1
|
Kim YH, Kitai T, Morales R, Kiefer K, Chaikijurajai T, Tang WHW. Usefulness of Serum Biomarkers of Endothelial Glycocalyx Damage in Prognosis of Decompensated Patients with Heart Failure with Reduced Ejection Fraction. Am J Cardiol 2022; 176:73-78. [PMID: 35606171 DOI: 10.1016/j.amjcard.2022.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Abstract
The surface layer of endothelium contains the endothelial glycocalyx (eGC), consisting of proteoglycan polymers. Syndecan-1, heparan sulfate, and hyaluronic acid are major constituents of eGC, and their increasing detection in serum represents active degradation of eGC. Serum was obtained from patients with no heart failure (non-HF) and with HF with reduced ejection fraction (HFrEF) of <40%, either stable chronic HF (CHF) or acute decompensated HF (ADHF). Syndecan-1, heparan sulfate, and hyaluronic acid were measured for comparisons in the groups, adjusting for clinical and laboratory values. In our study cohort, 51 non-HF, 66 ADHF, and 72 patients with CHF were enrolled. Between ADHF and CHF, left ventricular (LV) mass index, LV ejection fraction, and pulmonary capillary wedge pressure did not differ. Patients with ADHF had significantly higher levels of eGC constituents compared with CHF and non-HF. During follow-up, 21 patients with HF died, and the mortality rate was higher in patients with higher serum syndecan-1 or heparan sulfate (log-rank p = 0.007 and 0.016, respectively). In multivariate analysis, a doubling of serum heparan sulfate concentration amounted to a 31.5% increase in all-cause mortality (hazard ratio = 1.315, confidence interval = 1.012-1.709, p = 0.040). In conclusion, serum biomarkers of eGC were elevated in ADHF (but not in CHF) in patients with HFrEF, suggesting the potential roles of eGC degradation and endothelial dysfunction in HF decompensation. Only elevated heparin sulfate was associated with higher all-cause mortality after adjusting for traditional risk variables in patients with HFrEF.
Collapse
Affiliation(s)
- Yong-Hyun Kim
- Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio; Cardiovascular Division, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Takeshi Kitai
- Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Rommel Morales
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kathryn Kiefer
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Thanat Chaikijurajai
- Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio; Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
2
|
Pacheco DM, Silveira VD, Thomaz A, Nunes RB, Elsner VR, Dal Lago P. Chronic heart failure modifies respiratory mechanics in rats: a randomized controlled trial. Braz J Phys Ther 2016; 20:320-7. [PMID: 27556388 PMCID: PMC5015674 DOI: 10.1590/bjpt-rbf.2014.0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/18/2016] [Indexed: 11/22/2022] Open
Abstract
Objective To analyze respiratory mechanics and hemodynamic alterations in an experimental model of chronic heart failure (CHF) following myocardial infarction. Method Twenty-seven male adult Wistar rats were randomized to CHF group (n=12) or Sham group (n=15). Ten weeks after coronary ligation or sham surgery, the animals were anesthetized and submitted to respiratory mechanics and hemodynamic measurements. Pulmonary edema as well as cardiac remodeling were measured. Results The CHF rats showed pulmonary edema 26% higher than the Sham group. The respiratory system compliance (Crs) and the total lung capacity (TLC) were lower (40% and 27%, respectively) in the CHF rats when compared to the Sham group (P<0.01). There was also an increase in tissue resistance (Gti) and elastance (Hti) (28% and 45%, respectively) in the CHF group. Moreover, left ventricular end-diastolic pressure was higher (32 mmHg vs 4 mmHg, P<0.01), while the left ventricular systolic pressure was lower (118 mmHg vs 130 mmHg, P=0.02) in the CHF group when compared to the control. Pearson’s correlation coefficient showed a negative association between pulmonary edema and Crs (r=–0.70, P=0.0001) and between pulmonary edema and TLC (r=–0.67, P=0.0034). Pulmonary edema correlated positively with Gti (r=0.68, P=0.001) and Hti (r=0.68, P=0.001). Finally, there was a strong positive relationship between pulmonary edema and heart weight (r=0.80, P=0.001). Conclusion Rats with CHF present important changes in hemodynamic and respiratory mechanics, which may be associated with alterations in cardiopulmonary interactions.
