1
|
Terawaki S, Kitano K, Aoyama M, Mori T, Hakoshima T. MT1‐MMP recognition by ERM proteins and its implication in CD44 shedding. Genes Cells 2015; 20:847-59. [DOI: 10.1111/gtc.12276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/05/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Shin‐ichi Terawaki
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| | - Ken Kitano
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| | - Miki Aoyama
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| | - Tomoyuki Mori
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| | - Toshio Hakoshima
- Structural Biology Laboratory Nara Institute of Science and Technology 8916‐5 Takayama Ikoma Nara 630‐0192 Japan
| |
Collapse
|
2
|
Koenig GC, Rowe RG, Day SM, Sabeh F, Atkinson JJ, Cooke KR, Weiss SJ. MT1-MMP-dependent remodeling of cardiac extracellular matrix structure and function following myocardial infarction. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1863-78. [PMID: 22464947 DOI: 10.1016/j.ajpath.2012.01.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 01/23/2023]
Abstract
The myocardial extracellular matrix (ECM), an interwoven meshwork of proteins, glycoproteins, proteoglycans, and glycosaminoglycans that is dominated by polymeric fibrils of type I collagen, serves as the mechanical scaffold on which myocytes are arrayed for coordinated and synergistic force transduction. Following ischemic injury, cardiac ECM remodeling is initiated via localized proteolysis, the bulk of which has been assigned to matrix metalloproteinase (MMP) family members. Nevertheless, the key effector(s) of myocardial type I collagenolysis both in vitro and in vivo have remained unidentified. In this study, using cardiac explants from mice deficient in each of the major type I collagenolytic MMPs, including MMP-13, MMP-8, MMP-2, MMP-9, or MT1-MMP, we identify the membrane-anchored MMP, MT1-MMP, as the dominant collagenase that is operative within myocardial tissues in vitro. Extending these observations to an in vivo setting, mice heterozygous for an MT1-MMP-null allele display a distinct survival advantage and retain myocardial function relative to wild-type littermates in an experimental model of myocardial infarction, effects associated with preservation of the myocardial type I collagen network as a consequence of the decreased collagenolytic potential of cardiac fibroblasts. This study identifies MT1-MMP as a key MMP responsible for effecting postinfarction cardiac ECM remodeling and cardiac dysfunction.
Collapse
Affiliation(s)
- Gerald C Koenig
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Müller AL, Hryshko LV, Dhalla NS. Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol 2012; 164:39-47. [PMID: 22357424 DOI: 10.1016/j.ijcard.2012.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 10/19/2011] [Accepted: 01/28/2012] [Indexed: 12/20/2022]
Abstract
Various procedures such as angioplasty, thrombolytic therapy, coronary bypass surgery, and cardiac transplantation are invariably associated with ischemia-reperfusion (I/R) injury. Impaired recovery of cardiac function due to I/R injury is considered to be a consequence of the occurrence of both oxidative stress and intracellular Ca(2+)-overload in the myocardium. These changes in the ischemic myocardium appear to activate both extracellular and intracellular proteases which are responsible for the cleavage of extracellular matrix and subcellular structures involved in the maintenance of cardiac function. It is thus intended to discuss the actions of I/R injury on several proteases, with a focus on calpain, matrix metalloproteinases, and cathepsins as well as their role in inducing alterations both inside and outside the cardiomyocytes. In addition, modifications of subcellular organelles such as myofibrils, sarcoplasmic reticulum and sarcolemma as well as extracellular matrix, and the potential regulatory effects of endogenous inhibitors on protease activities are identified. Both extracellular and intracellular proteolytic activities appear to be imperative in determining the true extent of I/R injury and their inhibition seems to be of critical importance for improving the recovery of cardiac function. Thus, both extracellular and intracellular proteases may serve as potential targets for the development of cardioprotective interventions for reducing damage to the heart and retarding the development of contractile dysfunction caused by I/R injury.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
4
|
Abstract
The focus of this review is on translational studies utilizing large-animal models and clinical studies that provide fundamental insight into cellular and extracellular pathways contributing to post-myocardial infarction (MI) left ventricle (LV) remodeling. Specifically, both large-animal and clinical studies have examined the potential role of endogenous and exogenous stem cells to alter the course of LV remodeling. Interestingly, there have been alterations in LV remodeling with stem cell treatment despite a lack of long-term cell engraftment. The translation of the full potential of stem cell treatments to clinical studies has yet to be realized. The modulation of proteolytic pathways that contribute to the post-MI remodeling process has also been examined. On the basis of recent large-animal studies, there appears to be a relationship between stem cell treatment post-MI and the modification of proteolytic pathways, generating the hypothesis that stem cells leave an echo effect that moderates LV remodeling.
