1
|
Zhang X, Chen X, Meng X, Wu Y, Gao J, Chen H, Li X. Extracellular adenosine triphosphate: A new gateway for food allergy mechanism research? Food Chem 2025; 464:141821. [PMID: 39486282 DOI: 10.1016/j.foodchem.2024.141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Although various studies have been conducted, the detailed mechanisms of food allergy remain a topic of ongoing debate. Recently, researchers have reported that extracellular adenosine triphosphate (eATP), a member of damage-associated molecular patterns secreted by stressed cells, plays a critical role in the progression of asthma and atopic dermatitis. These studies suggest that dysregulated eATP significantly influences various aspects of disease progression, from bodily sensitization to the emergence of clinical manifestations. Given the shared pathogenic mechanisms among asthma, atopic dermatitis, and food allergies, we hypothesize that eATP may also serve as a crucial regulator in the development of food allergies. To elucidate this hypothesis, we first summarize the evidence and limitations of food allergy theories, then discuss the roles of eATP in allergic diseases. We conclude with speculative insights into the potential influence of eATP on food allergy development, aiming to inspire further investigation into the molecular mechanisms of food allergies.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Takeno K, Watanabe N, Morifuji M, Hotta H, Nishimune H. Identification of adrenergic presynaptic and postsynaptic protein locations at neuromuscular junctions, their decrease during aging, and recovery by nicotinamide mononucleotide administration. Neuroreport 2024; 35:805-812. [PMID: 38935067 DOI: 10.1097/wnr.0000000000002070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Neuromuscular junctions are innervated by motor and sympathetic nerves. The sympathetic modulation of motor innervation shows functional decline during aging, but the cellular and molecular mechanism of this change is not fully known. This study aimed to evaluate the effect of aging on sympathetic nerves and synaptic proteins at mouse neuromuscular junctions. Sympathetic nerves, presynaptic, and postsynaptic proteins of sympathetic nerves at neuromuscular junctions were visualized using immunohistochemistry, and aging-related changes were compared between adult-, aged-, and nicotinamide mononucleotide (NMN) administered aged mice. Sympathetic nerves were detected by anti-tyrosine hydroxylase antibody, and presynaptic protein vesicular monoamine transporter 2 colocalized with the sympathetic nerves. These two signals surrounded motor nerve terminals and acetylcholine receptor clusters. Postsynaptic neurotransmitter receptor β2-adrenergic receptors colocalized with motor nerve terminals and resided in reduced density at extrasynaptic sarcolemma. The signal intensity of the sympathetic nerve marker did not show a significant difference at neuromuscular junctions between 8.5-month-old adult mice and 25-month-old aged mice. However, the signal intensity of vesicular monoamine transporter 2 and β2-adrenergic receptors showed age-related decline at neuromuscular junctions. Interestingly, both age-related declines reverted to the adult level after 1 month of oral administration of NMN by drinking water. In contrast, NMN administration did not alter the expression level of sympathetic marker tyrosine hydroxylase at neuromuscular junctions. The results suggest a functional decline of sympathetic nerves at aged neuromuscular junctions due to decreases in presynaptic and postsynaptic proteins, which can be reverted to the adult level by NMN administration.