Collapse
Affiliation(s)
- Deise M Pacheco
- Laboratório de Fisiologia Cardiovascular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Ciências da Saúde, UFCSPA, Porto Alegre, RS, Brazil
| | - Viviane D Silveira
- Laboratório de Fisiologia Cardiovascular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Alex Thomaz
- Laboratório de Fisiologia Cardiovascular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ramiro B Nunes
- Laboratório de Fisiologia Cardiovascular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Ciências da Reabilitação, UFCSPA, Porto Alegre, RS, Brazil
| | - Viviane R Elsner
- Laboratório de Fisiologia Cardiovascular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista do IPA, Porto Alegre, RS, Brazil
| | - Pedro Dal Lago
- Laboratório de Fisiologia Cardiovascular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Ciências da Saúde, UFCSPA, Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Ciências da Reabilitação, UFCSPA, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Breitling S, Ravindran K, Goldenberg NM, Kuebler WM. The pathophysiology of pulmonary hypertension in left heart disease. Am J Physiol Lung Cell Mol Physiol 2015; 309:L924-41. [DOI: 10.1152/ajplung.00146.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure leading to right-sided heart failure and can arise from a wide range of etiologies. The most common cause of PH, termed Group 2 PH, is left-sided heart failure and is commonly known as pulmonary hypertension with left heart disease (PH-LHD). Importantly, while sharing many clinical features with pulmonary arterial hypertension (PAH), PH-LHD differs significantly at the cellular and physiological levels. These fundamental pathophysiological differences largely account for the poor response to PAH therapies experienced by PH-LHD patients. The relatively high prevalence of this disease, coupled with its unique features compared with PAH, signal the importance of an in-depth understanding of the mechanistic details of PH-LHD. The present review will focus on the current state of knowledge regarding the pathomechanisms of PH-LHD, highlighting work carried out both in human trials and in preclinical animal models. Adaptive processes at the alveolocapillary barrier and in the pulmonary circulation, including alterations in alveolar fluid transport, endothelial junctional integrity, and vasoactive mediator secretion will be discussed in detail, highlighting the aspects that impact the response to, and development of, novel therapeutics.
Collapse
Affiliation(s)
- Siegfried Breitling
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Krishnan Ravindran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Neil M. Goldenberg
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada; and
- German Heart Institute Berlin, Berlin, Germany
| |
Collapse
|
4
|
Dixon DL, Griggs KM, De Pasquale CG, Bersten AD. Pulmonary effects of chronic elevation in microvascular pressure differ between hypertension and myocardial infarct induced heart failure. Heart Lung Circ 2014; 24:158-64. [PMID: 25245534 DOI: 10.1016/j.hlc.2014.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/28/2014] [Accepted: 08/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic heart failure (CHF) following coronary artery ligation and myocardial infarction in the rat leads to a homeostatic reduction in surface tension with associated alveolar type II cell hyperplasia and increased surfactant content, which functionally compensates for pulmonary collagen deposition and increased tissue stiffness. To differentiate the effects on lung remodelling of the sudden rise in pulmonary microvascular pressure (Pmv) with myocardial infarction from its consequent chronic elevation, we examined a hypertensive model of CHF. METHODS Cardiopulmonary outcomes due to chronic pulmonary capillary hypertension were assessed at six and 15 weeks following abdominal aortic banding (AAB) in the rat. RESULTS At six weeks post-surgery, despite significantly elevated left ventricular end-diastolic pressure, myocardial hypertrophy and increased left ventricular internal circumference in AAB rats compared with sham operated controls (p≤0.003), lung weights and tissue composition remained unchanged, and lung compliance was normal. At 15 weeks post-surgery increased lung oedema was evident in AAB rats (p=0.002) without decreased lung compliance or evidence of tissue remodelling. CONCLUSION Despite chronically elevated Pmv, comparable to that resulting from past myocardial infarction (LVEDP>19mmHg), there is no evidence of pulmonary remodelling in the AAB model of CHF.
