1
|
Crispino A, Loppini A, Uzelac I, Iravanian S, Bhatia NK, Burke M, Filippi S, Fenton FH, Gizzi A. A cross species thermoelectric and spatiotemporal analysis of alternans in live explanted hearts using dual voltage-calcium fluorescence optical mapping. Physiol Meas 2024; 45:065001. [PMID: 38772394 DOI: 10.1088/1361-6579/ad4e8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Objective.Temperature plays a crucial role in influencing the spatiotemporal dynamics of the heart. Electrical instabilities due to specific thermal conditions typically lead to early period-doubling bifurcations and beat-to-beat alternans. These pro-arrhythmic phenomena manifest in voltage and calcium traces, resulting in compromised contractile behaviors. In such intricate scenario, dual optical mapping technique was used to uncover unexplored multi-scale and nonlinear couplings, essential for early detection and understanding of cardiac arrhythmia.Approach.We propose a methodological analysis of synchronized voltage-calcium signals for detecting alternans, restitution curves, and spatiotemporal alternans patterns under different thermal conditions, based on integral features calculation. To validate our approach, we conducted a cross-species investigation involving rabbit and guinea pig epicardial ventricular surfaces and human endocardial tissue under pacing-down protocols.Main results.We show that the proposed integral feature, as the area under the curve, could be an easily applicable indicator that may enhance the predictability of the onset and progression of cardiac alternans. Insights into spatiotemporal correlation analysis of characteristic spatial lengths across different heart species were further provided.Significance.Exploring cross-species thermoelectric features contributes to understanding temperature-dependent proarrhythmic regimes and their implications on coupled spatiotemporal voltage-calcium dynamics. The findings provide preliminary insights and potential strategies for enhancing arrhythmia detection and treatment.
Collapse
Affiliation(s)
- Anna Crispino
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Loppini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Ilija Uzelac
- Virginia Commonwealth University, Richmond, VA, United States of America
| | - Shahriar Iravanian
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Neal K Bhatia
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Michael Burke
- Department of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Simonetta Filippi
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Alessio Gizzi
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
2
|
Zaniboni M. The electrical restitution of the non-propagated cardiac ventricular action potential. Pflugers Arch 2024; 476:9-37. [PMID: 37783868 PMCID: PMC10758374 DOI: 10.1007/s00424-023-02866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Sudden changes in pacing cycle length are frequently associated with repolarization abnormalities initiating cardiac arrhythmias, and physiologists have long been interested in measuring the likelihood of these events before their manifestation. A marker of repolarization stability has been found in the electrical restitution (ER), the response of the ventricular action potential duration to a pre- or post-mature stimulation, graphically represented by the so-called ER curve. According to the restitution hypothesis (ERH), the slope of this curve provides a quantitative discrimination between stable repolarization and proneness to arrhythmias. ER has been studied at the body surface, whole organ, and tissue level, and ERH has soon become a key reference point in theoretical, clinical, and pharmacological studies concerning arrhythmia development, and, despite criticisms, it is still widely adopted. The ionic mechanism of ER and cellular applications of ERH are covered in the present review. The main criticism on ERH concerns its dependence from the way ER is measured. Over the years, in fact, several different experimental protocols have been established to measure ER, which are also described in this article. In reviewing the state-of-the art on cardiac cellular ER, I have introduced a notation specifying protocols and graphical representations, with the aim of unifying a sometime confusing nomenclature, and providing a physiological tool, better defined in its scope and limitations, to meet the growing expectations of clinical and pharmacological research.
Collapse
Affiliation(s)
- Massimiliano Zaniboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma (Italy), Parco Area Delle Scienze, 11/A, 43124, Parma, Italy.
| |
Collapse
|
3
|
Venkateshappa R, Hunter DV, Muralidharan P, Nagalingam RS, Huen G, Faizi S, Luthra S, Lin E, Cheng YM, Hughes J, Khelifi R, Dhunna DP, Johal R, Sergeev V, Shafaattalab S, Julian LM, Poburko DT, Laksman Z, Tibbits GF, Claydon TW. Targeted activation of human ether-à-go-go-related gene channels rescues electrical instability induced by the R56Q+/- long QT syndrome variant. Cardiovasc Res 2023; 119:2522-2535. [PMID: 37739930 PMCID: PMC10676460 DOI: 10.1093/cvr/cvad155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 09/24/2023] Open
Abstract
AIMS Long QT syndrome type 2 (LQTS2) is associated with inherited variants in the cardiac human ether-à-go-go-related gene (hERG) K+ channel. However, the pathogenicity of hERG channel gene variants is often uncertain. Using CRISPR-Cas9 gene-edited hiPSC-derived cardiomyocytes (hiPSC-CMs), we investigated the pathogenic mechanism underlying the LQTS-associated hERG R56Q variant and its phenotypic rescue by using the Type 1 hERG activator, RPR260243. METHODS AND RESULTS The above approaches enable characterization of the unclear causative mechanism of arrhythmia in the R56Q variant (an N-terminal PAS domain mutation that primarily accelerates channel deactivation) and translational investigation of the potential for targeted pharmacologic manipulation of hERG deactivation. Using perforated patch clamp electrophysiology of single hiPSC-CMs, programmed electrical stimulation showed that the hERG R56Q variant does not significantly alter the mean action potential duration (APD90). However, the R56Q variant increases the beat-to-beat variability in APD90 during pacing at constant cycle lengths, enhances the variance of APD90 during rate transitions, and increases the incidence of 2:1 block. During paired S1-S2 stimulations measuring electrical restitution properties, the R56Q variant was also found to increase the variability in rise time and duration of the response to premature stimulations. Application of the hERG channel activator, RPR260243, reduces the APD variance in hERG R56Q hiPSC-CMs, reduces the variability in responses to premature stimulations, and increases the post-repolarization refractoriness. CONCLUSION Based on our findings, we propose that the hERG R56Q variant leads to heterogeneous APD dynamics, which could result in spatial dispersion of repolarization and increased risk for re-entry without significantly affecting the average APD90. Furthermore, our data highlight the antiarrhythmic potential of targeted slowing of hERG deactivation gating, which we demonstrate increases protection against premature action potentials and reduces electrical heterogeneity in hiPSC-CMs.
