1
|
Scardigli M, Müllenbroich C, Margoni E, Cannazzaro S, Crocini C, Ferrantini C, Coppini R, Yan P, Loew LM, Campione M, Bocchi L, Giulietti D, Cerbai E, Poggesi C, Bub G, Pavone FS, Sacconi L. Real-time optical manipulation of cardiac conduction in intact hearts. J Physiol 2018; 596:3841-3858. [PMID: 29989169 PMCID: PMC6117584 DOI: 10.1113/jp276283] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/05/2018] [Indexed: 11/28/2022] Open
Abstract
Key points Although optogenetics has clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies lack the capability to react acutely to ongoing cardiac wave dynamics. Here, we developed an all‐optical platform to monitor and control electrical activity in real‐time. The methodology was applied to restore normal electrical activity after atrioventricular block and to manipulate the intraventricular propagation of the electrical wavefront. The closed‐loop approach was also applied to simulate a re‐entrant circuit across the ventricle. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time all‐optical stimulation can control cardiac rhythm in normal and abnormal conditions.
Abstract Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all‐optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide‐field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free‐run mode with submillisecond temporal resolution or in a closed‐loop fashion: a tailored hardware and software platform allowed real‐time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real‐time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real‐time resynchronization therapy and cardiac defibrillation. Furthermore, the closed‐loop approach was applied to simulate a re‐entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart. Although optogenetics has clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies lack the capability to react acutely to ongoing cardiac wave dynamics. Here, we developed an all‐optical platform to monitor and control electrical activity in real‐time. The methodology was applied to restore normal electrical activity after atrioventricular block and to manipulate the intraventricular propagation of the electrical wavefront. The closed‐loop approach was also applied to simulate a re‐entrant circuit across the ventricle. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time all‐optical stimulation can control cardiac rhythm in normal and abnormal conditions.
Collapse
Affiliation(s)
- M Scardigli
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| | - C Müllenbroich
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| | - E Margoni
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,Department of Physics, University of Pisa, Pisa, 56127, Italy
| | - S Cannazzaro
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| | - C Crocini
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| | - C Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - R Coppini
- Division of Pharmacology, Department 'NeuroFarBa', University of Florence, Florence, 50139, Italy
| | - P Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - L M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - M Campione
- Neuroscience Institute, National Research Council, Padova, 35121, Italy.,Department of Biomedical Sciences, Univercity ot Padua, Padua, 35121, Italy
| | - L Bocchi
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,Department of Information Engineering, University of Florence, Via S. Marta 3, Florence, 50139, Italy
| | - D Giulietti
- National Institute of Optics, National Research Council, Florence, 50125, Italy.,Department of Physics, University of Pisa, Pisa, 56127, Italy
| | - E Cerbai
- Division of Pharmacology, Department 'NeuroFarBa', University of Florence, Florence, 50139, Italy
| | - C Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - G Bub
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - F S Pavone
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy.,Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, 50019, Italy
| | - L Sacconi
- European Laboratory for Non-Linear Spectroscopy, Florence, 50019, Italy.,National Institute of Optics, National Research Council, Florence, 50125, Italy
| |
Collapse
|
3
|
Meng P, Irturk A, Kastner R, McCulloch A, Omens J, Wright A. GPU acceleration of optical mapping algorithm for cardiac electrophysiology. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:1558-61. [PMID: 23366201 DOI: 10.1109/embc.2012.6346240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Optical mapping is an increasingly popular tool for experimentally analyzing the electrical activity in the heart. The optical mapping algorithm is computationally intense and consumes a considerable amount of time even with a highly optimized program running on a state-of-the-art multi-core microprocessor. For example, one second of data requires approximately 5 minutes of computation time (3.66 FPS) with a C++ program parallelized by OpenMP running on a 3.4GHz Quad-Core CPU. This article presents a GPU implementation of the optical mapping algorithm. Our result indicates that the GPU implementation is capable of processing the optical mapping video at 578 FPS which achieves 157.92X speed against the OpenMP optimized CPU implementation.
