 PMCID: PMC3302193 DOI: 10.1152/ajpheart.00998.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is widely held that myocyte apoptosis in left ventricular hypertrophy (LVH) contributes to left ventricle (LV) dysfunction and heart failure. The main goal of this investigation was to determine if there is a statistical relationship among LV hypertrophy, apoptosis and LV function, and importantly whether the apoptosis occurs in myocytes or nonmyocytes in the heart. We used both rat and canine models of severe LVH induced by chronic thoracic aortic banding with resultant LV-aortic pressure gradients 145-155 mmHg and increases in LV/body weight of 58 and 70%. These models also provided the ability to examine transmural apoptosis in LVH. In both models, the overwhelming majority (88%) of apoptotic cells were nonmyocytes. The regressions for apoptosis vs. LVH were stronger for nonmyocytes than myocytes and also stronger in the subendocardium than the subepicardium. Importantly, LV systolic and diastolic wall stresses were normal, indicating that the apoptosis could not be attributed to LV stretch or heart failure. In addition, there was no relationship between the extent of apoptosis and LV ejection fraction, which actually increased (P < 0.05), in the face of elevated LV systolic pressure, indicating that greater apoptosis did not result in a decrease in LV function. Thus, in response to chronic, severe pressure overload, LVH in the absence of LV dilation, and elevated LV wall stress, apoptosis occurred predominantly in nonmyocytes in the myocardial interstitium, more in the subendocardium than the subepicardium. The extent of apoptosis was linearly related to the amount of LV hypertrophy, but not to LV function.
Collapse
Affiliation(s)
- Ricardo J Gelpi
- Department of Cell Biology & Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | |
Collapse
|
19
|
Khaper N, Bryan S, Dhingra S, Singal R, Bajaj A, Pathak CM, Singal PK. Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxid Redox Signal 2010; 13:1033-49. [PMID: 20380580 DOI: 10.1089/ars.2009.2930] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative stress and inflammation are each implicated independently in the development and progression of heart failure. Their interaction, however, is also evident throughout the process from initial injury to cardiac remodeling and failure. In the failing heart, the linkage between excessive reactive oxygen species (ROS) and the cytokine elaboration is manifested in shared elements and cross-promotion within downstream signaling pathways. In spite of this, the failure of anticytokine immunotherapy and antioxidant therapy, which had previously shown promise, suggests that a more complete perspective of ROS-cytokine interaction is required. The present review focuses on two of the major cytokines that are demonstrably connected to oxidative stress--the pro-inflammatory tumor necrosis factor-alpha (TNF-alpha) and the anti-inflammatory interleukin-10 (IL-10)--and their interactions in cardiac remodeling and failure. It is proposed that an optimal balance between TNF-alpha and IL-10 may be of crucial importance in mitigating both inflammation and oxidative stress processes leading to heart failure.
Collapse
Affiliation(s)
- Neelam Khaper
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Altered spatiotemporal dynamics of the mitochondrial membrane potential in the hypertrophied heart. Biophys J 2010; 98:2063-71. [PMID: 20483313 DOI: 10.1016/j.bpj.2010.01.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/14/2010] [Accepted: 01/19/2010] [Indexed: 12/23/2022] Open
Abstract
Chronically elevated levels of oxidative stress resulting from increased production and/or impaired scavenging of reactive oxygen species are a hallmark of mitochondrial dysfunction in left ventricular hypertrophy. Recently, oscillations of the mitochondrial membrane potential (DeltaPsi(m)) were mechanistically linked to changes in cellular excitability under conditions of acute oxidative stress produced by laser-induced photooxidation of cardiac myocytes in vitro. Here, we investigate the spatiotemporal dynamics of DeltaPsi(m) within the intact heart during ischemia-reperfusion injury. We hypothesize that altered metabolic properties in left ventricular hypertrophy modulate DeltaPsi(m) spatiotemporal properties and arrhythmia propensity.