Collapse
Affiliation(s)
- Ravichandra Venkateshappa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Diana V Hunter
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Priya Muralidharan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Raghu S Nagalingam
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, Canada V5Z 4H4
| | - Galvin Huen
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Shoaib Faizi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Shreya Luthra
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Eric Lin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Julia Hughes
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Rania Khelifi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Daman Parduman Dhunna
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Raj Johal
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Valentine Sergeev
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Sanam Shafaattalab
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Lisa M Julian
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Damon T Poburko
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Zachary Laksman
- Department of Medicine, School of Biomedical Engineering, University of British Columbia, 2194 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Glen F Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC, Canada V5Z 4H4
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Tom W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| |
Collapse
|
4
|
Han H, Cheng LK, Paskaranandavadivel N. High-resolution in vivo monophasic gastric slow waves to quantify activation and recovery profiles. Neurogastroenterol Motil 2022; 34:e14422. [PMID: 35726361 PMCID: PMC10078408 DOI: 10.1111/nmo.14422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Gastric bio-electrical slow waves are, in part, responsible for coordinating motility. Spatial dynamics about the recovery phase of slow wave recordings have not been thoroughly investigated due to the lack of suitable experimental techniques. METHODS A high-resolution multi-channel suction electrode array was developed and applied in pigs to acquire monophasic gastric slow waves. Signal characteristics were verified against biphasic slow waves recorded by conventional surface contact electrode arrays. Monophasic slow wave events were categorized into two groups based on their morphological characteristics, after which their amplitudes, activation to recovery intervals, and gradients were quantified and compared. Coverage of activation and recovery maps for both electrode types were calculated and compared. KEY RESULTS Monophasic slow waves had a more pronounced recovery phase with a higher gradient than biphasic slow waves (0.5 ± 0.1 vs. 0.3 ± 0.1 mV·s-1 ). Between the 2 groups of monophasic slow waves, there was a significant difference in amplitude (1.8 ± 0.5 vs. 1.1 ± 0.2 mV), activation time gradient (0.8 ± 0.2 vs. 0.3 ± 0.1 mV·s-1 ), and recovery time gradient (0.5 ± 0.1 vs. 0.3 ± 0.1 mV·s-1 ). For the suction and conventional contact electrode arrays, the recovery maps had reduced coverage compared to the activation maps (4 ± 6% and 43 ± 11%, respectively). CONCLUSIONS AND INFERENCES A novel high-resolution multi-channel suction electrode array was developed and applied in vivo to record monophasic gastric slow waves. Slow wave recovery phase analysis could be performed more efficiently on monophasic signals compared with biphasic signals, due to the more identifiable recovery phases.
Collapse
Affiliation(s)
- Henry Han
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, The University of Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
5
|
Aronis KN, Prakosa A, Bergamaschi T, Berger RD, Boyle PM, Chrispin J, Ju S, Marine JE, Sinha S, Tandri H, Ashikaga H, Trayanova NA. Characterization of the Electrophysiologic Remodeling of Patients With Ischemic Cardiomyopathy by Clinical Measurements and Computer Simulations Coupled With Machine Learning. Front Physiol 2021; 12:684149. [PMID: 34335294 PMCID: PMC8317643 DOI: 10.3389/fphys.2021.684149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale Patients with ischemic cardiomyopathy (ICMP) are at high risk for malignant arrhythmias, largely due to electrophysiological remodeling of the non-infarcted myocardium. The electrophysiological properties of the non-infarcted myocardium of patients with ICMP remain largely unknown. Objectives To assess the pro-arrhythmic behavior of non-infarcted myocardium in ICMP patients and couple computational simulations with machine learning to establish a methodology for the development of disease-specific action potential models based on clinically measured action potential duration restitution (APDR) data. Methods and Results We enrolled 22 patients undergoing left-sided ablation (10 ICMP) and compared APDRs between ICMP and structurally normal left ventricles (SNLVs). APDRs were clinically assessed with a decremental pacing protocol. Using genetic algorithms (GAs), we constructed populations of action potential models that incorporate the cohort-specific APDRs. The variability in the populations of ICMP and SNLV models was captured by clustering models based on their similarity using unsupervised machine learning. The pro-arrhythmic potential of ICMP and SNLV models was assessed in cell- and tissue-level simulations. Clinical measurements established that ICMP patients have a steeper APDR slope compared to SNLV (by 38%, p < 0.01). In cell-level simulations, APD alternans were induced in ICMP models at a longer cycle length compared to SNLV models (385–400 vs 355 ms). In tissue-level simulations, ICMP models were more susceptible for sustained functional re-entry compared to SNLV models. Conclusion Myocardial remodeling in ICMP patients is manifested as a steeper APDR compared to SNLV, which underlies the greater arrhythmogenic propensity in these patients, as demonstrated by cell- and tissue-level simulations using action potential models developed by GAs from clinical measurements. The methodology presented here captures the uncertainty inherent to GAs model development and provides a blueprint for use in future studies aimed at evaluating electrophysiological remodeling resulting from other cardiac diseases.
Collapse
Affiliation(s)
- Konstantinos N Aronis
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Adityo Prakosa
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Teya Bergamaschi
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ronald D Berger
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Patrick M Boyle
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jonathan Chrispin
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Suyeon Ju
- Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Joseph E Marine
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Sunil Sinha
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Harikrishna Tandri
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Hiroshi Ashikaga
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Natalia A Trayanova
- Section of Electrophysiology, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Biomedical Engineering, The Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
6
|
Osadchii OE. Effects of antiarrhythmics on the electrical restitution in perfused guinea-pig heart are critically determined by the applied cardiac pacing protocol. Exp Physiol 2019; 104:490-504. [PMID: 30758086 DOI: 10.1113/ep087531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/12/2019] [Indexed: 01/11/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are modifications in the restitution of ventricular action potential duration induced by antiarrhythmic drugs the same when assessed with premature extrastimulus application at variable coupling intervals (the standard stimulation protocol) and with steady state pacing at variable rates (the dynamic stimulation protocol)? What is the main finding and its importance? With class I and class III antiarrhythmics, the effects on electrical restitution determined with the standard stimulation protocol dissociate from those obtained during dynamic pacing. These findings indicate a limited value of the electrical restitution assessments based on extrasystolic stimulations alone, as performed in the clinical studies, in estimating the outcomes of antiarrhythmic drug therapies. ABSTRACT A steep slope of the ventricular action potential duration (APD) to diastolic interval (DI) relationships (the electrical restitution) can precipitate tachyarrhythmia, whereas a flattened slope is antiarrhythmic. The derangements in APD restitution responsible for transition of tachycardia to ventricular fibrillation can be assessed with cardiac pacing at progressively increasing rates (the dynamic stimulation protocol). Nevertheless, this method is not used clinically owing to the risk of inducing myocardial ischaemia. Instead, the restitution kinetics is determined with a premature extrastimulus application at variable coupling intervals (the standard stimulation protocol). Whether the two protocols are equivalent in estimating antiarrhythmic drug effects is uncertain. In this study, dofetilide and quinidine, the agents blocking repolarizing K+ currents, increased epicardial APD in perfused guinea-pig hearts, with effects being greater at long vs. short DIs. These changes were more pronounced during dynamic pacing compared to premature extrastimulations. Accordingly, although both agents markedly steepened the dynamic restitution, there was only a marginal increase in the standard restitution slope with dofetilide, and no effect with quinidine. Lidocaine and mexiletine, selective Na+ channel blockers, prolonged the effective refractory period without changing APD, and increased the minimum DI that enabled ventricular capture during extrastimulations. No change in the minimum DI was noted during dynamic pacing. Consequently, although lidocaine and mexiletine reduced the standard restitution slope, they failed to flatten the dynamic restitution. Overall, these findings imply a limited value of the electrical restitution assessments with premature extrastimulations alone in discriminating arrhythmic vs. antiarrhythmic changes during drug therapies.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Department of Health Science and Technology, University of Aalborg, Fredrik Bajers Vej 7E, 9220, Aalborg, Denmark
