1
|
Yan P, Ke B, Song J, Fang X. Identification of immune-related molecular clusters and diagnostic markers in chronic kidney disease based on cluster analysis. Front Genet 2023; 14:1111976. [PMID: 36814902 PMCID: PMC9939663 DOI: 10.3389/fgene.2023.1111976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Background: Chronic kidney disease (CKD) is a heterogeneous disease with multiple etiologies, risk factors, clinical manifestations, and prognosis. The aim of this study was to identify different immune-related molecular clusters in CKD, their functional immunological properties, and to screen for promising diagnostic markers. Methods: Datasets of 440 CKD patients were obtained from the comprehensive gene expression database. The core immune-related genes (IRGs) were identified by weighted gene co-expression network analysis. We used unsupervised clustering to divide CKD samples into two immune-related subclusters. Then, functional enrichment analysis was performed for differentially expressed genes (DEGs) between clusters. Three machine learning methods (LASSO, RF, and SVM-RFE) and Venn diagrams were applied to filter out 5 significant IRGs with distinguished subtypes. A nomogram diagnostic model was developed, and the prediction effect was verified using calibration curve, decision curve analysis. CIBERSORT was applied to assess the variation in immune cell infiltration among clusters. The expression levels, immune characteristics and immune cell correlation of core diagnostic markers were investigated. Finally, the Nephroseq V5 was used to assess the correlation among core diagnostic markers and renal function. Results: The 15 core IRGs screened were differentially expressed in normal and CKD samples. CKD was classified into two immune-related molecular clusters. Cluster 2 is significantly enriched in biological functions such as leukocyte adhesion and regulation as well as immune activation, and has a severe immune prognosis compared to cluster 1. A nomogram diagnostic model with reliable prediction of immune-related clusters was developed based on five signature genes. The core diagnostic markers LYZ, CTSS, and ISG20 were identified as playing an important role in the immune microenvironment and were shown to correlate meaningfully with immune cell infiltration and renal function. Conclusion: Our study identifies two subtypes of CKD with distinct immune gene expression patterns and provides promising predictive models. Along with the exploration of the role of three promising diagnostic markers in the immune microenvironment of CKD, it is anticipated to provide novel breakthroughs in potential targets for disease treatment.
Collapse
|
2
|
Pecchiari M, Pontikis K, Alevrakis E, Vasileiadis I, Kompoti M, Koutsoukou A. Cardiovascular Responses During Sepsis. Compr Physiol 2021; 11:1605-1652. [PMID: 33792902 DOI: 10.1002/cphy.c190044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sepsis is the life-threatening organ dysfunction arising from a dysregulated host response to infection. Although the specific mechanisms leading to organ dysfunction are still debated, impaired tissue oxygenation appears to play a major role, and concomitant hemodynamic alterations are invariably present. The hemodynamic phenotype of affected individuals is highly variable for reasons that have been partially elucidated. Indeed, each patient's circulatory condition is shaped by the complex interplay between the medical history, the volemic status, the interval from disease onset, the pathogen, the site of infection, and the attempted resuscitation. Moreover, the same hemodynamic pattern can be generated by different combinations of various pathophysiological processes, so the presence of a given hemodynamic pattern cannot be directly related to a unique cluster of alterations. Research based on endotoxin administration to healthy volunteers and animal models compensate, to an extent, for the scarcity of clinical studies on the evolution of sepsis hemodynamics. Their results, however, cannot be directly extrapolated to the clinical setting, due to fundamental differences between the septic patient, the healthy volunteer, and the experimental model. Numerous microcirculatory derangements might exist in the septic host, even in the presence of a preserved macrocirculation. This dissociation between the macro- and the microcirculation might account for the limited success of therapeutic interventions targeting typical hemodynamic parameters, such as arterial and cardiac filling pressures, and cardiac output. Finally, physiological studies point to an early contribution of cardiac dysfunction to the septic phenotype, however, our defective diagnostic tools preclude its clinical recognition. © 2021 American Physiological Society. Compr Physiol 11:1605-1652, 2021.