Collapse
Affiliation(s)
- Jennifer A Dixon
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, 29425, USA
| | | |
Collapse
|
5
|
Continuous localized monitoring of plasmin activity identifies differential and regional effects of the serine protease inhibitor aprotinin: relevance to antifibrinolytic therapy. J Cardiovasc Pharmacol 2011; 57:400-6. [PMID: 21502925 DOI: 10.1097/fjc.0b013e31820b7df1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Antifibrinolytic therapy, such as the use of the serine protease inhibitor aprotinin, was a mainstay for hemostasis after cardiac surgery. However, aprotinin was empirically dosed, and although the pharmacological target was the inhibition of plasmin activity (PLact), this was never monitored, off-target effects occurred, and led to withdrawn from clinical use. The present study developed a validated fluorogenic microdialysis method to continuously measure PLact and tested the hypothesis that standardized clinical empirical aprotinin dosing would impart differential and regional effects on PLact. METHODS/RESULTS Pigs (30 kg) were instrumented with microdialysis probes to continuously measure PLact in myocardial, kidney, and skeletal muscle compartments (deltoid) and then randomized to high-dose aprotinin administration (2 mKIU load/0.5 mKIU/hr infusion; n = 7), low-dose aprotinin administration (1 mKIU load/0.250 mKIU/hr infusion; n = 6). PLact was compared with time-matched vehicle (n = 4), and PLact was also measured in plasma by an in vitro fluorogenic method. Aprotinin suppressed PLact in the myocardium and kidney at both high and low doses, indicative that both doses exceeded a minimal concentration necessary for PLact inhibition. However, differential effects of aprotinin on PLact were observed in the skeletal muscle, indicative of different compartmentalization of aprotinin. CONCLUSIONS Using a large animal model and a continuous method to monitor regional PLact, these unique results demonstrated that an empirical aprotinin dosing protocol causes maximal and rapid suppression in the myocardium and kidney and in turn would likely increase the probability of off-target effects and adverse events. Furthermore, this proof of principle study demonstrated that continuous monitoring of determinants of fibrinolysis might provide a novel approach for managing fibrinolytic therapy.
Collapse
|
6
|
Dixon JA, Gaillard WF, Rivers WT, Koval CN, Stroud RE, Mukherjee R, Spinale FG. Heterogeneity in MT1-MMP activity with ischemia-reperfusion and previous myocardial infarction: relation to regional myocardial function. Am J Physiol Heart Circ Physiol 2010; 299:H1947-58. [PMID: 20935147 DOI: 10.1152/ajpheart.00314.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
After a myocardial infarction (MI), an episode of ischemia-reperfusion (I/R) can result in a greater impairment of left ventricular (LV) regional function (LVRF) than that caused by an initial I/R episode in the absence of MI. Membrane type-I matrix metalloproteinase (MT1-MMP) proteolytically processes the myocardial matrix and is upregulated in LV failure. This study tested the central hypothesis that a differential induction of MT1-MMP occurs and is related to LVRF after I/R in the context of a previous MI. Pigs with a previous MI [3 wk postligation of the left circumflex artery (LCx)] or no MI were randomized to undergo I/R [60-min/120-min left anterior descending coronary artery (LAD) occlusion] or no I/R as follows: no MI and no I/R (n = 6), no MI and I/R (n = 8), MI and no I/R (n = 8), and MI and I/R (n = 8). Baseline LVRF (regional stroke work, sonomicrometry) was lower in the LAD region in the MI group compared with no MI (103 ± 12 vs. 188 ± 26 mmHg·mm, P < 0.05) and remained lower with peak ischemia (35 ± 8 vs. 88 ± 17 mmHg·mm, P < 0.05). Using a novel interstitial microdialysis method, MT1-MMP was directly measured and was over threefold higher in the LCx region and over twofold higher in the LAD region in the MI group compared with the no MI group at baseline. MT1-MMP fluorogenic activity was persistently elevated in the LCx region in the MI and I/R group but remained unchanged in the LAD region. In contrast, no changes in MT1-MMP occurred in the LCx region in the no MI and I/R group but increased in the LAD region. MT1-MMP mRNA was increased by over threefold in the MI region in the MI and I/R group. In conclusion, these findings demonstrate that a heterogeneous response in MT1-MMP activity likely contributes to regional dysfunction with I/R and that a subsequent episode of I/R activates a proteolytic cascade within the MI region that may contribute to a continued adverse remodeling process.