| |
Collapse
|
7
|
Hardy MEL, Pervolaraki E, Bernus O, White E. Dynamic Action Potential Restitution Contributes to Mechanical Restitution in Right Ventricular Myocytes From Pulmonary Hypertensive Rats. Front Physiol 2018; 9:205. [PMID: 29593564 PMCID: PMC5859380 DOI: 10.3389/fphys.2018.00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/23/2018] [Indexed: 11/21/2022] Open
Abstract
We investigated the steepened dynamic action potential duration (APD) restitution of rats with pulmonary artery hypertension (PAH) and right ventricular (RV) failure and tested whether the observed APD restitution properties were responsible for negative mechanical restitution in these myocytes. PAH and RV failure were provoked in male Wistar rats by a single injection of monocrotaline (MCT) and compared with saline-injected animals (CON). Action potentials were recorded from isolated RV myocytes at stimulation frequencies between 1 and 9 Hz. Action potential waveforms recorded at 1 Hz were used as voltage clamp profiles (action potential clamp) at stimulation frequencies between 1 and 7 Hz to evoke rate-dependent currents. Voltage clamp profiles mimicking typical CON and MCT APD restitution were applied and cell shortening simultaneously monitored. Compared with CON myocytes, MCT myocytes were hypertrophied; had less polarized diastolic membrane potentials; had action potentials that were triggered by decreased positive current density and shortened by decreased negative current density; APD was longer and APD restitution steeper. APD90 restitution was unchanged by exposure to the late Na+-channel blocker (5 μM) ranolazine or the intracellular Ca2+ buffer BAPTA. Under AP clamp, stimulation frequency-dependent inward currents were smaller in MCT myocytes and were abolished by BAPTA. In MCT myocytes, increasing stimulation frequency decreased contraction amplitude when depolarization duration was shortened, to mimic APD restitution, but not when depolarization duration was maintained. We present new evidence that the membrane potential of PAH myocytes is less stable than normal myocytes, being more easily perturbed by external currents. These observations can explain increased susceptibility to arrhythmias. We also present novel evidence that negative APD restitution is at least in part responsible for the negative mechanical restitution in PAH myocytes. Thus, our study links electrical restitution remodeling to a defining mechanical characteristic of heart failure, the reduced ability to respond to an increase in demand.
Collapse
Affiliation(s)
- Matthew E L Hardy
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Eleftheria Pervolaraki
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Olivier Bernus
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom.,IHU Liryc, L'institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, U1045, Bordeaux, France.,Centre de Recherche Cardio-Thoracique de Bordeaux, Institut National de la Santé et de la Recherche Médicale, U1045, Bordeaux, France
| | - Ed White
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
8
|
Osadchii OE. Role of abnormal repolarization in the mechanism of cardiac arrhythmia. Acta Physiol (Oxf) 2017; 220 Suppl 712:1-71. [PMID: 28707396 DOI: 10.1111/apha.12902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In cardiac patients, life-threatening tachyarrhythmia is often precipitated by abnormal changes in ventricular repolarization and refractoriness. Repolarization abnormalities typically evolve as a consequence of impaired function of outward K+ currents in cardiac myocytes, which may be caused by genetic defects or result from various acquired pathophysiological conditions, including electrical remodelling in cardiac disease, ion channel modulation by clinically used pharmacological agents, and systemic electrolyte disorders seen in heart failure, such as hypokalaemia. Cardiac electrical instability attributed to abnormal repolarization relies on the complex interplay between a provocative arrhythmic trigger and vulnerable arrhythmic substrate, with a central role played by the excessive prolongation of ventricular action potential duration, impaired intracellular Ca2+ handling, and slowed impulse conduction. This review outlines the electrical activity of ventricular myocytes in normal conditions and cardiac disease, describes classical electrophysiological mechanisms of cardiac arrhythmia, and provides an update on repolarization-related surrogates currently used to assess arrhythmic propensity, including spatial dispersion of repolarization, activation-repolarization coupling, electrical restitution, TRIaD (triangulation, reverse use dependence, instability, and dispersion), and the electromechanical window. This is followed by a discussion of the mechanisms that account for the dependence of arrhythmic vulnerability on the location of the ventricular pacing site. Finally, the review clarifies the electrophysiological basis for cardiac arrhythmia produced by hypokalaemia, and gives insight into the clinical importance and pathophysiology of drug-induced arrhythmia, with particular focus on class Ia (quinidine, procainamide) and Ic (flecainide) Na+ channel blockers, and class III antiarrhythmic agents that block the delayed rectifier K+ channel (dofetilide).
Collapse
Affiliation(s)
- O. E. Osadchii
- Department of Health Science and Technology; University of Aalborg; Aalborg Denmark
| |
Collapse
|
9
|
Qiu XS, Chauveau S, Anyukhovsky EP, Rahim T, Jiang YP, Harleton E, Feinmark SJ, Lin RZ, Coronel R, Janse MJ, Opthof T, Rosen TS, Cohen IS, Rosen MR. Increased Late Sodium Current Contributes to the Electrophysiological Effects of Chronic, but Not Acute, Dofetilide Administration. Circ Arrhythm Electrophysiol 2016; 9:e003655. [PMID: 27071826 DOI: 10.1161/circep.115.003655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/01/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Drugs are screened for delayed rectifier potassium current (IKr) blockade to predict long QT syndrome prolongation and arrhythmogenesis. However, single-cell studies have shown that chronic (hours) exposure to some IKr blockers (eg, dofetilide) prolongs repolarization additionally by increasing late sodium current (INa-L) via inhibition of phosphoinositide 3-kinase. We hypothesized that chronic dofetilide administration to intact dogs prolongs repolarization by blocking IKr and increasing INa-L. METHODS AND RESULTS We continuously infused dofetilide (6-9 μg/kg bolus+6-9 μg/kg per hour IV infusion) into anesthetized dogs for 7 hours, maintaining plasma levels within the therapeutic range. In separate experiments, myocardial biopsies were taken before and during 6-hour intravenous dofetide infusion, and the level of phospho-Akt was determined. Acute and chronic dofetilide effects on action potential duration (APD) were studied in canine left ventricular subendocardial slabs using microelectrode techniques. Dofetilide monotonically increased QTc and APD throughout 6.5-hour exposure. Dofetilide infusion during ≥210 minutes inhibited Akt phosphorylation. INa-L block with lidocaine shortened QTc and APD more at 6.5 hours than at 50 minutes (QTc) or 30 minutes (APD) dofetilide administration. In comparison, moxifloxacin, an IKr blocker with no effects on phosphoinositide 3-kinase and INa-L prolonged APD acutely but no additional prolongation occurred on chronic superfusion. Lidocaine shortened APD equally during acute and chronic moxifloxacin superfusion. CONCLUSIONS Increased INa-L contributes to chronic dofetilide effects in vivo. These data emphasize the need to include time and INa-L in evaluating the phosphoinositide 3-kinase inhibition-derived proarrhythmic potential of drugs and provide a mechanism for benefit from lidocaine administration in clinical acquired long QT syndrome.