Collapse
|
21
|
Fu HY, Okada KI, Liao Y, Tsukamoto O, Isomura T, Asai M, Sawada T, Okuda K, Asano Y, Sanada S, Asanuma H, Asakura M, Takashima S, Komuro I, Kitakaze M, Minamino T. Ablation of C/EBP homologous protein attenuates endoplasmic reticulum-mediated apoptosis and cardiac dysfunction induced by pressure overload. Circulation 2010; 122:361-9. [PMID: 20625112 DOI: 10.1161/circulationaha.109.917914] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Apoptosis may contribute to the development of heart failure, but the role of apoptotic signaling initiated by the endoplasmic reticulum in this condition has not been well clarified. METHODS AND RESULTS In myocardial samples from patients with heart failure, quantitative real-time polymerase chain reaction revealed an increase in messenger RNA for C/EBP homologous protein (CHOP), a transcriptional factor that mediates endoplasmic reticulum-initiated apoptotic cell death. We performed transverse aortic constriction or sham operation on wild-type (WT) and CHOP-deficient mice. The CHOP-deficient mice showed less cardiac hypertrophy, fibrosis, and cardiac dysfunction compared with WT mice at 4 weeks after transverse aortic constriction, although the contractility of isolated cardiomyocytes from CHOP-deficient mice was not significantly different from that in the WT mice. In the hearts of CHOP-deficient mice, phosphorylation of eukaryotic translation initiation factor 2alpha, which may reduce protein translation, was enhanced compared with WT mice. In the hearts of WT mice, CHOP-increased apoptotic cell death with activation of caspase-3 was observed at 4 weeks after transverse aortic constriction. In contrast, CHOP-deficient mice had less apoptotic cell death and lower caspase-3 activation at 4 weeks after transverse aortic constriction. Furthermore, the Bcl2/Bax ratio was decreased in WT mice, whereas this change was significantly blunted in CHOP-deficient mice. Real-time polymerase chain reaction microarray analysis revealed that CHOP could regulate several Bcl2 family members in failing hearts. CONCLUSIONS We propose the novel concept that CHOP, which may modify protein translation and mediate endoplasmic reticulum-initiated apoptotic cell death, contributes to development of cardiac hypertrophy and failure induced by pressure overload.
Collapse
Affiliation(s)
- Hai Ying Fu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shewchuk LJ, Bryan S, Ulanova M, Khaper N. Integrin β3 prevents apoptosis of HL-1 cardiomyocytes under conditions of oxidative stressThis article is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol 2010; 88:324-30. [DOI: 10.1139/y09-131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrin receptors are essential in the regulation of vital cardiac functions, and impaired integrin activity has been associated with cardiac remodeling. Oxidative stress is known to be involved in apoptosis and cardiac remodeling and thus may profoundly influence cardiac function via integrin modulation. The aim of this study was to determine the expression pattern and functional role of integrins in HL-1 cardiomyocytes under conditions of oxidative stress. Gene expression was studied by end-point and real-time PCR; surface protein expression was studied by flow cytometry; integrin knockdown was accomplished by siRNA gene silencing; and apoptosis was studied by annexin V staining and active caspase-3/7 using flow cytometry. Among the various subunits under study (αv, α5, α6, and β1, β3, β4, and β5), the expression of β3 integrin was significantly increased at both the mRNA and protein levels in cardiomyocytes exposed to 100 µmol/L hydrogen peroxide for 3 h. Gene silencing of β3 integrin by using siRNA resulted in a 2-fold increase in cardiomyocyte apoptosis upon treatment with hydrogen peroxide. This increase in apoptosis, as measured by annexin V staining, correlated with an increase in active caspase-3/7. Integrin β3 plays a vital role in preventing cardiomyocyte apoptosis under conditions of oxidative stress.
Collapse
Affiliation(s)
- Lee J. Shewchuk
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Sean Bryan
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marina Ulanova
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Neelam Khaper
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
23
|
Small-animal SPECT and SPECT/CT: application in cardiovascular research. Eur J Nucl Med Mol Imaging 2010; 37:1766-77. [PMID: 20069298 PMCID: PMC2918793 DOI: 10.1007/s00259-009-1321-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 11/06/2009] [Indexed: 12/19/2022]
Abstract
Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease.