Collapse
Affiliation(s)
- Jennifer A Dixon
- Division of Cardiothoracic Surgery, Medical University of South Carolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Wang W, Yen H, Chen CH, Jasani N, Soni R, Koscica K, Reznik SE. Prevention of inflammation-associated preterm birth by knockdown of the endothelin-1-matrix metalloproteinase-1 pathway. Mol Med 2010; 16:505-12. [PMID: 20809048 DOI: 10.2119/molmed.2010.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/18/2010] [Indexed: 11/06/2022] Open
Abstract
Premature delivery occurs in 12% of all births, accounts for nearly half of neonatal morbidity and is increasing in frequency. Current therapeutic approaches to preterm delivery are ineffective and present serious risks to both the mother and fetus. Although there are multiple factors that contribute to the etiology of preterm birth, the single most common cause is infection. Recently, using cDNA microarray analysis of human placental tissue, we demonstrated that human placental matrix metalloproteinase-1 (MMP-1) is upregulated during labor. In a separate line of investigation, we have shown that blockade of endothelin-1 (ET-1) action through the use of an endothelin-converting enzyme-1 (ECE-1) inhibitor, an established commercially available endothelin receptor antagonist or a novel quinolone-derived endothelin receptor antagonist synthesized by our group also prevents preterm labor and delivery in a mouse model. We have now shown that induction of preterm labor with lipopolysaccharide in our mouse model is associated with increased levels of MMP-1. Furthermore, we showed that silencing the ECE-1/ET-1 pathway by using ECE-1 RNA interference prevents both the onset of preterm labor and upregulation of MMP-1. The data indicate that ET-1 and MMP-1 act in the same molecular pathway in preterm labor.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, New York, United States of America
| | | | | | | | | | | | | |
Collapse
|
8
|
The matrix metalloproteases and endothelin-1 in infection-associated preterm birth. Obstet Gynecol Int 2010; 2010. [PMID: 20706662 PMCID: PMC2913859 DOI: 10.1155/2010/657039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 06/28/2010] [Accepted: 06/28/2010] [Indexed: 11/30/2022] Open
Abstract
Preterm birth (PTB) is clinically defined as any delivery which occurs before the completion of 37 weeks of gestation, and is currently the most important problem in obstetrics. In the United States, PTB accounts for 12-13% of all live births, and, with the exception of fetuses suffering from anomalies, is the primary cause of perinatal mortality. While the risk factors for PTB are numerous, the single most common cause is intrauterine infection. As there is currently no FDA-approved therapy for infection-associated PTB, understanding the pathogenesis of preterm labor (PTL) and delivery should be given high priority. The matrix metalloproteinases (MMPs) are a family of enzymes that have been implicated in normal parturition as well as infection-triggered rupture of membranes and preterm birth. Several lines of evidence also suggest a role for endothelin-1 (ET-1) in infection-associated preterm delivery. This paper focuses on the evidence that the MMPs and ET-1 act in the same molecular pathway in preterm birth.