Collapse
Affiliation(s)
- Xiaoliang S Qiu
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Samuel Chauveau
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Evgeny P Anyukhovsky
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Tania Rahim
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Ya-Ping Jiang
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Erin Harleton
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Steven J Feinmark
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Richard Z Lin
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Ruben Coronel
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Michiel J Janse
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Tobias Opthof
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Tove S Rosen
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| | - Ira S Cohen
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.).
| | - Michael R Rosen
- From the Department of Physiology and Biophysics, Stony Brook University, NY (X.S.Q., S.C., E.P.A., T.R., Y.-P.J., R.Z.L., I.S.C.); Departments of Pharmacology (E.H., S.J.F., M.R.R.) and Pediatrics (T.S.R., M.R.R.), College of Physician and Surgeons of Columbia University, New York, NY; Medical Service, Northport VA Medical Center, NY (R.Z.L.); Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands (R.C., M.J.J., T.O.); L'Institut de RYthmologie et de modélisation Cardiaque (LIRYC), Université Bordeaux Segalen, Bordeaux, France (R.C.); and Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (T.O.)
| |
Collapse
|
10
|
Myocardial Infarction Causes Transient Cholinergic Transdifferentiation of Cardiac Sympathetic Nerves via gp130. J Neurosci 2016; 36:479-88. [PMID: 26758839 DOI: 10.1523/jneurosci.3556-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Sympathetic and parasympathetic control of the heart is a classic example of norepinephrine (NE) and acetylcholine (ACh) triggering opposing actions. Sympathetic NE increases heart rate and contractility through activation of β receptors, whereas parasympathetic ACh slows the heart through muscarinic receptors. Sympathetic neurons can undergo a developmental transition from production of NE to ACh and we provide evidence that mouse cardiac sympathetic nerves transiently produce ACh after myocardial infarction (MI). ACh levels increased in viable heart tissue 10-14 d after MI, returning to control levels at 21 d, whereas NE levels were stable. At the same time, the genes required for ACh synthesis increased in stellate ganglia, which contain most of the sympathetic neurons projecting to the heart. Immunohistochemistry 14 d after MI revealed choline acetyltransferase (ChAT) in stellate sympathetic neurons and vesicular ACh transporter immunoreactivity in tyrosine hydroxylase-positive cardiac sympathetic fibers. Finally, selective deletion of the ChAT gene from adult sympathetic neurons prevented the infarction-induced increase in cardiac ACh. Deletion of the gp130 cytokine receptor from sympathetic neurons prevented the induction of cholinergic genes after MI, suggesting that inflammatory cytokines induce the transient acquisition of a cholinergic phenotype in cardiac sympathetic neurons. Ex vivo experiments examining the effect of NE and ACh on rabbit cardiac action potential duration revealed that ACh blunted both the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. This raises the possibility that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility. SIGNIFICANCE STATEMENT Sympathetic neurons normally make norepinephrine (NE), which increases heart rate and the contractility of cardiac myocytes. We found that, after myocardial infarction, the sympathetic neurons innervating the heart begin to make acetylcholine (ACh), which slows heart rate and decreases contractility. Several lines of evidence confirmed that the source of ACh was sympathetic nerves rather than parasympathetic nerves that are the normal source of ACh in the heart. Global application of NE with or without ACh to ex vivo hearts showed that ACh partially reversed the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. That suggests that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility.
Collapse
|
11
|
Zheng Y, Wei D, Zhu X, Chen W, Fukuda K, Shimokawa H. Ventricular fibrillation mechanisms and cardiac restitutions: An investigation by simulation study on whole-heart model. Comput Biol Med 2015; 63:261-8. [DOI: 10.1016/j.compbiomed.2014.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/14/2014] [Accepted: 06/23/2014] [Indexed: 11/27/2022]
|
12
|
Late gadolinium enhancement of cardiac magnetic resonance imaging indicates abnormalities of time-domain T-wave alternans in hypertrophic cardiomyopathy with ventricular tachycardia. Heart Rhythm 2015; 12:1747-55. [DOI: 10.1016/j.hrthm.2015.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 01/07/2023]
|
13
|
Yamashita S, Yoshida A, Fukuzawa K, Nakanishi T, Matsumoto A, Konishi H, Ichibori H, Hyogo K, Imada H, Hirata KI. The Relationship Between Cardiac Vulnerability and Restitution Properties of the Ventricular Activation Recovery Interval. J Cardiovasc Electrophysiol 2015; 26:768-73. [PMID: 25810143 DOI: 10.1111/jce.12672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 12/01/2022]
Abstract
INTRODUCTION The restitution of the action potential duration (APD) is an important contributor to ventricular fibrillation (VF) initiation by a single critically timed ectopic beat. We hypothesized that a steep slope of the activation recovery interval restitution curve was related to the upper limit of vulnerability (ULV). METHODS AND RESULTS Fifty-four consecutive patients with implantable cardioverter defibrillators (ICDs) implanted between April 2012 and July 2013 were included. At the implantation, pacing from the right ventricular (RV) coil to an indifferent electrode inserted in the ICD pocket was performed, and the unipolar electrograms from the RV coil were simultaneously recorded. We assessed the standard restitution by introducing extra-stimuli, while measuring the activation recovery interval (ARI). Our protocol for the vulnerability test consisted of delivering three 15 J shocks on the T-peak and within ±20 milliseconds of it. If VF was not induced by that procedure, a ULV of ≤15 J was defined. The relationship between the ULV and maximum slope of the restitution curve was analyzed. A restitution curve could finally be obtained in a total of 40 patients. The background characteristics were similar between the two groups. The maximum slope of the restitution curve was steeper in the ULV > 15 J group than ULV ≤ 15 J group (1.55 ± 0.45 vs. 0.91 ± 0.64, P < 0.05). A maximum slope exceeding 1.0 was the optimal point for discriminating patients with a ULV > 15 J from a ULV ≤ 15 J (sensitivity 61.5% and specificity 96.3%). CONCLUSION The maximum slope of the restitution curve was significantly related to the ULV. High defibrillation threshold patients could be detected by the ARI dynamics.
