1
|
Snyder Y, Jana S. Influence of Substrate Structure and Associated Properties on Endothelial Cell Behavior in the Context of Behaviors Associated with Laminar Flow Conditions. ACS APPLIED BIO MATERIALS 2024; 7:4664-4678. [PMID: 38939951 DOI: 10.1021/acsabm.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
In order to treat most vascular diseases, arterial grafts are commonly employed for replacing small-diameter vessels, yet they often cause thrombosis. The growth of endothelial cells along the interior surfaces of these grafts (substrates) is critical to mitigate thrombosis. Typically, endothelial cells are cultured inside these grafts under laminar flow conditions to emulate the native environment of blood vessels and produce an endothelium. Alternatively, the substrate structure could have a similar influence on endothelial cell behavior as laminar flow conditions. In this study, we investigated whether substrates with aligned fiber structures could induce responses in human umbilical vein endothelial cells (HUVECs) akin to those elicited by laminar flow. Our observations revealed that HUVECs on aligned substrates displayed significant morphological changes, aligning parallel to the fibers, similar to effects reported under laminar flow conditions. Conversely, HUVECs on random substrates maintained their characteristic cobblestone appearance. Notably, cell migration was more significant on aligned substrates. Also, we observed that while vWF expression was similar between both substrates, the HUVECs on aligned substrates showed more expression of platelet/endothelial cell adhesion molecule-1 (PECAM-1/CD31), laminin, and collagen IV. Additionally, these cells exhibited increased gene expression related to critical functions such as proliferation, extracellular matrix production, cytoskeletal reorganization, autophagy, and antithrombotic activity. These findings indicated that aligned substrates enhanced endothelial growth and behavior compared to random substrates. These improvements are similar to the beneficial effects of laminar flow on endothelial cells, which are well-documented compared to static or turbulent flow conditions.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Zhou Y, Wang T, Fan H, Liu S, Teng X, Shao L, Shen Z. Research Progress on the Pathogenesis of Aortic Aneurysm and Dissection in Metabolism. Curr Probl Cardiol 2024; 49:102040. [PMID: 37595858 DOI: 10.1016/j.cpcardiol.2023.102040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Aortic aneurysm and dissection are complicated diseases having both high prevalence and mortality. It is usually diagnosed at advanced stages and posing diagnostic and therapeutic challenges due to the limitations of current detecting methods for aortic dissection used in clinics. Metabonomics demonstrated its great potential capability in the early diagnosis and personalized treatment of several diseases. Emerging evidence suggests that metabolic disorders including amino acid metabolism, glycometabolism, and lipid metabolism disturbance are involved in the pathogenesis of aortic aneurysm and dissection by affecting multiple functional aortic cells. The purpose of this review is to provide new insights into the metabolism alterations and their related regulatory mechanisms with a focus on recent advances and findings and provide a theoretical basis for the diagnosis, prevention, and drug development for aortic aneurysm and dissection.
Collapse
Affiliation(s)
- Yihong Zhou
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Tingyu Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Hongyou Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Shan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Xiaomei Teng
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Juni RP, Kocken JMM, Abreu RC, Ottaviani L, Davalan T, Duygu B, Poels EM, Vasilevich A, Hegenbarth JC, Appari M, Bitsch N, Olieslagers S, Schrijvers DM, Stoll M, Heineke J, de Boer J, de Windt LJ, da Costa Martins PA. MicroRNA-216a is essential for cardiac angiogenesis. Mol Ther 2023; 31:1807-1828. [PMID: 37073128 PMCID: PMC10277893 DOI: 10.1016/j.ymthe.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023] Open
Abstract
While it is experimentally supported that impaired myocardial vascularization contributes to a mismatch between myocardial oxygen demand and supply, a mechanistic basis for disruption of coordinated tissue growth and angiogenesis in heart failure remains poorly understood. Silencing strategies that impair microRNA biogenesis have firmly implicated microRNAs in the regulation of angiogenesis, and individual microRNAs prove to be crucial in developmental or tumor angiogenesis. A high-throughput functional screening for the analysis of a whole-genome microRNA silencing library with regard to their phenotypic effect on endothelial cell proliferation as a key parameter, revealed several anti- and pro-proliferative microRNAs. Among those was miR-216a, a pro-angiogenic microRNA which is enriched in cardiac microvascular endothelial cells and reduced in expression under cardiac stress conditions. miR-216a null mice display dramatic cardiac phenotypes related to impaired myocardial vascularization and unbalanced autophagy and inflammation, supporting a model where microRNA regulation of microvascularization impacts the cardiac response to stress.