Collapse
Affiliation(s)
| | - Nobuhiro Watanabe
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology
| | | | - Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
3
|
Hu Q, Li G. Role of purinergic receptors in cardiac sympathetic nerve injury in diabetes mellitus. Neuropharmacology 2023; 226:109406. [PMID: 36586475 DOI: 10.1016/j.neuropharm.2022.109406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Diabetic cardiac autonomic neuropathy is a common and serious chronic complication of diabetes, which can lead to sympathetic and parasympathetic nerve imbalance and a relative excitation of the sympathetic nerve. Purinergic receptors play a crucial role in this process. Diabetic cardiac sympathetic nerve injury affects the expression of purinergic receptors, and activated purinergic receptors affect the phosphorylation of different signaling pathways and the regulation of inflammatory processes. This paper introduces the abnormal changes of sympathetic nerve in diabetes mellitus and summarizes the recently published studies on the role of several purinergic receptor subtypes in diabetic cardiac sympathetic nerve injury. These studies suggest that purinergic receptors as novel drug targets are of great significance for the treatment of diabetic autonomic neuropathy. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
4
|
Donoso MV, Hernández F, Barra R, Huidobro-Toro JP. Nanomolar clodronate induces adenosine accumulation in the perfused rat mesenteric bed and mesentery-derived endothelial cells. Front Pharmacol 2023; 13:1031223. [PMID: 36744214 PMCID: PMC9895365 DOI: 10.3389/fphar.2022.1031223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
The vesicular nucleotide transporter (VNUT) is critical for sympathetic co-transmission and purinergic transmission maintenance. To examine this proposal, we assessed whether the bisphosphonate clodronate, claimed as a potent in vitro VNUT blocker, modified spontaneous and/or the electrically evoked overflow of ATP/metabolites and NA from mesentery sympathetic perivascular nerve terminals. Additionally, in primary endothelial cell cultures derived from this tissue, we also evaluated whether clodronate interfered with ATP/metabolite cell outflow and metabolism of N6-etheno adenosine 5'-triphosphate (eATP), N6-etheno adenosine (eADO), and adenosine deaminase enzyme activity. Rat mesenteries were perfused in the absence or presence of .01-1,000 nM clodronate, 1-1,000 nM Evans blue (EB), and 1-10 µM DIDS; tissue perfusates were collected to determine ATP/metabolites and NA before, during, and after perivascular electrical nerve terminal depolarization. An amount of 1-1,000 nM clodronate did not modify the time course of ATP or NA overflow elicited by nerve terminal depolarization, and only 10 nM clodronate significantly augmented perfusate adenosine. Electrical nerve terminal stimulation increased tissue perfusion pressure that was significantly reduced only by 10 nM clodronate [90.0 ± 18.6 (n = 8) to 35.0 ± 10.4 (n = 7), p = .0277]. As controls, EB, DIDS, or reserpine treatment reduced the overflow of ATP/metabolites and NA in a concentration-dependent manner elicited by nerve terminal depolarization. Moreover, mechanical stimulation of primary endothelial cell cultures from the rat mesentery added with 10 or 100 nM clodronate increased adenosine in the cell media. eATP was metabolized by endothelial cells to the same extent with and without 1-1,000 nM clodronate, suggesting the bisphosphonate did not interfere with nucleotide ectoenzyme metabolism. In contrast, extracellular eADO remained intact, indicating that this nucleoside is neither metabolized nor transported intracellularly. Furthermore, only 10 nM clodronate inhibited (15.5%) adenosine metabolism to inosine in endothelial cells as well as in a commercial crude adenosine deaminase enzyme preparation (12.7%), and both effects proved the significance (p < .05). Altogether, present data allow inferring that clodronate inhibits adenosine deaminase activity in isolated endothelial cells as in a crude extract preparation, a finding that may account for adenosine accumulation following clodronate mesentery perfusion.
Collapse
Affiliation(s)
- M. Verónica Donoso
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Hernández
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - J. Pablo Huidobro-Toro
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile,Centro de Nanociencia y Nanotecnología, Universidad de Santiago de Chile, Santiago, Chile,*Correspondence: J. Pablo Huidobro-Toro,
| |
Collapse
|
5
|
Post MR, Lee WL, Guo J, Sames D, Sulzer D. Development of a Dual Fluorescent and Magnetic Resonance False Neurotransmitter That Reports Accumulation and Release from Dopaminergic Synaptic Vesicles. ACS Chem Neurosci 2021; 12:4546-4553. [PMID: 34817175 PMCID: PMC8678980 DOI: 10.1021/acschemneuro.1c00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
![]()
Myriad neuropsychiatric
disorders are due to dopamine dysfunction.