Collapse
Affiliation(s)
- Soichiro Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Yoshida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Fukuzawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Nakanishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akinori Matsumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Konishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hirotoshi Ichibori
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kiyohiro Hyogo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Imada
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
14
|
Effects of Endothelin-1 Chronic Stimulation on Electrical Restitution, Beat-to-beat Variability of Repolarization, and Ventricular Arrhythmogenesis. J Cardiovasc Pharmacol 2013; 62:549-58. [DOI: 10.1097/fjc.0000000000000015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Dorenkamp M, Morguet AJ, Sticherling C, Behrens S, Zabel M. Long-term prognostic value of restitution slope in patients with ischemic and dilated cardiomyopathies. PLoS One 2013; 8:e54768. [PMID: 23349967 PMCID: PMC3548796 DOI: 10.1371/journal.pone.0054768] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/14/2012] [Indexed: 11/30/2022] Open
Abstract
Background An action potential duration (APD) restitution curve with a steep slope ≥1 has been associated with increased susceptibility for malignant ventricular arrhythmias. We aimed to evaluate the “restitution hypothesis” and tested ventricular APD restitution slope as well as effective refractory period (ERP)/APD ratio for long-term prognostic value in patients with ischemic (ICM) or dilated cardiomyopathy (DCM). Methodology/Principal Findings Monophasic action potentials were recorded in patients with ICM (n = 32) and DCM (n = 42) undergoing routine programmed ventricular stimulation (PVS). Left ventricular ejection fraction was 32±7% and 28±9%, respectively. APD and ERP were measured at baseline stimulation (S1) and upon introduction of one to three extrastimuli (S2–S4). ERP/APD ratios and the APD restitution curve were calculated and the maximum restitution slope was determined. After a mean follow-up of 6.1±3.0 years, the combined end-point of mortality and and/or implantable cardioverter-defibrillator shock was not predicted by restitution slope or ERP/APD ratios. Comparing S2 vs. S3 vs. S4 extrastimuli for restitution slope (1.5±0.6 vs. 1.4±0.4 vs. 1.3±0.5; p = NS), additional extrastimuli did not lead to a steepening restitution slope. ERP/APD ratio decreased with additional extrastimuli (0.98±0.09 [S1] vs. 0.97±0.10 [S2] vs. 0.93±0.11 [S3]; p = 0.03 S1 vs. S3). Positive PVS was strongly predictive of outcome (p = 0.006). Conclusions/Significance Neither ventricular APD restitution slope nor ERP/APD ratios predict outcome in patients with ICM or DCM.
Collapse
Affiliation(s)
- Marc Dorenkamp
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | | | |
Collapse
|
16
|
Benoist D, Stones R, Drinkhill MJ, Benson AP, Yang Z, Cassan C, Gilbert SH, Saint DA, Cazorla O, Steele DS, Bernus O, White E. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension. Am J Physiol Heart Circ Physiol 2012; 302:H2381-95. [PMID: 22427523 PMCID: PMC3378302 DOI: 10.1152/ajpheart.01084.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/15/2012] [Indexed: 12/22/2022]
Abstract
Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca(2+) handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca(2+) transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca(2+)-ATPase activity, increased sarcoplasmic reticular Ca(2+)-release fraction, and increased Ca(2+) spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca(2+) handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs.
Collapse
Affiliation(s)
- David Benoist
- Institute of Membrane and Systems Biology, University of Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Osadchii OE. Effects of ventricular pacing protocol on electrical restitution assessments in guinea-pig heart. Exp Physiol 2012; 97:807-21. [DOI: 10.1113/expphysiol.2012.065219] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Cabasson A, Meste O, Vesin JM. Estimation and modeling of QT-interval adaptation to heart rate changes. IEEE Trans Biomed Eng 2011; 59:956-65. [PMID: 22203702 DOI: 10.1109/tbme.2011.2181507] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper introduces a new method for QT-interval estimation. It consists in a batch processing mode of the improved Woody's method. Performance of this methodology is evaluated using synthetic data. In parallel, a new model of QT-interval dynamics behavior related to heart rate changes is presented. Since two kinds of QT response have been pointed out, the main idea is to split the modeling process into two steps: 1) the modeling of the fast adaptation, which is inspired by the electrical behavior at the cellular level relative to the electrical restitution curve, and 2) the modeling of the slow adaptation, inspired by experimental works at the cellular level. Both approaches are based on a low-complexity autoregressive process whose parameters are estimated using an unbiased estimator. This new modeling of QT adaptation, combined with the presented QT-estimation process, is applied to several ECG recordings with various heart rate variability dynamics. Its potential is then illustrated on ECG recorded during rest, atrial fibrillation episodes, and exercise. Meaningful results in agreement with physiological knowledge at the cellular level are obtained.
Collapse
Affiliation(s)
- Aline Cabasson
- Laboratory of Informatics, Signals and Systems (I3S), Centre National de laRecherche Scientifique (CNRS) University of Nice-Sophia Antipolis, Sophia Antipolis, France.
| | | | | |
Collapse
|
19
|
Subramanian A, Suszko A, Selvaraj RJ, Nanthakumar K, Ivanov J, Chauhan VS. Modulated dispersion of activation and repolarization by premature beats in patients with cardiomyopathy at risk of sudden death. Am J Physiol Heart Circ Physiol 2011; 300:H2221-9. [DOI: 10.1152/ajpheart.01050.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Premature beats can trigger ventricular arrhythmias in heart disease, but the mechanisms are not well defined. We studied the effect of premature beats on activation and repolarization dispersion in seven patients with cardiomyopathy (57 ± 10 yr, left ventricular ejection fraction 31 ± 7%). Activation time (AT), activation-recovery interval (ARI), and total repolarization time (TRT) were measured from 26 unipolar electrograms during right ventricle (RV) endocardial (early) to left ventricle epicardial (late) activation in response to RV apical extrastimulation (S1S2). Early TRT dispersion increased significantly with shorter S1S2 (1.0 ± 0.2 to 2.3 ± 0.4 ms/mm, P < 0.0001), with minimal change in late TRT dispersion (0.8 ± 0.1 to 1.0 ± 0.3 ms, P = 0.02). This was associated with an increase in early AT dispersion (1.0 ± 0.1 to 1.5 ± 0.2 ms/mm, P = 0.05) but no change in late AT dispersion (0.6 ± 0.1 to 0.7 ± 0.2 ms/mm, P = 0.4). Early and late ARI dispersion did not change with shorter S1S2. AT restitution slopes were similar between early and late sites, as was slope heterogeneity. ARI restitution slope was greater in early vs. late sites (1.3 ± 0.6 vs. 0.8 ± 0.6, P = 0.03), but slope heterogeneity was similar. With shorter S1S2, AT-ARI slopes became less negative (flattened) at both early (−0.4 ± 0.1 to +0.04 ± 0.2) and late (−1.5 ± 0.2 to +0.3 ± 0.2) sites, implying less activation-repolarization coupling. There was no difference in AT-ARI slopes between early and late sites at short S1S2. In conclusion, high-risk patients with cardiomyopathy have greater TRT dispersion at tightly coupled S1S2 due to greater AT dispersion and activation-repolarization uncoupling. Modulated dispersion is more pronounced at early vs. late activated sites, which may predispose to reentrant ventricular arrhythmias.