Collapse
Affiliation(s)
- Dani-Louise Dixon
- Intensive and Critical Care Unit, Adelaide, Australia 5001; Department of Critical Care Medicine, Adelaide, Australia 5001.
| | - Kim M Griggs
- Department of Critical Care Medicine, Adelaide, Australia 5001
| | - Carmine G De Pasquale
- Cardiac Services, Flinders Medical Centre, Bedford Park, Australia 5042; Department of Medicine Flinders University, Adelaide, Australia 5001
| | - Andrew D Bersten
- Intensive and Critical Care Unit, Adelaide, Australia 5001; Department of Critical Care Medicine, Adelaide, Australia 5001
| |
Collapse
|
5
|
IsiK O, Disli OM, Bas T, AydiN H, Koç M, Kutsal A. High postoperative serum levels of surfactant type B as novel prognostic markers for congenital heart surgery. Braz J Cardiovasc Surg 2014; 29:186-91. [PMID: 25140468 PMCID: PMC4389470 DOI: 10.5935/1678-9741.20140039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/28/2013] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Congenital heart diseases are observed in 5 to 8 of every 1000 live births. The presence of a valuable biomarker during the surgical periods may aid the clinician in a more accurate prognosis during treatment. METHODS For this reason, surfactant protein B plasma levels may help to evaluate patients with cardiac problems diminishing the alveolocapillary membrane stability. In this study, plasma levels of this biomarker were measured in the preoperative and postoperative periods. This study was conducted to detect the differences between pulmonary hypertensive and normotensive patients. The differences before and after cardiopulmonary bypass were examined. RESULTS The differences in cardiopulmonary bypass time, cross-clamp time , inotropic support dose, and duration of intensive care of patients with and without pulmonary hypertensive were found to be statistically significant (P<0.05). The results revealed that this pathophysiological state was related to other variables that were studied. We believe that the differences in preoperative and postoperative SPB levels could be attributed to alveolocapillary membrane damage and alveolar surfactant dysfunction. We found that this pathophysiological condition was significantly associated with postoperative parameters. CONCLUSION The findings of the current study showed that surfactant protein B was present in the blood of patients with a congenital heart disease during the preoperative period. Long by-pass times may exert damage to the alveolocapillary membrane in patients with pulmonary hypertension and preoperative heart failure, and it is recommended to keep the option of surfactant therapy in mind during the postoperative course at the intensive care unit before preparing the patients for extubation.
Collapse
Affiliation(s)
- Onur IsiK
- Dr. Sami Ulus Maternity and Children's Research and Education Hospital, Department of Cardiovascular Surgery, Ankara, Turkey, Ankara, Turkey
| | - Olcay Murat Disli
- Department of Cardiovascular Surgery, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Tolga Bas
- Department of Cardiovascular Surgery, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Hakan AydiN
- Dr. Sami Ulus Maternity and Children's Research and Education Hospital, Department of Cardiovascular Surgery, Ankara, Turkey, Ankara, Turkey
| | - Murat Koç
- Dr. Sami Ulus Maternity and Children's Research and Education Hospital, Department of Cardiovascular Surgery, Ankara, Turkey, Ankara, Turkey
| | - Ali Kutsal
- Dr. Sami Ulus Maternity and Children's Research and Education Hospital, Department of Cardiovascular Surgery, Ankara, Turkey, Ankara, Turkey
| |
Collapse
|
6
|
Bedeutung der Surfactant-Proteine B und D in der Differentialdiagnostik der akuten Dyspnoe. ACTA ACUST UNITED AC 2010; 105:611-8. [DOI: 10.1007/s00063-010-1100-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 06/27/2010] [Indexed: 11/26/2022]
|
7
|
Klebe S, Wijngaarden PV, Melville T, Lipsett J, Smet HD, Coster D, Williams KA. Exposure to cyclic oxygen sufficient for development of oxygen-induced retinopathy does not induce bronchopulmonary dysplasia in rats. Exp Lung Res 2010; 36:175-82. [DOI: 10.3109/01902140903258904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Dixon DL, De Pasquale CG, De Smet HR, Klebe S, Orgeig S, Bersten AD. Reduced surface tension normalizes static lung mechanics in a rodent chronic heart failure model. Am J Respir Crit Care Med 2009; 180:181-7. [PMID: 19372252 DOI: 10.1164/rccm.200809-1506oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Chronic elevation of pulmonary microvascular pressure in chronic heart failure results in compensatory changes in the lung that reduce alveolar fluid filtration and protect against pulmonary microvascular rupture. OBJECTIVES To determine whether these compensatory responses may have maladaptive effects on lung function. METHODS Six weeks after myocardial infarction (chronic heart failure model) rat lung composition, both gross and histologic; air and saline mechanics; surfactant production; and immunological mediators were examined. MEASUREMENTS AND MAIN RESULTS An increase in dry lung weight, due to increased insoluble protein, lipid and cellular infiltrate, without pulmonary edema was found. Despite this, both forced impedance and air pressure-volume mechanics were normal. However, there was increased tissue stiffness in the absence of surface tension (saline pressure-volume curve) with a concurrent increase in both surfactant content and alveolar type II cell numbers, suggesting a novel homeostatic phenomenon. CONCLUSIONS These studies suggest a compensatory reduction in pulmonary surface tension that attenuates the effect of lung parenchymal remodeling on lung mechanics, hence work of breathing.