Collapse
|
9
|
Mukherjee R, Rivers WT, Ruddy JM, Matthews RG, Koval CN, Plyler RA, Chang EI, Patel RK, Kern CB, Stroud RE, Spinale FG. Long-term localized high-frequency electric stimulation within the myocardial infarct: effects on matrix metalloproteinases and regional remodeling. Circulation 2010; 122:20-32. [PMID: 20566951 DOI: 10.1161/circulationaha.110.936872] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Disruption of the balance between matrix metalloproteinases (MMP) and MMP inhibitors (TIMPs) within a myocardial infarct (MI) contributes to left ventricular wall thinning and changes in regional stiffness at the MI region. This study tested the hypothesis that a targeted regional approach through localized high-frequency stimulation (LHFS) using low-amplitude electric pulses instituted within a formed MI scar would alter MMP/TIMP levels and prevent MI thinning. METHODS AND RESULTS At 3 weeks after MI, pigs were randomized for LHFS (n=7; 240 bpm, 0.8 V, 0.05-ms pulses) or were left unstimulated (UNSTIM; n=10). At 4 weeks after MI, left ventricular wall thickness (echocardiography; 0.89+/-0.07 versus 0.67+/-0.08 cm; P<0.05) and regional stiffness (piezoelectric crystals; 14.70+/-2.08 versus 9.11+/-1.24; P<0.05) were higher with LHFS than in UNSTIM. In vivo interstitial MMP activity (fluorescent substrate cleavage; 943+/-59 versus 1210+/-72 U; P<0.05) in the MI region was lower with LHFS than in UNSTIM. In the MI region, MMP-2 levels were lower and TIMP-1 and collagen levels were higher with LHFS than in UNSTIM (all P<0.05). Transforming growth factor-beta receptor 1 and phosphorylated SMAD-2/3 levels within the MI region were higher with LHFS than in UNSTIM. Electric stimulation (4 Hz) of isolated fibroblasts resulted in reduced MMP-2 and MT1-MMP levels but increased TIMP-1 levels compared with unstimulated fibroblasts. CONCLUSIONS These unique findings demonstrate that LHFS of the MI region altered left ventricular wall thickness and material properties, likely as a result of reduced regional MMP activity. Thus, LHFS may provide a novel means to favorably modify left ventricular remodeling after MI.
Collapse
Affiliation(s)
- Rupak Mukherjee
- Medical University of South Carolina, Charleston, 29425, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Interstitial plasmin activity with epsilon aminocaproic acid: temporal and regional heterogeneity. Ann Thorac Surg 2010; 89:1538-45. [PMID: 20417774 DOI: 10.1016/j.athoracsur.2010.01.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/21/2010] [Accepted: 01/25/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Epsilon aminocaproic acid (EACA) is used in cardiac surgery to modulate plasmin activity (PLact). The present study developed a fluorogenic-microdialysis system to measure in vivo region specific temporal changes in PLact after EACA administration. METHODS Pigs (25 to 35 kg) received EACA (75 mg/kg, n = 7) or saline in which microdialysis probes were placed in the liver, myocardium, kidney, and quadricep muscle. The microdialysate contained a plasmin-specific fluorogenic peptide and fluorescence emission, which directly reflected PLact, determined at baseline, 30, 60, 90, and 120 minutes after EACA/vehicle infusion. RESULTS Epsilon aminocaproic acid caused significant decreases in liver and quadricep PLact at 60, 90, 120 minutes, and at 30, 60, and 120 minutes, respectively (p < 0.05). In contrast, EACA induced significant biphasic changes in heart and kidney PLact profiles with initial increases followed by decreases at 90 and 120 minutes (p < 0.05). The peak EACA interstitial concentrations for all compartments occurred at 30 minutes after infusion, and were fivefold higher in the renal compartment and fourfold higher in the myocardium, when compared with the liver or muscle (p < 0.05). CONCLUSIONS Using a large animal model and in vivo microdialysis measurements of plasmin activity, the unique findings from this study were twofold. First, EACA induced temporally distinct plasmin activity profiles within the plasma and interstitial compartments. Second, EACA caused region-specific changes in plasmin activity profiles. These temporal and regional heterogeneic effects of EACA may have important therapeutic considerations when managing fibrinolysis in the perioperative period.