Collapse
Affiliation(s)
| | - Adrian Suszko
- Division of Cardiology, University Health Network, Toronto, Canada
| | - Raja J. Selvaraj
- Division of Cardiology, University Health Network, Toronto, Canada
| | | | - Joan Ivanov
- Division of Cardiology, University Health Network, Toronto, Canada
| | - Vijay S. Chauhan
- Division of Cardiology, University Health Network, Toronto, Canada
| |
Collapse
|
20
|
Mincholé A, Pueyo E, Rodríguez JF, Zacur E, Doblaré M, Laguna P. Quantification of Restitution Dispersion From the Dynamic Changes of the $T$-Wave Peak to End, Measured at the Surface ECG. IEEE Trans Biomed Eng 2011; 58:1172-82. [DOI: 10.1109/tbme.2010.2097597] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Benoist D, Stones R, Drinkhill M, Bernus O, White E. Arrhythmogenic substrate in hearts of rats with monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2011; 300:H2230-7. [PMID: 21398591 DOI: 10.1152/ajpheart.01226.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mechanisms associated with right ventricular (RV) hypertension and arrhythmias are less understood than those in the left ventricle (LV). The aim of our study was to investigate whether and by what mechanisms a proarrhythmic substrate exists in a rat model of RV hypertension and hypertrophy. Rats were injected with monocrotaline (MCT; 60 mg/kg) to induce pulmonary artery hypertension or with saline (CON). Myocardial levels of mRNA for genes expressing ion channels were measured by real-time RT-PCR. Monophasic action potential duration (MAPD) was recorded in isolated Langendorff-perfused hearts. MAPD restitution was measured, and arrhythmias were induced by burst stimulation. Twenty-two to twenty-six days after treatment, MCT animals had RV hypertension, hypertrophy, and decreased ejection fractions compared with CON. A greater proportion of MCT hearts developed sustained ventricular tachycardias/fibrillation (0.83 MCT vs. 0.14 CON). MAPD was prolonged in RV and less so in the LV of MCT hearts. There were decreased levels of mRNA for K(+) channels. Restitution curves of MCT RV were steeper than CON RV or either LV. Dispersion of MAPD was greater in MCT hearts and was dependent on stimulation frequency. Computer simulations based on ion channel gene expression closely predicted experimental changes in MAPD and restitution. We have identified a proarrhythmic substrate in the hearts of MCT-treated rats. We conclude that steeper RV electrical restitution and rate-dependant RV-LV action potential duration dispersion may be contributing mechanisms and be implicated in the generation of arrhythmias associated with in RV hypertension and hypertrophy.
Collapse
Affiliation(s)
- David Benoist
- Institute of Membrane and Systems Biology, Garstang Bldg., Univ. of Leeds, Leeds LS29JT, UK
| | | | | | | | | |
Collapse
|
22
|
Osadchii OE, Soltysinska E, Olesen SP. Na+ channel distribution and electrophysiological heterogeneities in guinea pig ventricular wall. Am J Physiol Heart Circ Physiol 2011; 300:H989-1002. [DOI: 10.1152/ajpheart.00816.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to explore the distribution pattern of Na+ channels across ventricular wall, and to determine its functional correlates, in the guinea pig heart. Voltage-dependent Na+ channel (Nav) protein expression levels were measured in transmural samples of ventricular tissue by Western blotting. Isolated, perfused heart preparations were used to record monophasic action potentials and volume-conducted ECG, and to measure effective refractory periods (ERPs) and pacing thresholds, in order to assess excitability, electrical restitution kinetics, and susceptibility to stimulation-evoked tachyarrhythmias at epicardial and endocardial stimulation sites. In both ventricular chambers, Nav protein expression was higher at endocardium than epicardium, with midmyocardial layers showing intermediate expression levels. Endocardial stimulation sites showed higher excitability, as evidenced by lower pacing thresholds during regular stimulation and downward displacement of the strength-interval curve reconstructed after extrasystolic stimulation compared with epicardium. ERP restitution assessed over a wide range of pacing rates showed greater maximal slope and faster kinetics at endocardial than epicardial stimulation sites. Flecainide, a Na+ channel blocker, reduced the maximal ERP restitution slope, slowed restitution kinetics, and eliminated epicardial-to-endocardial difference in dynamics of electrical restitution. Greater excitability and steeper electrical restitution have been associated with greater arrhythmic susceptibility of endocardium than epicardium, as assessed by measuring ventricular fibrillation threshold, inducibility of tachyarrhythmias by rapid cardiac pacing, and the magnitude of stimulation-evoked repolarization alternans. In conclusion, higher Na+ channel expression levels may contribute to greater excitability, steeper electrical restitution slopes and faster restitution kinetics, and greater susceptibility to stimulation-evoked tachyarrhythmias at endocardium than epicardium in the guinea pig heart.
Collapse
Affiliation(s)
- Oleg E. Osadchii
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ewa Soltysinska
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Soren Peter Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Ashino S, Watanabe I, Kofune M, Nagashima K, Ohkubo K, Okumura Y, Mano H, Nakai T, Kunimoto S, Kasamaki Y, Hirayama A. Effects of Quinidine on the Action Potential Duration Restitution Property in the Right Ventricular Outflow Tract in Patients With Brugada Syndrome. Circ J 2011; 75:2080-6. [DOI: 10.1253/circj.cj-11-0227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sonoko Ashino
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Ichiro Watanabe
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Masayoshi Kofune
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Koichi Nagashima
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Kimie Ohkubo
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Yasuo Okumura
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Hiroaki Mano
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Toshiko Nakai
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Satoshi Kunimoto
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Yuji Kasamaki
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Atsushi Hirayama
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| |
Collapse
|
24
|
Jing L, Chourasia S, Patwardhan A. Heterogeneous memory in restitution of action potential duration in pig ventricles. J Electrocardiol 2010; 43:425-32. [PMID: 20378123 DOI: 10.1016/j.jelectrocard.2010.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Indexed: 11/16/2022]
Abstract
BACKGROUND Restitution of action potential duration and memory importantly affect electrical stability in ventricles. Studies have reported heterogeneous restitution among different regions of the ventricles. However, existence of heterogeneity in memory is not as well investigated. METHODS Transmembrane potentials were recorded in endocardial and epicardial tissues from both ventricles of farm pigs. Pacing protocols with sinusoidally changing diastolic intervals were used to reveal hysteresis in restitution, from which quantitative measures of memory were calculated. RESULTS Larger measures of hysteresis were observed in the endocardium than the epicardium (P < .05): loop thickness (in milliseconds), 26.9 vs 16.2; overall tilt, 0.376 vs 0.249; and loop area (in square milliseconds), 7288 vs 4146. Except for overall tilt, no significant differences in these measures were observed between ventricles. CONCLUSION Heterogeneity in memory exists in pig ventricles. Because regions with the steepest restitution may also have the largest memory, our results suggest that heterogeneity in memory should also be factored in when predicting electrical stability.