Collapse
Affiliation(s)
- Pingfan Meng
- Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
4
|
Scull JA, McSpadden LC, Himel HD, Badie N, Bursac N. Single-detector simultaneous optical mapping of V(m) and [Ca(2+)](i) in cardiac monolayers. Ann Biomed Eng 2011; 40:1006-17. [PMID: 22124794 DOI: 10.1007/s10439-011-0478-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/17/2011] [Indexed: 11/29/2022]
Abstract
Simultaneous mapping of transmembrane voltage (V(m)) and intracellular Ca(2+) concentration (Ca(i)) has been used for studies of normal and abnormal impulse propagation in cardiac tissues. Existing dual mapping systems typically utilize one excitation and two emission bandwidths, requiring two photodetectors with precise pixel registration. In this study we describe a novel, single-detector mapping system that utilizes two excitation and one emission band for the simultaneous recording of action potentials and calcium transients in monolayers of neonatal rat cardiomyocytes. Cells stained with the Ca(2+)-sensitive dye X-Rhod-1 and the voltage-sensitive dye Di-4-ANEPPS were illuminated by a programmable, multicolor LED matrix. Blue and green LED pulses were flashed 180° out of phase at a rate of 488.3 Hz using a custom-built dual bandpass excitation filter that transmitted blue (482 ± 6 nm) and green (577 ± 31 nm) light. A long-pass emission filter (>605 nm) and a 504-channel photodiode array were used to record combined signals from cardiomyocytes. Green excitation yielded Ca(i) transients without significant crosstalk from V(m). Crosstalk present in V(m) signals obtained with blue excitation was removed by subtracting an appropriately scaled version of the Ca(i) transient. This method was applied to study delay between onsets of action potentials and Ca(i) transients in anisotropic cardiac monolayers.
Collapse
Affiliation(s)
- James A Scull
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
6
|
Kanu UB, Iravanian S, Gilmour RF, Christini DJ. Control of action potential duration alternans in canine cardiac ventricular tissue. IEEE Trans Biomed Eng 2010; 58:894-904. [PMID: 21041155 DOI: 10.1109/tbme.2010.2089984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cardiac electrical alternans, characterized by a beat-to-beat alternation in action potential waveform, is a naturally occurring phenomenon, which can occur at sufficiently fast pacing rates. Its presence has been putatively linked to the onset of cardiac reentry, which is a precursor to ventricular fibrillation. Previous studies have shown that closed-loop alternans control techniques that apply a succession of externally administered cycle perturbations at a single site provide limited spatially-extended alternans elimination in sufficiently large cardiac substrates. However, detailed experimental investigations into the spatial dynamics of alternans control have been restricted to Purkinje fiber studies. A complete understanding of alternans control in the more clinically relevant ventricular tissue is needed. In this paper, we study the spatial dynamics of alternans and alternans control in arterially perfused canine right ventricular preparations using an optical mapping system capable of high-resolution fluorescence imaging. Specifically, we quantify the spatial efficacy of alternans control along 2.5 cm of tissue, focusing on differences in spatial control between different subregions of tissue. We demonstrate effective control of spatially-extended alternans up to 2.0 cm, with control efficacy attenuating as a function of distance. Our results provide a basis for future investigations into electrode-based control interventions of alternans in cardiac tissue.
Collapse
Affiliation(s)
- Uche B Kanu
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
7
|
Abstract
The electrocardiogram (ECG) is a measure of the collective electrical behavior of the heart based on body surface measurements. With computational models or tissue preparations, various methods have been used to compute the pseudo-ECG (pECG) of bipolar and unipolar leads that can be given clinical interpretation. When spatial maps of transmembrane potential (V(m)) are available, pECG can be derived from a weighted sum of the spatial gradients of V(m). The concept of a lead field can be used to define sensitivity curves for different bipolar and unipolar leads and to determine an effective operating height for the bipolar lead position for a two-dimensional sheet of heart cells. The pseudo-vectorcardiogram (pVCG) is computed from orthogonal bipolar lead voltages, which are derived in this study from optical voltage maps of cultured monolayers of cardiac cells. Rate and propagation direction for paced activity, rotation frequency for reentrant activity, direction of the common pathway for figure-eight reentry, and transitions from paced activity to reentry can all be distinguished using the pVCG. In contrast, the unipolar pECG does not clearly distinguish among many of the different types of electrical activity. We also show that pECG can be rapidly computed by two geometrically weighted sums of V(m), one that is summed over the area of the cell sheet and the other over the perimeter of the cell sheet. Our results are compared with those of an ad hoc difference method used in the past that consists of a simple difference of the sum of transmembrane potentials on one side of a tissue sheet and that of the other.
Collapse
|