However, understanding these disorders is limited by our ability to
measure dopamine storage and release. Fluorescent false neurotransmitters
(FFNs), small-molecule dyes that co-transit through the synaptic vesicle
cycle, have allowed us to image dopamine in cell culture and acute
brain slice, but in vivo microscopy is constrained
by the biopenetrance of light. Here, we adapt FFNs into magnetic resonance
false neurotransmitters (MFNs). The design principles guiding MFNs
are (1) the molecule is a valid false neurotransmitter and (2) it
has a 19F-substituent near a pH-sensing functional group,
which (3) has pKa close to 6 so that the
probe within vesicles is protonated. We demonstrate that MFN103 meets
these criteria. While a magnetic resonance spectroscopy (MRS) signal
was too low for measurement in vivo with the current
technology, in principle, MFNs can quantify neurotransmitters within
and without synaptic vesicles, which may underlie noninvasive in vivo analysis of dopamine neurotransmission.
Collapse
Affiliation(s)
- Michael R. Post
- Department of Psychiatry, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Wei-Li Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jia Guo
- Department of Psychiatry, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
- Departments of Neurology and Pharmacology, Columbia University, New York, New York 10032, United States
| |
Collapse
|
6
|
Borgus JR, Wang Y, DiScenza DJ, Venton BJ. Spontaneous Adenosine and Dopamine Cotransmission in the Caudate-Putamen Is Regulated by Adenosine Receptors. ACS Chem Neurosci 2021; 12:4371-4379. [PMID: 34783243 DOI: 10.1021/acschemneuro.1c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Transient changes in adenosine and dopamine have been measured in vivo, but no studies have examined if these transient changes occur simultaneously. In this study, we characterized spontaneous adenosine and dopamine transients in anesthetized mice, examining coincident release in the caudate-putamen for the first time. We found that in C57B mice, most of the dopamine transients (77%) were coincident with adenosine, but fewer adenosine transients (12%) were coincident with a dopamine transient. On average, the dopamine transient started 200 ms before its coincident adenosine transient, so they occurred concurrently. There was a positive correlation (r = 0.7292) of adenosine and dopamine concentrations during coincident release. ATP is quickly broken down to adenosine in the extracellular space, and the coincident events may be due to corelease, where dopaminergic vesicles are packaged with ATP, or cotransmission, where ATP is packaged in different vesicles released simultaneously with dopamine. The high frequency of adenosine transients compared to that of dopamine transients suggests that adenosine is also released from nondopaminergic vesicles. We investigated how A1 and A2A adenosine receptors regulate adenosine and dopamine transients using A1 and A2AKO mice. In A1KO mice, the frequency of adenosine and dopamine transients increased, while in A2AKO mice, the frequency of adenosine alone increased. Adenosine receptors modulate coincident transients and could be drug targets to modulate both dopamine and adenosine release. Many spontaneous dopamine transients have coincident adenosine release, and regulating adenosine and dopamine cotransmission could be important for designing treatments for dopamine diseases, such as Parkinson's or addiction.
Collapse
Affiliation(s)
- Jason R. Borgus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Ying Wang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Dana J. DiScenza
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| |
Collapse
|
7
|
Lindsey ML, LeBlanc AJ, Ripplinger CM, Carter JR, Kirk JA, Hansell Keehan K, Brunt KR, Kleinbongard P, Kassiri Z. Reinforcing rigor and reproducibility expectations for use of sex and gender in cardiovascular research. Am J Physiol Heart Circ Physiol 2021; 321:H819-H824. [PMID: 34524922 DOI: 10.1152/ajpheart.00418.2021] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska.,Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Amanda J LeBlanc
- Department of Physiology and Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | | | - Jason R Carter
- Department of Health and Human Development, Montana State University, Bozeman, Montana
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | - Kara Hansell Keehan
- Strategic Journal Development, American Physiological Society, Rockville, Maryland.,AJP-Heart and Circulatory Physiology, American Physiological Society, Rockville, Maryland
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Ashton JL, Argent L, Smith JEG, Jin S, Sands GB, Smaill BH, Montgomery JM. Evidence of structural and functional plasticity occurring within the intracardiac nervous system of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2020; 318:H1387-H1400. [DOI: 10.1152/ajpheart.00020.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have developed intracardiac neuron whole cell recording techniques in atrial preparations from control and spontaneous hypertensive rats. This has enabled the identification of significant synaptic plasticity in the intracardiac nervous system, including enhanced postsynaptic current frequency, increased synaptic terminal density, and altered postsynaptic receptors. This increased synaptic drive together with altered cardiac neuron electrophysiology could increase intracardiac nervous system excitability and contribute to the substrate for atrial arrhythmia in hypertensive heart disease.