Collapse
Affiliation(s)
- Rio P Juni
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands; Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Jordy M M Kocken
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Ricardo C Abreu
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands; Biomaterials and Stem Cell Based Therapeutics Group, CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Coimbra, Portugal
| | - Lara Ottaviani
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Tim Davalan
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Burcu Duygu
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Ella M Poels
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Aliaksei Vasilevich
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, University of Eindhoven, Eindhoven, the Netherlands
| | - Jana C Hegenbarth
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Mahesh Appari
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU United Kingdom
| | - Nicole Bitsch
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Serve Olieslagers
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Dorien M Schrijvers
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, 48149 Münster, Germany; Department of Biochemistry, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Joerg Heineke
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; DZHK, Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Jan de Boer
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, University of Eindhoven, Eindhoven, the Netherlands
| | - Leon J de Windt
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Paula A da Costa Martins
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands; Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal.
| |
Collapse
|
5
|
Liu Q, Luo Y, Zhao Y, Xiang P, Zhu J, Jing W, Jin W, Chen M, Tang R, Yu H. Nano-hydroxyapatite accelerates vascular calcification via lysosome impairment and autophagy dysfunction in smooth muscle cells. Bioact Mater 2021; 8:478-493. [PMID: 34541414 PMCID: PMC8429627 DOI: 10.1016/j.bioactmat.2021.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Vascular calcification (VC) is a common characteristic of aging, diabetes, chronic renal failure, and atherosclerosis. The basic component of VC is hydroxyapatite (HAp). Nano-sized HAp (nHAp) has been identified to play an essential role in the development of pathological calcification of vasculature. However, whether nHAp can induce calcification in vivo and the mechanism of nHAp in the progression of VC remains unclear. We discovered that nHAp existed both in vascular smooth muscle cells (VSMCs) and their extracellular matrix (ECM) in the calcified arteries from patients. Synthetic nHAp had similar morphological and chemical properties as natural nHAp recovered from calcified artery. nHAp stimulated osteogenic differentiation and accelerated mineralization of VSMCs in vitro. Synthetic nHAp could also directly induce VC in vivo. Mechanistically, nHAp was internalized into lysosome, which impaired lysosome vacuolar H+-ATPase for its acidification, therefore blocked autophagic flux in VSMCs. Lysosomal re-acidification by cyclic-3′,5′-adenosine monophosphate (cAMP) significantly enhanced autophagic degradation and attenuated nHAp-induced calcification. The accumulated autophagosomes and autolysosomes were converted into calcium-containing exosomes which were secreted into ECM and accelerated vascular calcium deposit. Inhibition of exosome release in VSMCs decreased calcium deposition. Altogether, our results demonstrated a repressive effect of nHAp on lysosomal acidification, which inhibited autophagic degradation and promoted a conversion of the accumulated autophagic vacuoles into exosomes that were loaded with undissolved nHAp, Ca2+, Pi and ALP. These exosomes bud off the plasma membrane, deposit within ECM, and form calcium nodules. Vascular calcification was thus accelerated by nHAP through blockage of autophagic flux in VSMCs. We first demonstrated that nHAp was internalized into the vascular cell in human calcified aorta. Nano-HAp impairs lysosomal acidification and degradation, and causesblockage of autophagy flux in VSMCs. The accumulated autophagosomes and autolysosomes induced by nHAp in VSMCs are converted into exosomes which promote calcification development.
Collapse
Affiliation(s)
- Qi Liu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Yi Luo
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Yun Zhao
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, Shandong Province, 266071, China.,Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Pingping Xiang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Jinyun Zhu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Wangwei Jing
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Wenjing Jin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Mingyao Chen
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Hong Yu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| |
Collapse
|