1
|
Doyle M, Pohost GM, Bairey Merz CN, Farah V, Shaw LJ, Sopko G, Rogers WJ, Sharaf BL, Pepine CJ, Thompson DV, Rayarao G, Tauxe L, Kelsey SF, Biederman RWW. Aortic flow conditions predict ejection efficiency in the NHLBI-Sponsored Women's Ischemia Syndrome Evaluation (WISE). Cardiovasc Diagn Ther 2017; 7:288-295. [PMID: 28567354 DOI: 10.21037/cdt.2017.03.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The Windkessel model of the cardiovascular system, both in its original wind-chamber and flow-pipe form, and in its electrical circuit analog has been used for over a century to modeled left ventricular ejection conditions. Using parameters obtained from aortic flow we formed a Flow Index that is proportional to the impedance of such a "circuit". We show that the impedance varies with ejection fraction (EF) in a manner characteristic of a resonant circuit with multiple resonance points, with each resonance point centrally located in a small range of EF values, i.e., corresponding to multiple contiguous EF bands. METHODS Two target populations were used: (I) a development group comprising male and female subjects (n=112) undergoing cardiovascular magnetic resonance (CMR) imaging for a variety of cardiac conditions. The Flow Index was developed using aortic flow data and its relationship to left ventricular EF was shown. (II) An illustration group comprised of female subjects from the Women's Ischemia Syndrome Evaluation (WISE) (n=201) followed for 5 years for occurrence of major adverse cardiovascular events (MACE). Flow data was not available in this group but since the Flow Index was related to the EF we noted the MACE rate with respect to EF. RESULTS The EFs of the development population covered a wide range (9%-76%) traversing six Flow Index resonance bands. Within each Flow Index resonance band the impedance varied from highly capacitive at the lower range of EF through minimal impedance at resonance, to highly inductive at the higher range of EF, which is characteristic of a resonant circuit. When transitioning from one EF band to a higher band, the Flow Index made a sudden transition from highly inductive to capacitive impedance modes. MACE occurred in 26 (13%) of the WISE (illustration) population. Distance in EF units (Deltacenter) from the central location between peaks of MACE activity was derived from EF data and was predictive of MACE rate with an area under the receiver operator curve of 0.73. Of special interest, Deltacenter was highly predictive of MACE in the sub-set of women with EF >60% (AUC 0.79) while EF was no more predictive than random chance (AUC 0.48). CONCLUSIONS A Flow Index that describes impedance conditions of left ventricular ejection can be calculated using data obtained completely from the ascending aorta. The Flow Index exhibits a periodic variation with EF, and in a separate illustration population the occurrence of MACE was observed to exhibit a similar periodic variation with EF, even in cases of normal EF.
Collapse
Affiliation(s)
- Mark Doyle
- Allegheny General Hospital, Pittsburgh, PA, USA
| | - Gerald M Pohost
- Keck Medical Center, University of Southern California, Los Angeles, CA, USA
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | | | - Leslee J Shaw
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - George Sopko
- National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | - Sheryl F Kelsey
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
2
|
Han JC, Goo S, Barrett CJ, Mellor KM, Taberner AJ, Loiselle DS. The afterload-dependent peak efficiency of the isolated working rat heart is unaffected by streptozotocin-induced diabetes. Cardiovasc Diabetol 2014; 13:4. [PMID: 24387738 PMCID: PMC3916799 DOI: 10.1186/1475-2840-13-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/30/2013] [Indexed: 01/31/2023] Open
Abstract
Background Diabetes is known to alter the energy metabolism of the heart. Thus, it may be expected to affect the efficiency of contraction (i.e., the ratio of mechanical work output to metabolic energy input). The literature on the subject is conflicting. The majority of studies have reported a reduction of myocardial efficiency of the diabetic heart, yet a number of studies have returned a null effect. We propose that these discrepant findings can be reconciled by examining the dependence of myocardial efficiency on afterload. Methods We performed experiments on streptozotocin (STZ)-induced diabetic rats (7-8 weeks post-induction), subjecting their (isolated) hearts to a wide range of afterloads (40 mmHg to maximal, where aortic flow approached zero). We measured work output and oxygen consumption, and their suitably scaled ratio (i.e., myocardial efficiency). Results We found that myocardial efficiency is a complex function of afterload: its value peaks in the mid-range and decreases on either side. Diabetes reduced the maximal afterload to which the hearts could pump (105 mmHg versus 150 mmHg). Thus, at high afterloads (for example, 90 mmHg), the efficiency of the STZ heart was lower than that of the healthy heart (10.4% versus 14.5%) due to its decreased work output. Diabetes also reduced the afterload at which peak efficiency occurred (optimal afterload: 63 mmHg versus 83 mmHg). Despite these negative effects, the peak value of myocardial efficiency (14.7%) was unaffected by diabetes. Conclusions Diabetes reduces the ability of the heart to pump at high afterloads and, consequently, reduces the afterload at which peak efficiency occurs. However, the peak efficiency of the isolated working rat heart remains unaffected by STZ-induced diabetes.