Collapse
Affiliation(s)
- Matteo Pecchiari
- Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Konstantinos Pontikis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Emmanouil Alevrakis
- 4th Department of Pulmonary Medicine, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Ioannis Vasileiadis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Maria Kompoti
- Intensive Care Unit, Thriassio General Hospital of Eleusis, Magoula, Greece
| | - Antonia Koutsoukou
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| |
Collapse
|
3
|
Yadav S, Surolia A. Lysozyme elicits pain during nerve injury by neuronal Toll-like receptor 4 activation and has therapeutic potential in neuropathic pain. Sci Transl Med 2019; 11:11/504/eaav4176. [DOI: 10.1126/scitranslmed.aav4176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/04/2018] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
Abstract
The role of neuronal Toll-like receptor 4 (TLR4) in nerve injury is being pursued actively. However, the endogenous activation of neuronal TLR4 during neuroinflammation, in absence of the participation of glial TLR4, remains elusive. Here, we identified lysozyme as an endogenous activator of neuronal TLR4 signaling during nerve injury. Upon nerve injury, enhanced expression of lysozyme promoted neuronal hyperexcitability and neuropathic pain. Injections of lysozyme in healthy rats increased their mechanical and thermal pain sensitivity. Likewise, infusion of spinal cord slices with lysozyme increased neuronal excitability typical of neuropathic pain. Our results also showed that lysozyme activated excitability of both Aδ- and C-fibers. Thus, in addition to the discovery of lysozyme as an endogenous ligand for regulating neuronal TLR4 signaling, this study also lays the foundation of our understanding of its role in nervous system pathologies, providing multiple avenues for treating neuroinflammation.
Collapse
|
4
|
Glorieux G, Mullen W, Duranton F, Filip S, Gayrard N, Husi H, Schepers E, Neirynck N, Schanstra JP, Jankowski J, Mischak H, Argilés À, Vanholder R, Vlahou A, Klein J. New insights in molecular mechanisms involved in chronic kidney disease using high-resolution plasma proteome analysis. Nephrol Dial Transplant 2015; 30:1842-52. [PMID: 26160894 DOI: 10.1093/ndt/gfv254] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/21/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The reduced glomerular filtration rate in the advanced stages of chronic kidney disease (CKD) leads to plasma accumulation of uraemic retention solutes including proteins. It has been hypothesized that these changes may, at least in part, be responsible for CKD-associated morbidity and mortality. However, most studies focused on the role of individual proteins, while a holistic, large-scale, integrative approach may generate significant additional insight. METHODS In a discovery study, we analysed the plasma proteome of patients with stage 2-3 CKD (n = 14) and stage 5 CKD with haemodialysis (HD) (n = 15), using high-resolution LC-MS/MS analysis. Selected results were validated in a cohort of 40 patients with different CKD stages with or without HD, using ELISA. RESULTS Of a total of 2054 detected proteins, 127 displayed lower, while 206 displayed higher abundance in the plasma of patients on HD. Molecular pathway analysis confirmed the modification of known processes involved in CKD complications, including decreased haemostasis and increased inflammation, complement activation and vascular damage. In addition, we identified the plasma increase during CKD progression of lysozyme C and leucine-rich alpha-2 glycoprotein, two proteins related to vascular damage and heart failure. High level of leucine-rich alpha-2 glycoprotein was associated with higher mortality in stage 5 CKD patients on HD. CONCLUSIONS This study provides for the first time a comprehensive assessment of CKD plasma proteome, contributing to new knowledge and potential markers of CKD. These results will serve as a basis for future studies investigating the relevance of these molecules in CKD associated morbidity and mortality.
Collapse
Affiliation(s)
- Griet Glorieux
- Nephrology Section, Ghent University Hospital, Gent, Belgium
| | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | | | - Szymon Filip
- Biomedical Research Foundation, Academy of Athens, Athens, Greece Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Holger Husi
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Eva Schepers
- Nephrology Section, Ghent University Hospital, Gent, Belgium
| | | | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Joachim Jankowski
- University Hospital RWTH, Institute for Molecular Cardiovascular Research, Aachen, Germany
| | - Harald Mischak
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK Mosaiques Diagnostics, Hannover, Germany
| | | | | | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Athens, Greece School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
5
|
Lysozyme, a mediator of sepsis that deposits in the systemic vasculature and kidney as a possible mechanism of acute organ dysfunction. Shock 2014; 41:256-65. [PMID: 24296430 DOI: 10.1097/shk.0000000000000095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In septic shock (SS), dysfunction of many organ systems develops during the course of the illness, although the mechanisms are not clear. In earlier studies, we reported that lysozyme-c (Lzm-S), a protein that is released from leukocytes and macrophages, was a mediator of the myocardial depression and vasodilation that develop in a canine model of Pseudomonas aeruginosa SS. Whereas both of these effects of Lzm-S are dependent on its ability to intrinsically generate hydrogen peroxide, we subsequently showed that Lzm-S can also deposit within the vascular smooth muscle layer of the systemic arteries in this model. In the present study, we extend our previous findings. We used a canine carotid artery organ bath preparation to study the time course and dose dependence of Lzm-S deposition within the vascular smooth muscle layer. We used a human aortic vascular smooth muscle cell preparation to determine whether Lzm-S can persistently inhibit contraction in this preparation. We also used a canine P. aeruginosa model to determine whether Lzm-S deposition might occur in other organs such as the kidney, liver, and small intestine. The results showed that, in the carotid artery organ bath preparation, Lzm-S deposition occurred within minutes of instillation and there was a dose-response effect. In the human aortic vascular smooth muscle cell preparation, Lzm-S inhibited contraction during a 4-day period. In the in vivo model, Lzm-S accumulated in the kidney and the superior mesenteric artery. In a canine renal epithelial preparation, we further showed that Lzm-S can be taken up by the renal tubules to activate inflammatory pathways. We conclude that Lzm-S can deposit in the systemic vasculature and kidneys in SS, where this deposition could lead to acute organ dysfunction.