Collapse
Affiliation(s)
- Dani-Louise Dixon
- Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, Adelaide, South Australia 5042, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
Pulmonary surfactant protein B in the peripheral circulation and functional impairment in patients with chronic heart failure. Rev Esp Cardiol 2009; 62:136-42. [PMID: 19232186 DOI: 10.1016/s1885-5857(09)71531-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION AND OBJECTIVES Surfactant protein B (SP-B) is a marker of damage to the alveolar-capillary barrier that could be useful for monitoring functional impairment in patients with chronic heart failure (HF). METHODS Dyspnea-limited cardiopulmonary exercise testing was carried out in 43 outpatients with chronic HF (age 51+/-10 years, 77% male, left ventricular ejection fraction [LVEF] 33+/-11%). Peripheral blood serum samples were obtained at rest and during the first minute of peak exercise. The presence and concentration of SP-B in the serum samples were determined by Western blot analysis. RESULTS At rest, SP-B was detected in 35 (82%) patients compared with only six (23%) healthy volunteers in a control group (n=26, age 51+/-10 years, 77% male). The median circulating SP-B level was higher in HF patients, at 174 [interquartile range, 70-283] vs. 77 [41-152] (P< .001) in the control group. In HF patients, the presence of circulating SP-B was associated with a lower LVEF (31.4+/-9.6% vs. 41.8+/-15%; P=.01). Multivariate analysis showed that the resting SP-B level correlated with a greater VE/VCO2 slope (beta=1.45; P=.02). The peak-exercise SP-B level correlated almost perfectly with the resting level (r=0.980; P< .001), but there was no significant increase with exercise (P=.164). Nor was there a correlation with any other exercise parameter. CONCLUSIONS In patients with chronic HF, the level of pulmonary surfactant protein B in the peripheral circulation is increased and is correlated with ventilatory inefficiency during exercise, as indicated by the VE/VCO2 slope.
Collapse
|
10
|
Proteína surfactante tipo B en la insuficiencia cardiaca crónica: un examen de la barrera alveolocapilar. Rev Esp Cardiol 2009. [DOI: 10.1016/s0300-8932(09)70152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Pascual-Figal DA, Sánchez-Más J, de la Morena G, Casas T, Garrido IP, Ruipérez JA, Valdés M. Proteína surfactante pulmonar tipo B en circulación periférica y deterioro funcional en pacientes con insuficiencia cardiaca crónica. Rev Esp Cardiol 2009. [DOI: 10.1016/s0300-8932(09)70155-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
De Pasquale CG. Surfactant protein-B in chronic heart failure: an insight to the alveolocapillary barrier. Rev Esp Cardiol 2009; 62:117-119. [PMID: 19232183 DOI: 10.1016/s1885-5857(09)71528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
13
|
de Prost N, Dreyfuss D, Saumon G. Evaluation of two-way protein fluxes across the alveolo-capillary membrane by scintigraphy in rats: effect of lung inflation. J Appl Physiol (1985) 2007; 102:794-802. [PMID: 16990504 DOI: 10.1152/japplphysiol.00742.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pulmonary microvascular and alveolar epithelial permeability were evaluated in vivo by scintigraphic imaging during lung distension. A zone of alveolar flooding was made by instilling a solution containing99mTc-albumin in a bronchus. Alveolar epithelial permeability was estimated from the rate at which this tracer left the lungs. Microvascular permeability was simultaneously estimated measuring the accumulation of111In-transferrin in lungs. Four levels of lung distension (corresponding to 15, 20, 25, and 30 cmH2O end-inspiratory airway pressure) were studied during mechanical ventilation. Computed tomography scans showed that the zone of alveolar flooding underwent the same distension as the contralateral lung during inflation with gas. Increasing lung tissue stretch by ventilation at high airway pressure immediately increased microvascular, but also alveolar epithelial, permeability to proteins. The same end-inspiratory pressure threshold (between 20 and 25 cmH2O) was observed for epithelial and endothelial permeability changes, which corresponded to a tidal volume between 13.7 ± 4.69 and 22.2 ± 2.12 ml/kg body wt. Whereas protein flux from plasma to alveolar space (111In-transferrin lung-to-heart ratio slope) was constant over 120 min, the rate at which99mTc-albumin left air spaces decreased with time. This pattern can be explained by changes in alveolar permeability with time or by a compartment model including an intermediate interstitial space.