Collapse
Affiliation(s)
- June-Chiew Han
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
3
|
Yeih DF, Yeh HI, Hsin HT, Lin LY, Chiang FT, Tseng CD, Chu SH, Tseng YZ. Dimethylthiourea normalizes velocity-dependent, but not force-dependent, index of ventricular performance in diabetic rats: role of myosin heavy chain isozyme. Am J Physiol Heart Circ Physiol 2009; 297:H1411-20. [PMID: 19633204 DOI: 10.1152/ajpheart.01269.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydroxyl radicals and hydrogen peroxide are involved in the pathogenesis of systolic dysfunction in diabetic rats, but the precise mechanisms and the effect of antioxidant therapy in diabetic subjects have not been elucidated. We aimed to evaluate the effects of dimethylthiourea (DMTU), a potent hydroxyl radical scavenger, on both force-dependent and velocity-dependent indexes of cardiac contractility in streptozotocin (STZ)-induced early and chronic diabetic rats. Seventy-two hours and 8 wk after STZ (55 mg/kg) injection, diabetic rats were randomized to either DMTU (50 mg x kg(-1) x day(-1) ip) or vehicle treatment for 6 and 12 wk, respectively. All rats were then subjected to invasive hemodynamic studies. Maximal systolic elastance (E(max)) and maximum theoretical flow (Q(max)) were assessed by curve-fitting techniques in terms of the elastance-resistance model. Both normalized E(max) (E(maxn)) and afterload-adjusted Q(max) (Q(maxad)) were depressed in diabetic rats, concomitant with altered myosin heavy chain (MHC) isoform composition and its upstream regulators, such as myocyte enhancer factor-2 (MEF-2) and heart autonomic nervous system and neural crest derivatives (HAND). In chronic diabetic rats, DMTU markedly attenuated the impairment in Q(maxad) and normalized the expression of MEF-2 and eHAND and MHC isoform composition but exerted an insignificant benefit on E(maxn). Regarding preventive treatment, DMTU significantly ameliorated both E(maxn) and Q(maxad) in early diabetic rats. In conclusion, our study shows that DMTU has disparate effects on Q(maxad) and E(maxn) in chronic diabetic rats. The advantage of DMTU in chronic diabetic rats might involve normalization of MEF-2 and eHAND, as well as reversal of MHC isoform switch.
Collapse
Affiliation(s)
- Dong-Feng Yeih
- 1Department of Cardiology, Far Eastern Memorial Hospital, Pan-Chiao, Taipei County, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Radovits T, Korkmaz S, Loganathan S, Barnucz E, Bömicke T, Arif R, Karck M, Szabó G. Comparative investigation of the left ventricular pressure-volume relationship in rat models of type 1 and type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 2009; 297:H125-33. [PMID: 19429826 DOI: 10.1152/ajpheart.00165.2009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Diabetes mellitus (DM) is associated with characteristic structural and functional changes of the myocardium, termed diabetic cardiomyopathy. As a distinct entity independent of coronary atherosclerosis, diabetic cardiomyopathy is an increasingly recognized cause of heart failure. A detailed understanding of diabetic cardiac dysfunction, using relevant animal models, is required for the effective prevention and treatment of cardiovascular complications in diabetic patients. We investigated and compared cardiac performance in rat models of type 1 DM (streptozotocin induced) and type 2 DM (Zucker diabetic fatty rats) using a pressure-volume (P-V) conductance catheter system. Left ventricular (LV) systolic and diastolic function was evaluated in vivo at different preloads, including the slope of the end-systolic P-V relation (ESPVR) and end-diastolic P-V relationship (EDPVR), preload recruitable stroke work (PRSW), maximal slope of the systolic pressure increment (dP/dt(max)), and its relation to end-diastolic volume (dP/dt(max)-EDV) as well as the time constant of LV relaxation and maximal slope of the diastolic pressure decrement. Type 1 DM was associated with decreased LV systolic pressure, dP/dt(max), slope of ESPVR and dP/dt(max)-EDV, PRSW, ejection fraction, and cardiac and stroke work indexes, indicating marked systolic dysfunction. In type 2 DM rats, systolic indexes were altered only to a lower extent and the increase of LV stiffness was more pronounced, as indicated by the higher slopes of EDPVR. Our data suggest that DM is characterized by decreased systolic performance and delayed relaxation (mainly in type 1 DM), accompanied by increased diastolic stiffness of the heart (more remarkably in type 2 DM). Based on the sophisticated method of P-V analysis, different characteristics of type 1 and type 2 diabetic cardiac dysfunction can be demonstrated.
Collapse
Affiliation(s)
- Tamás Radovits
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|