Collapse
Affiliation(s)
- Linyuan Jing
- Center for Biomedical Engineering, University Of Kentucky, KY 40506-0070, USA
| | | | | |
Collapse
|
25
|
Nishii N, Nagase S, Morita H, Kusano KF, Namba T, Miura D, Miyaji K, Hiramatsu S, Tada T, Murakami M, Watanabe A, Banba K, Sakai Y, Nakamura K, Oka T, Ohe T. Abnormal restitution property of action potential duration and conduction delay in Brugada syndrome: both repolarization and depolarization abnormalities. Europace 2010; 12:544-52. [PMID: 20083482 DOI: 10.1093/europace/eup432] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIMS This study sought to examine the action potential duration restitution (APDR) property and conduction delay in Brugada syndrome (BrS) patients. A steeply sloped APDR curve and conduction delay are known to be important determinants for the occurrence of ventricular fibrillation (VF). METHODS AND RESULTS Endocardial monophasic action potential was obtained from 39 BrS patients and 9 control subjects using the contact electrode method. Maximum slopes of the APDR curve were obtained at both the right ventricular outflow tract (RVOT) and the right ventricular apex (RVA). The onset of activation delay (OAD) after premature stimulation was examined as a marker of conduction delay. Maximum slope of the APDR curve in BrS patients was significantly steeper than that in control subjects at both the RVOT and the RVA (0.77 +/- 0.21 vs. 058 +/- 0.14 at RVOT, P = 0.009; 0.98 +/- 0.23 vs. 0.62 +/- 0.16 at RVA, P = 0.001). The dispersion of maximum slope of the APDR curve between the RVOT and the RVA was also larger in BrS patients than in control subjects. The OAD was significantly longer in BrS patients than in control subjects from the RVOT to RVA and from the RVA to RVOT (from RVOT to RVA: 256 +/- 12 vs. 243 +/- 7 ms, P = 0.003; from RVA to RVOT: 252 +/- 11 vs. 241 +/- 9 ms, P = 0.01). CONCLUSIONS Abnormal APDR properties and conduction delay were observed in BrS patients. Both repolarization and depolarization abnormalities are thought to be related to the development of VF in BrS patients.
Collapse
Affiliation(s)
- Nobuhiro Nishii
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Osadchii OE, Larsen AP, Olesen SP. Predictive value of electrical restitution in hypokalemia-induced ventricular arrhythmogenicity. Am J Physiol Heart Circ Physiol 2010; 298:H210-20. [DOI: 10.1152/ajpheart.00695.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ventricular action potential (AP) shortens exponentially upon a progressive reduction of the preceding diastolic interval. Steep electrical restitution slopes have been shown to promote wavebreaks, thus contributing to electrical instability. The present study was designed to assess the predictive value of electrical restitution in hypokalemia-induced arrhythmogenicity. We recorded monophasic APs and measured effective refractory periods (ERP) at distinct ventricular epicardial and endocardial sites and monitored volume-conducted ECG at baseline and after hypokalemic perfusion (2.5 mM K+ for 30 min) in isolated guinea pig heart preparations. The restitution of AP duration measured at 90% repolarization (APD90) was assessed after premature extrastimulus application at variable coupling stimulation intervals, and ERP restitution was assessed by measuring refractoriness over a wide range of pacing rates. Hypokalemia increased the amplitude of stimulation-evoked repolarization alternans and the inducibility of tachyarrhythmias and reduced ventricular fibrillation threshold. Nevertheless, these changes were associated with flattened rather than steepened APD90 restitution slopes and slowed restitution kinetics. In contrast, ERP restitution slopes were significantly increased in hypokalemic hearts. Although epicardial APD90 measured during steady-state pacing (S1-S1 = 250 ms) was prolonged in hypokalemic hearts, the left ventricular ERP was shortened. Consistently, the epicardial ERP measured at the shortest diastolic interval achieved upon a progressive increase in pacing rate was reduced in the hypokalemic left ventricle. In conclusion, this study highlights the superiority of ERP restitution at predicting increased arrhythmogenicity in the hypokalemic myocardium. The lack of predictive value of APD90 restitution is presumably related to different mode of changes in ventricular repolarization and refractoriness in a hypokalemic setting, whereby APD90 prolongation may be associated with shortened ERP.