Collapse
Affiliation(s)
- Nicolas de Prost
- Institut National de la Santé et de la Recherche Médicale, U773, Centre de Recherche Bichat Beaujon CRB3, BP 416, and Université Paris 7 Denis Diderot, site Bichat, Paris, France
| | | | | |
Collapse
|
14
|
Lee JW, Matthay MA. Protein permeability in lung injury: now in real time again? J Appl Physiol (1985) 2006; 102:508-9. [PMID: 17068211 DOI: 10.1152/japplphysiol.01180.2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Abstract
Patients with severe acute respiratory distress syndrome who die usually succumb to multiorgan failure as opposed to hypoxia. Despite appropriate resuscitation, some patients' symptoms persist on a downward spiral, apparently propagated by an uncontained systemic inflammatory response. This phenomenon is not well understood. However, a novel hypothesis to explain this observation proposes that it is related to the life-saving ventilatory support used to treat the respiratory failure. According to this hypothesis, mechanical ventilation per se, by altering both the magnitude and the pattern of lung stretch, can cause changes in gene expression and/or cellular metabolism that ultimately can lead to the development of an overwhelming inflammatory response-even in the absence of overt structural damage. This mechanism of injury has been termed biotrauma. In this review we explore the biotrauma hypothesis, the causal relationship between biophysical injury and organ failure, and its implications for the future therapy and management of critically ill patients.
Collapse
Affiliation(s)
- Claudia C dos Santos
- Department of Medicine, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada.
| | | |
Collapse
|
16
|
De Pasquale CG, Arnolda LF, Doyle IR, Aylward PE, Russell AE, Bersten AD. Circulating surfactant protein-B levels increase acutely in response to exercise-induced left ventricular dysfunction. Clin Exp Pharmacol Physiol 2005; 32:622-7. [PMID: 16120188 DOI: 10.1111/j.0305-1870.2005.04241.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. As a result of its enormous surface area and necessary thinness for gas exchange, the alveolocapillary barrier is vulnerable to mechanical disruption from raised pulmonary microvascular pressure (Pmv). 2. Because surfactant protein-B (SP-B) leaks into the blood stream from the alveoli in response to alveolocapillary barrier damage and exercise leads to increased Pmv, we sought to determine whether exercise results in increased plasma SP-B. Moreover, in the setting of exercise-induced left ventricular dysfunction, the consequent increase in left heart filling pressure and, therefore, P(mv) would be expected to further increase plasma SP-B levels. 3. Twenty consecutive subjects referred for treadmill exercise stress echocardiography (ESE) had venous blood sampled immediately before and after ESE for batch atrial natriuretic peptide (ANP) and SP-B assay. Echocardiographic measures of pulmonary haemodynamics (pulmonary artery flow acceleration time (pafAT) and right ventricular outflow tract velocity time integral (rVTI)) were also taken pre- and post-exercise. 4. Although circulating ANP levels increased following exercise (P < 0.001), there was no change in circulating SP-B levels in the entire cohort. 5. Ten subjects had a positive ESE for ventricular dysfunction. Although circulating ANP was increased post-exercise in both the negative and positive ESE groups (P < 0.05 and P < 0.01, respectively), circulating SP-B only increased post-exercise in the positive ESE group (P < 0.05). Echocardiographic parameters supported an increment in P(mv) in the cohort with exercise-induced left ventricular dysfunction because this group had an increase in pafAT (P < 0.05; reflecting pulmonary artery pressure) and no change in rVTI. 6. Physical exertion associated with a Bruce protocol ESE is insufficient to increase circulating SP-B, despite evidence of increased left atrial and pulmonary vascular pressure. However, in the setting of exercise-induced myocardial dysfunction, there is a detectable increase in circulating SP-B. 7. The exaggerated increase in pulmonary vascular pressure in exercise-induced myocardial dysfunction may result in increased SP-B leakage from the alveoli into the circulation by altering the integrity of the alveolocapillary barrier to protein.
Collapse
|