Collapse
|
24
|
Severe Mechanical Dyssynchrony Causes Regional Hibernation-Like Changes in Pigs With Nonischemic Heart Failure. J Card Fail 2009; 15:920-8. [DOI: 10.1016/j.cardfail.2009.06.436] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/04/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
|
25
|
Nozyński J, Zakliczyński M, Konecka-Mrówka D, Zegleń S, Przybylski R, Zembala M, Lange D, Zembala-Nozyńska E, Mecik-Kronenberg T, Dabrówka K. Differences in antiapoptotic, proliferative activities and morphometry in dilated and ischemic cardiomyopathy: study of hearts explanted from transplant recipients. Transplant Proc 2009; 41:3171-8. [PMID: 19857704 DOI: 10.1016/j.transproceed.2009.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Antiapoptotic as well as replacement and proliferative mechanisms take place in the myocardium in dilated cardiomyopathy (DCM) and ischemic heart disease (IHD). We sought to estimate antiapoptotic, proliferative and replacement activities in cardiomyopathies. MATERIALS The study groups included seven hearts with DCM and eight with IHD, which had been explanted at the time of transplantation. The comparator group consisted of cases of myocardial hypertrophy and the control group, donor fragments. METHODS Antiapoptotic and proliferative responses were determined immunohistochemically as Bcl-2 and Ki67 expression by semiquantitative assessment of the intensity of staining. We also measured and statistically analyzed the integrative morphometric measurements of the fraction of fibrosis area, the nucleosarcoplasmic ratio, and cardiocyte diameter. RESULTS No Bcl-2 expression was observed in the controls. The strongest reaction was seen in the DCM group, then in the IHD, and in the comparator group of myocardial hypertrophy. Proliferative activity was seen only in endocardial and interstitial fibroblasts in DCM and IHD cases. The cardiocyte diameter showed no statistical association between myocardial hypertrophy and IHD, or IHD and DCM, whereas the nucleosarcoplasmic ratios were significantly different from control groups for all comparisons. Myocardial fibrosis showed the highest values in DCM and IHD. Discriminant analysis showed the value of interstitial fibrosis and cardiocyte diameter to categorize the analyzed groups. CONCLUSIONS Antiapoptotic Bcl-2 activity seemed to play an important role in cardiocyte preservation, while proliferative activity was resticted to interstitial connective tissue cells as a replacement process. Myocardial Bcl-2 expression, the extent of myocardial fibrosis, and cardiocyte diameter may serve as additional diagnostic tools to differentiate cardiomyopathies.
Collapse
Affiliation(s)
- J Nozyński
- Silesian Centre for Heart Diseases, 41-800 Zabrze, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Apoptosis plays a key role in the pathogenesis in a variety of cardiovascular diseases due to loss of terminally differentiated cardiac myocytes. Cardiac myocytes undergoing apoptosis have been identified in tissue samples from patients suffering from myocardial infarction, diabetic cardiomyopathy, and end-stage congestive heart failure. Apoptosis is a highly regulated program of cell death and can be mediated by death receptors in the plasma membrane, as well as the mitochondria and the endoplasmic reticulum. The cell death program is activated in cardiac myocytes by various stressors including cytokines, increased oxidative stress and DNA damage. Many studies have demonstrated that inhibition of apoptosis is cardioprotective and can prevent the development of heart failure. This review provides a current overview of the evidence of apoptosis in cardiovascular diseases and discusses the molecular pathways involved in cardiac myocyte apoptosis.
Collapse
|
27
|
Utility of Tissue Doppler and Strain Rate Imaging in the Early Detection of Trastuzumab and Anthracycline Mediated Cardiomyopathy. J Am Soc Echocardiogr 2009; 22:418-24. [DOI: 10.1016/j.echo.2009.01.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Indexed: 11/21/2022]
|
28
|
The protective effects of exercise and phosphoinositide 3-kinase (p110α) in the failing heart. Clin Sci (Lond) 2009; 116:365-75. [DOI: 10.1042/cs20080183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite the development of a wide range of therapies, heart failure remains a leading cause of death in Western society. New therapies are needed to help combat this debilitating condition. Exercise is becoming an increasingly important feature of rehabilitation programmes for patients with heart failure. Before the 1980s, patients with heart failure were advised not to exercise as it was thought that exercise would increase the risk of a cardiac event (such as myocardial infarction). However, in recent years both aerobic and resistance training have been shown to be safe and beneficial for patients with heart failure, improving exercise tolerance and quality of life, and preventing muscular deconditioning. The molecular mechanisms responsible for exercise-induced cardioprotection are yet to be elucidated, however studies in transgenic mice have identified PI3K(p110α) (phosphoinositide 3-kinase p110α) as a likely mediator. PI3K(p110α) is a lipid kinase which is activated in the heart during chronic exercise training, and is important for maintaining heart structure and function in various pathological settings. In the present review the protective effects of PI3K(p110α) in the failing heart and its potential as a therapeutic strategy for the treatment of heart failure is discussed.
Collapse
|
29
|
|