Collapse
Affiliation(s)
- Oleg E. Osadchii
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anders Peter Larsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Soren Peter Olesen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Ashino S, Watanabe I, Kofune M, Nagashima K, Ohkubo K, Okumura Y, Nakai T, Kasamaki Y, Hirayama A. Abnormal Action Potential Duration Restitution Property in the Right Ventricular Outflow Tract in Brugada Syndrome. Circ J 2010; 74:664-70. [DOI: 10.1253/circj.cj-09-0872] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sonoko Ashino
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Ichiro Watanabe
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Masayoshi Kofune
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Koichi Nagashima
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Kimie Ohkubo
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Yasuo Okumura
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Toshiko Nakai
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Yuji Kasamaki
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Atsushi Hirayama
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| |
Collapse
|
28
|
Toal SC, Farid TA, Selvaraj R, Chauhan VS, Masse S, Ivanov J, Harris L, Downar E, Franz MR, Nanthakumar K. Short-Term Memory and Restitution During Ventricular Fibrillation in Human Hearts. Circ Arrhythm Electrophysiol 2009; 2:562-70. [DOI: 10.1161/circep.108.833442] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Satish C. Toal
- From the Division of Cardiology, Toronto General Hospital (S.C.T., T.F., R.S., V.S.C., S.M., J.I., L.H., E.D., K.N.), Toronto, Canada; and Veterans Affairs Medical Center (M.R.F.), Washington, DC
| | - Talha A. Farid
- From the Division of Cardiology, Toronto General Hospital (S.C.T., T.F., R.S., V.S.C., S.M., J.I., L.H., E.D., K.N.), Toronto, Canada; and Veterans Affairs Medical Center (M.R.F.), Washington, DC
| | - Raja Selvaraj
- From the Division of Cardiology, Toronto General Hospital (S.C.T., T.F., R.S., V.S.C., S.M., J.I., L.H., E.D., K.N.), Toronto, Canada; and Veterans Affairs Medical Center (M.R.F.), Washington, DC
| | - Vijay S. Chauhan
- From the Division of Cardiology, Toronto General Hospital (S.C.T., T.F., R.S., V.S.C., S.M., J.I., L.H., E.D., K.N.), Toronto, Canada; and Veterans Affairs Medical Center (M.R.F.), Washington, DC
| | - Stephane Masse
- From the Division of Cardiology, Toronto General Hospital (S.C.T., T.F., R.S., V.S.C., S.M., J.I., L.H., E.D., K.N.), Toronto, Canada; and Veterans Affairs Medical Center (M.R.F.), Washington, DC
| | - Joan Ivanov
- From the Division of Cardiology, Toronto General Hospital (S.C.T., T.F., R.S., V.S.C., S.M., J.I., L.H., E.D., K.N.), Toronto, Canada; and Veterans Affairs Medical Center (M.R.F.), Washington, DC
| | - Louise Harris
- From the Division of Cardiology, Toronto General Hospital (S.C.T., T.F., R.S., V.S.C., S.M., J.I., L.H., E.D., K.N.), Toronto, Canada; and Veterans Affairs Medical Center (M.R.F.), Washington, DC
| | - Eugene Downar
- From the Division of Cardiology, Toronto General Hospital (S.C.T., T.F., R.S., V.S.C., S.M., J.I., L.H., E.D., K.N.), Toronto, Canada; and Veterans Affairs Medical Center (M.R.F.), Washington, DC
| | - Michael R. Franz
- From the Division of Cardiology, Toronto General Hospital (S.C.T., T.F., R.S., V.S.C., S.M., J.I., L.H., E.D., K.N.), Toronto, Canada; and Veterans Affairs Medical Center (M.R.F.), Washington, DC
| | - Kumaraswamy Nanthakumar
- From the Division of Cardiology, Toronto General Hospital (S.C.T., T.F., R.S., V.S.C., S.M., J.I., L.H., E.D., K.N.), Toronto, Canada; and Veterans Affairs Medical Center (M.R.F.), Washington, DC
| |
Collapse
|
29
|
Lee KT, Chu CS, Cheng KH, Lu YH, Huang CH, Lin TH, Lee MC, Sheu SH, Lai WT. Effect of Short-term Cardiac Memory on Ventricular Electrical Restitution and QT Intervals in Humans. Kaohsiung J Med Sci 2009; 25:53-61. [DOI: 10.1016/s1607-551x(09)70041-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Hayashi M, Takatsuki S, Maison-Blanche P, Messali A, Haggui A, Milliez P, Leenhardt A, Extramiana F. Ventricular repolarization restitution properties in patients exhibiting type 1 Brugada electrocardiogram with and without inducible ventricular fibrillation. J Am Coll Cardiol 2008; 51:1162-8. [PMID: 18355653 DOI: 10.1016/j.jacc.2007.11.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study aimed to elucidate the contribution of the repolarization restitution property to the sustained ventricular fibrillation (VF) in Brugada syndrome. BACKGROUND Although phase 2 re-entry develops as the trigger of VF, the other precipitating factors have remained unclear. METHODS Twenty-one patients with a type 1 Brugada electrocardiogram underwent programmed electrical stimulation. Before the VF induction, single extrastimuli were delivered at 3 basic drive cycle lengths (BCLs) (400 ms, 600 ms, and 750 ms) from the right ventricular apex (RVA) and outflow tract (RVOT), and the activation recovery interval (ARI) was measured at 5-mm vicinity of the pacing site. The maximum ARI restitution slope was determined using the overlapping least-squares linear segments. RESULTS We found that VF was inducible in 10 patients. A repeated-measure analysis of variance revealed that the slope in the RVA was steeper in patients with inducible VF than in those without but that in the RVOT was similar. The slope was steeper at longer BCLs and also steeper in the RVA than RVOT at BCLs of 600 and 750 ms. In patients with inducible VF, the percentage of patients exhibiting a slope >1 was 0%, 20%, and 75% in the RVA and 0%, 0%, and 14% in the RVOT at BCLs of 400 ms, 600 ms, and 750 ms, respectively. No patients without inducible VF had a slope >1. CONCLUSIONS These results suggest the repolarization restitution property is a contributing factor to the propensity for VF in Brugada syndrome and, regarding this property, the RVA plays more important role than the RVOT.
Collapse
Affiliation(s)
- Meiso Hayashi
- Cardiology Department, Lariboisière Hospital, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Selvaraj RJ, Chauhan VS. Human Ventricular Action Potential Duration Restitution. J Am Coll Cardiol 2008; 51:1721-2; author reply 1722-3. [DOI: 10.1016/j.jacc.2008.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
32
|
Reply. J Am Coll Cardiol 2008. [DOI: 10.1016/j.jacc.2008.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Narayan SM, Franz MR, Lalani G, Kim J, Sastry A. T-Wave Alternans, Restitution of Human Action Potential Duration, and Outcome. J Am Coll Cardiol 2007; 50:2385-92. [DOI: 10.1016/j.jacc.2007.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 10/04/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
|
34
|
Abstract
Microvolt-level T-wave alternans (TWA) is a new arrhythmia risk marker to assess subtle changes in repolarization that has been introduced for arrhythmia risk stratification. Recent experimental studies have demonstrated that it reflects a heartrate dependent increased spatial dispersion of repolarization associated with unidirectional conduction block, and reentry that may result in the occurrence of ventricular fibrillation. Clinical studies have convincingly demonstrated that TWA is closely related to arrhythmia induction in the electrophysiology (EP) laboratory as well as to the occurrence of spontaneous ventricular tachyarrhythmias in patients undergoing EP study. Subsequent studies showed that TWA-assessed noninvasively-is predictive of future arrhythmic events in patients with implanted ICDs as well as for ventricular tachyarrhythmias in patients with congestive heart failure without a prior history of arrhythmias. There is still controversy, however, about the predictive value of TWA in patients following acute myocardial infarction (MI). Several studies which differ in patient selection, pharmacologic treatment of the patients, and endpoint definitions, have reported conflicting results. Therefore, studies with a large number of unselected patients after acute MI on optimal treatment according to contemporary therapeutic guidelines as well as of patients with reduced left ventricular ejection fraction following MI are needed to define its role with regard to identifying patients who may benefit from primary preventive ICD therapy. Future research should also focus on evaluation of alternative methods to increase heart rate (i.e., pharmacological stimulation) in an attempt to reduce the proportion of incomplete tests in patients with insufficient increase in heart rate during exercise testing.
Collapse
|