Collapse
|
6
|
Sharawy N. Vasoplegia in septic shock: do we really fight the right enemy? J Crit Care 2013; 29:83-7. [PMID: 24095623 DOI: 10.1016/j.jcrc.2013.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/19/2013] [Accepted: 08/25/2013] [Indexed: 12/13/2022]
Abstract
Vasoplegia is a key factor for the death of patients with septic shock in intensive care unit owing to persistent and irreversible hypotension. Impairment of vascular reactivity has been attributed to a combination of endothelial injury, arginine-vasopressin system dysfunction, release of other vasodilatory inflammatory mediators, and muscle hyperpolarizaton. Nitric oxide induced by a Ca(+2) independent isoform of nitric oxide synthase has been suggested to play an important role in sepsis-induced vasoplegia. However, inhibition of nitric oxide synthase only partially restores the endotoxin-induced vascular hyporeactivity. The aim of this review is to discuss in detail the recent suggested alternative mechanisms of vasoplegia and to briefly outline the current therapeutic strategies and the novel therapeutic options based on those mechanisms.
Collapse
Affiliation(s)
- Nivin Sharawy
- Department of Anaesthesia, Dalhousie University, Halifax, Nova Scotia, Canada B3H 2Y9.
| |
Collapse
|
7
|
Gotes J, Kasian K, Jacobs H, Cheng ZQ, Mink SN. Mechanisms of systemic vasodilation by lysozyme-c in septic shock. J Appl Physiol (1985) 2011; 112:638-50. [PMID: 22096116 DOI: 10.1152/japplphysiol.00707.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In septic shock (SS), cardiovascular collapse is caused by the release of inflammatory mediators. We previously found that lysozyme-c (Lzm-S), released from leukocytes, contributed to systemic vasodilation in a canine model of SS. We then delineated the pathway by which this occurs in a canine carotid artery organ bath preparation (CAP). We showed that Lzm-S could intrinsically generate hydrogen peroxide (H(2)O(2)) and that H(2)O(2) subsequently reacted with endogenous catalase to form compound I, an oxidized form of catalase. In turn, compound I led to an increase in cyclic guanosine 3',5'-monophosphate to produce vasodilation. However, it was not clear from previous studies whether it is necessary for Lzm-S to bind to the vasculature to cause vasodilation or, alternatively, whether the generation of H(2)O(2) by Lzm-S in the surrounding medium is all that is required. We examined this question in the present study in which we used multiple preparations. In a partitioned CAP, we found that when we added Lzm-S to a partitioned space in which a semipermeable membrane prevented diffusion of Lzm-S to the carotid artery tissue, vasodilation still occurred because of diffusion of H(2)O(2). On the other hand, we found that Lzm-S could accumulate within the vascular smooth muscle layer (VSML) after 7 h of SS in a canine model. We also determined that when Lzm-S was located in close proximity to vascular smooth muscle cells, it could generate H(2)O(2) to produce lengthening in a human cell culture preparation. We conclude that there are two mechanisms by which Lzm-S can cause vasodilation in SS. In one instance, H(2)O(2) generated by Lzm-S in plasma diffuses to the VSML to cause vasodilation. In a second mechanism, Lzm-S directly binds to the VSML, where it generates H(2)O(2) to produce vasodilation.