Collapse
|
11
|
Murray DB, Levick SP, Brower GL, Janicki JS. Inhibition of matrix metalloproteinase activity prevents increases in myocardial tumor necrosis factor-alpha. J Mol Cell Cardiol 2010; 49:245-50. [PMID: 20403361 DOI: 10.1016/j.yjmcc.2010.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 02/05/2023]
Abstract
TNF-alpha is known to cause adverse myocardial remodeling. While we have previously shown a role for cardiac mast cells in mediating increases in myocardial TNF-alpha, however, matrix metalloproteinase (MMP) activation of TNF-alpha may also be contributory. We sought to determine the relative roles of MMPs and cardiac mast cells in the activation of TNF-alpha in the hearts of rats subjected to chronic volume overload. Interventions with the broad spectrum MMP inhibitor, GM6001, or the mast cell stabilizer, nedocromil, were performed in the rat aortocaval fistula (ACF) model of volume overload. Myocardial TNF-alpha levels were significantly increased in the ACF. This increase was prevented by MMP inhibition with GM6001 (p< or =0.001 vs. ACF). Conversely, myocardial TNF-alpha levels were increased in the ACF+nedocromil treated fistula groups (p< or =0.001 vs. sham). The degradation of interstitial collagen volume fraction seen in the untreated ACF group was prevented in both the GM6001 and nedocromil treated hearts. Significant increases in LV myocardial ET-1 levels also occurred in the ACF group at 3days post-fistula. Whereas administration of GM6001 significantly attenuated this increase, mast cell stabilization with nedocromil markedly exacerbated the increase, producing ET-1 levels 6.5 fold and 2 fold greater than that in the sham-operated control and ACF group, respectively. The efficacy of the MMP inhibitor, GM6001, to prevent increased levels of myocardial TNF-alpha is indicative of MMP-mediated cleavage of latent extracellular membrane-bound TNF-alpha protein as the primary source of bioactive TNF-alpha in the myocardium of the volume overload heart.
Collapse
Affiliation(s)
- David B Murray
- Department of Pharmacology, University of Mississippi School of Pharmacy, University, MS 38677, USA.
| | | | | | | |
Collapse
|
12
|
Reust DL, Reeves ST, Abernathy JH, Dixon JA, Gaillard WF, Mukherjee R, Koval CN, Stroud RE, Spinale FG. Temporally and regionally disparate differences in plasmin activity by tranexamic acid. Anesth Analg 2010; 110:694-701. [PMID: 20185649 DOI: 10.1213/ane.0b013e3181c7eb27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND A major complication associated with cardiac surgery is excessive and prolonged bleeding in the perioperative period. Improving coagulation by inhibiting fibrinolysis, primarily through inhibition of plasmin activity (PLact) with antifibrinolytics such as tranexamic acid (TXA), has been a pharmacological mainstay in cardiac surgical patients. Despite its almost ubiquitous use, the temporal and regional modulation of PLact profiles by TXA remains unexplored. Accordingly, we developed a fluorogenic-microdialysis system to measure in vivo dynamic changes in PLact after TXA administration in a large animal model. METHODS Pigs (25-35 kg) were randomly assigned to receive TXA (30 mg/kg, diluted into 50 mL normal saline; n = 9) or vehicle (50 mL normal saline; n = 7). Microdialysis probes were placed in the liver, myocardium, kidney, and quadriceps muscle compartments. The microdialysate infusion contained a validated plasmin-specific fluorogenic peptide. The fluorescence emission (standard fluorogenic units [SFU]) of the interstitial fluid collected from the microdialysis probes, which directly reflects PLact, was determined at steady-state baseline and 30, 60, 90, and 120 min after TXA/vehicle infusion. Plasma PLact was determined at the same time points using the same fluorogenic substrate approach. RESULTS TXA reduced plasma PLact at 30 min after infusion by >110 SFU compared with vehicle values (P < 0.05). Specifically, there was a decrease in liver PLact at 90 and 120 min after TXA infusion of >150 SFU (P < 0.05) and 175 SFU (P < 0.05), respectively. The decrease in liver PLact occurred 60 min after the maximal decrease in plasma PLact. In contrast, kidney, heart, and quadriceps PLact transiently increased followed by an overall decrease at 120 min. CONCLUSIONS Using a large animal model and in vivo microdialysis measurements of PLact, the unique findings from this study were 2-fold. First, TXA induced temporally distinct PLact profiles within the plasma and selected interstitial compartments. Second, TXA caused region-specific changes in PLact profiles. These temporal and regional differences in the effects of TXA may have important therapeutic considerations when managing fibrinolysis in the perioperative period.