Collapse
Affiliation(s)
- Jesse L. Ashton
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Liam Argent
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Joscelin E. G. Smith
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Sangjun Jin
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Gregory B. Sands
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
- Bioengineering Institute, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Bruce H. Smaill
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
- Bioengineering Institute, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Johanna M. Montgomery
- Department of Physiology, Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Sangsiri S, Xu H, Fernandes R, Fink GD, Lujan HL, DiCarlo SE, Galligan JJ. Spinal cord injury alters purinergic neurotransmission to mesenteric arteries in rats. Am J Physiol Heart Circ Physiol 2019; 318:H223-H237. [PMID: 31774690 DOI: 10.1152/ajpheart.00525.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complications associated with spinal cord injury (SCI) result from unregulated reflexes below the lesion level. Understanding neurotransmission distal to the SCI could improve quality of life by mitigating complications. The long-term impact of SCI on neurovascular transmission is poorly understood, but reduced sympathetic activity below the site of SCI enhances arterial neurotransmission (1). We studied sympathetic neurovascular transmission using a rat model of long-term paraplegia (T2-3) and tetraplegia (C6-7). Sixteen weeks after SCI, T2-3 and C6-7 rats had lower blood pressure (BP) than sham rats (103 ± 2 and 97 ± 4 vs. 117 ± 6 mmHg, P < 0.05). T2-3 rats had tachycardia (410 ± 6 beats/min), and C6-7 rats had bradycardia (299 ± 10 beats/min) compared with intact rats (321 ± 4 beats/min, P < 0.05). Purinergic excitatory junction potentials (EJPs) were measured in mesenteric arteries (MA) using microlectrodes, and norepinephrine (NE) release was measured using amperometry. NE release was similar in all groups, while EJP frequency-response curves from T2-3 and C6-7 rats were left-shifted vs. sham rats. EJPs in T2-3 and C6-7 rats showed facilitation followed by run-down during stimulation trains (10 Hz, 50 stimuli). MA reactivity to exogenous NE and ATP was similar in all rats. In T2-3 and C6-7 rats, NE content was increased in left cardiac ventricles compared with intact rats, but was not changed in MA, kidney, or spleen. Our data indicate that peripheral purinergic, but not adrenergic, neurotransmission increases following SCI via enhanced ATP release from periarterial nerves. Sympathetic BP support is reduced after SCI, but improving neurotransmitter release might maintain cardiovascular stability in individuals living with SCI.NEW & NOTEWORTHY This study revealed increased purinergic, but not noradrenergic, neurotransmission to mesenteric arteries in rats with spinal cord injury (SCI). An increased releasable pool of ATP in periarterial sympathetic nerves may contribute to autonomic dysreflexia following SCI, suggesting that purinergic neurotransmission may be a therapeutic target for maintaining stable blood pressure in individuals living with SCI. The selective increase in ATP release suggests that ATP and norepinephrine may be stored in separate synaptic vesicles in periarterial sympathetic varicosities.
Collapse
Affiliation(s)
- Sutheera Sangsiri
- Department of Preclinical Science, Thammasat University, Pathumthani, Thailand.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Hui Xu
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Roxanne Fernandes
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Greg D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Heidi L Lujan
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Stephen E DiCarlo
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - James J Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|