Collapse
Affiliation(s)
- Daryl L Reust
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC 29403, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Murray DB, McMillan R, Brower GL, Janicki JS. ETA selective receptor antagonism prevents ventricular remodeling in volume-overloaded rats. Am J Physiol Heart Circ Physiol 2009; 297:H109-16. [PMID: 19429817 DOI: 10.1152/ajpheart.00968.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the ability of selective endothelin receptor subtype A (ET(A)) endothelin receptor antagonism (ETA) to prevent the acute myocardial remodeling process secondary to volume overload. Left ventricular tissue from sham-operated (Sham) and untreated (Fist), and TBC-3214 (Fist + ETA, 25 mg.kg(-1).day(-1))-treated fistula animals was analyzed for mast cell density, matrix metalloproteinase (MMP) activity, and extracellular collagen volume fraction (CVF) 1 and 5 days following the initiation of volume overload. Compared with Fist, ETA treatment prevented the increase in left ventricular mast cell density at 1 day and 5 days. Additionally, at 1 day postfistula, a substantial decrease in MMP-2 activity below Sham levels was observed following endothelin receptor antagonism (1.7 +/- 0.7 vs. 0.3 +/- 0.3 vs. 0.9 +/- 0.2 arbitrary activity units, Fist vs. Fist + ETA vs. Sham, P < or = 0.05). This same effect was also seen at 5 days postfistula (1.9 +/- 0.3 vs. 0.5 +/- 0.1 arbitrary activity units, Fist vs. Fist + ETA, P < or = 0.05). The marked decrease in myocardial CVF seen in Fist hearts (0.7 +/- 0.1 vs. 1.6 +/- 0.1% myocardial area, Fist vs. Sham, P < or = 0.05) was prevented by ETA (1.7 +/- 0.1% Fist + ETA, P < 0.05 vs. Fist). This preservation of the collagen matrix was also present on day 5 in the TBC-treated group vs. the Fist group (1.0 +/- 0.1 vs. 1.4 +/- 0.1%, Fist vs. Fist + ETA, P < or = 0.01). Furthermore, an 8-wk preventative treatment with ETA significantly attenuated the increase in left ventricular end systolic and diastolic volumes compared with untreated fistula hearts. In conclusion, the novel findings of this study indicate that the activation of cardiac mast cells and subsequent MMP activation/collagen degradation during the acute stages of volume overload are prevented by blockade of the ET(A) receptor subtype. Furthermore, by preventing these events, ET-1 antagonism was efficacious in attenuating ventricular dilatation and limiting the development of structural and functional deficits.
Collapse
Affiliation(s)
- David B Murray
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
| | | | | | | |
Collapse
|
14
|
Gingras D, Béliveau R. Emerging concepts in the regulation of membrane-type 1 matrix metalloproteinase activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:142-50. [PMID: 19409422 DOI: 10.1016/j.bbamcr.2009.04.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 01/02/2023]
Abstract
Pericellular proteolysis mediated by membrane-type 1 matrix metalloproteinase (MT1-MMP) represents an essential component of the cellular machinery involved in the dissolution and penetration of ECM barriers by tumor cells. Although most studies on the proinvasive properties of MT1-MMP have focused on its unusually broad proteolytic activity towards several ECM components and cell surface receptors, recent evidence indicate that the cytoplasmic domain of the enzyme also actively participates in tumor cell invasion by regulating the cell surface localization of MT1-MMP as well as the activation of signal transduction cascades. The identification of the molecular events by which the intracellular domain of MT1-MMP links proteolysis of the surrounding matrix by the enzyme to modification of cell function may thus provide important new information on the mechanisms by which this enzyme controls the invasive behavior of neoplastic cells in vivo.
Collapse
Affiliation(s)
- Denis Gingras
- Laboratoire de Médecine Moléculaire, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8
| | | |
Collapse
|
15
|
Spinale FG, Koval CN, Deschamps AM, Stroud RE, Ikonomidis JS. Dynamic changes in matrix metalloprotienase activity within the human myocardial interstitium during myocardial arrest and reperfusion. Circulation 2008; 118:S16-23. [PMID: 18824748 DOI: 10.1161/circulationaha.108.786640] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Past studies have clearly established that matrix metalloproteinases (MMPs) contribute to adverse myocardial remodeling with ischemia and reperfusion. However, these studies measured MMP levels in extracted samples, and therefore whether and to what degree actual changes in interstitial MMP activity occur within the human myocardium in the context of ischemia/reperfusion remained unknown. METHODS AND RESULTS The present study directly quantified MMP interstitial activity within the myocardium of patients (n=14) undergoing elective cardiac surgery during steady-state conditions, as well as during and following an obligatory period of myocardial arrest and reperfusion achieved by cardiopulmonary bypass. Interstitial MMP activity was continuously monitored using a validated MMP fluorogenic substrate, a microdialysis system placed within the myocardium, and in-line fluorescent detection system. MMP activity, as measured by fluorescent emission, reached a stable steady state level by 10 minutes after deployment of the microdialysis system. During initiation of cardiopulmonary bypass, MMP activity increased by 20% from baseline values (P<0.05), and then rapidly fell with cardiac arrest and longer periods of cardiopulmonary bypass. However, with restoration of myocardial blood flow and separation from cardiopulmonary bypass, MMP interstitial activity increased by over 30% from baseline (P<0.05). CONCLUSIONS The present study directly demonstrated that MMP proteolytic activity exists within the human myocardial interstitium and is a dynamic process under conditions such as myocardial arrest and reperfusion.
Collapse
Affiliation(s)
- Francis G Spinale
- Cardiothoracic Surgery, Strom Thurmond Research Center, 114 Doughty St, Suite 625, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
16
|
Murray DB, Gardner JD, Brower GL, Janicki JS. Effects of nonselective endothelin-1 receptor antagonism on cardiac mast cell-mediated ventricular remodeling in rats. Am J Physiol Heart Circ Physiol 2008; 294:H1251-7. [PMID: 18178727 DOI: 10.1152/ajpheart.00622.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the effect a nonselective endothelin-1 (ET-1) receptor antagonist (bosentan) had on the acute myocardial remodeling process including left ventricular (LV) mast cells and matrix metalloproteinase (MMP) activity secondary to volume overload. Additionally, we investigated the overall functional outcome of preventative endothelin receptor antagonism during 14 days of chronic volume overload. LV tissue from sham-operated (Sham), untreated-fistula (Fist), and bosentan (100 mg.kg(-1).day(-1))-treated animals (Fist + Bos) was analyzed for mast cell density, MMP activity, and myocardial collagen volume fraction at 1 and 5 days after the creation of an aortocaval fistula. When compared with untreated fistulas, bosentan treatment prevented the marked increase in LV mast cell density at 1 day postfistula (3.1 +/- 0.3 vs. 1.3 +/- 0.3 LV mast cells/mm2, Fist vs. Fist + Bos, P <or= 0.01). Additionally, the substantial increase in MMP-2 activation in the untreated fistula at 1 day was prevented following bosentan treatment (1.6 +/- 0.3 vs. 0.9 +/- 0.1 arbitrary activity units, Fist vs. Fist + Bos, P <or= 0.01). The marked decrease in collagen volume fraction seen in the Fist group (1.4 +/- 0.1 vs. 0.8 +/- 0.1% myocardial tissue, Sham vs. Fist, P <or= 0.01) was significantly attenuated following bosentan treatment at both the 1- and 5-day time points. Lastly, a 2-wk preventative treatment with bosentan resulted in significant attenuation of the increase in LV end-systolic and -diastolic volumes compared with those in untreated fistula hearts. In summary, nonselective ET-1 antagonism prevents the acute increases in cardiac mast cell density and MMP activation induced secondary to chronic volume overload. By preventing these events, ET-1 antagonism was efficacious in attenuating ventricular dilatation and limiting the development of structural and functional deficits in the first 2 wk of chronic volume overload. Accordingly, these results are the first to demonstrate that cardiac mast cells are responsive to the endogenous endothelin system in vivo. Another novel finding from this study is that chronic nonspecific endothelin antagonism may inadvertently potentiate ET-1-mediated signaling.
Collapse
Affiliation(s)
- David B Murray
- University of South Carolina, School of Medicine, Department of Cell and Developmental Biology and Anatomy, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|