Collapse
Affiliation(s)
- Jose Gotes
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
8
|
Darrow AL, Shohet RV, Maresh JG. Transcriptional analysis of the endothelial response to diabetes reveals a role for galectin-3. Physiol Genomics 2011; 43:1144-52. [PMID: 21791638 DOI: 10.1152/physiolgenomics.00035.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To characterize the endothelial dysfunction associated with Type II diabetes, we surveyed transcriptional responses in the vascular endothelia of mice receiving a diabetogenic, high-fat diet. Tie2-GFP mice were fed a diet containing 60% fat calories (HFD); controls were littermates fed normal chow. Following 4, 6, and 8 wk, aortic and leg muscle tissues were enzymatically dispersed, and endothelial cells were obtained by fluorescence-activated cell sorting. Relative mRNA abundance in HFD vs. control endothelia was measured with long-oligo microarrays; highly dysregulated genes were confirmed by real-time PCR and protein quantification. HFD mice were hyperglycemic by 2 wk and displayed vascular insulin resistance and decreased glucose tolerance by 5 and 6 wk, respectively. Endothelial transcripts upregulated by HFD included galectin-3 (Lgals3), 5-lipoxygenase-activating protein, and chemokine ligands 8 and 9. Increased LGALS3 protein was detected in muscle endothelium by immunohistology accompanied by elevated LGALS3 in the serum of HFD mice. Our comprehensive analysis of the endothelial transcriptional response in a model of Type II diabetes reveals novel regulation of transcripts with roles in inflammation, insulin sensitivity, oxidative stress, and atherosclerosis. Increased endothelial expression and elevated humoral levels of LGALS3 supports a role for this molecule in the vascular response to diabetes, and its potential as a direct biomarker for the inflammatory state in diabetes.
Collapse
Affiliation(s)
- April L Darrow
- Center for Cardiovascular Research, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii 96813, USA
| | | | | |
Collapse
|
9
|
Mink SN, Jacobs H, Gotes J, Kasian K, Cheng ZQ. Ethyl gallate, a scavenger of hydrogen peroxide that inhibits lysozyme-induced hydrogen peroxide signaling in vitro, reverses hypotension in canine septic shock. J Appl Physiol (1985) 2011; 110:359-74. [DOI: 10.1152/japplphysiol.00411.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although hydrogen peroxide (H2O2) is a well-described reactive oxygen species that is known for its cytotoxic effects and associated tissue injury, H2O2 has recently been established as an important signaling molecule. We previously demonstrated that lysozyme (Lzm-S), a mediator of sepsis that is released from leukocytes, could produce vasodilation in a phenylephrine-constricted carotid artery preparation by H2O2 signaling. We found that Lzm-S could intrinsically generate H2O2 and that this generation activated H2O2-dependent pathways. In the present study, we used this carotid artery preparation as a bioassay to define those antioxidants that could inhibit Lzm-S's vasodilatory effect. We then determined whether this antioxidant could reverse the hypotension that developed in an Escherichia coli bacteremic model. Of the many antioxidants tested, we found that ethyl gallate (EG), a nonflavonoid phenolic compound, was favorable in inhibiting Lzm-S-induced vasodilation. In our E. coli model, we found that EG reversed the hypotension that developed in this model and attenuated end-organ dysfunction. By fluorometric H2O2 assay and electrochemical probe techniques, we showed that EG could scavenge H2O2 and that it could reduce H2O2 production in model systems. These results show that EG, an antioxidant that was found to scavenge H2O2 in vitro, was able to attenuate cardiovascular dysfunction in a canine in vivo preparation. Antioxidants such as EG may be useful in the treatment of hemodynamic deterioration in septic shock.
Collapse
Affiliation(s)
- Steven N. Mink
- Department of Medicine,
- Department of Pharmacology and Therapeutics, and
| | - Hans Jacobs
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Jose Gotes
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | | | | |
Collapse
|
10
|
Vascular endothelium-specific overexpression of human catalase in cloned pigs. Transgenic Res 2010; 20:989-1001. [PMID: 21170678 DOI: 10.1007/s11248-010-9473-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/02/2010] [Indexed: 01/15/2023]
Abstract
The objective of this study was to develop transgenic Yucatan minipigs that overexpress human catalase (hCat) in an endothelial-specific manner. Catalase metabolizes hydrogen peroxide (H(2)O(2)), an important regulator of vascular tone that contributes to diseases such as atherosclerosis and preeclampsia. A large animal model to study reduced endothelium-derived H(2)O(2) would therefore generate valuable translational data on vascular regulation in health and disease. Yucatan minipig fetal fibroblasts stably co-transfected with human catalase (Tie2-hCat) and eGFP expression constructs were isolated into single-cell populations. The presence of the Tie2-hCat transgene in individual colonies of fibroblasts was determined by PCR. Transgenic fibroblasts were used for nuclear transfer into enucleated oocytes by electrofusion. A minimum of 140 cloned embryos were transferred per surrogate sow (n = 4). All four surrogates maintained pregnancies and piglets were delivered by cesarean section. Nine male piglets from three of the four litters carried the Tie2-hCat transgene. Expression of human catalase mRNA and overall elevated catalase protein in isolated umbilical endothelial cells from transgenic piglets were verified by RT-PCR and western blot, respectively, and endothelial localization was confirmed by immunohistochemistry. Increased enzymatic activity of catalase in transgenic versus wild-type endothelial cells was inferred based on significantly reduced levels of H(2)O(2) in culture. The similarities in swine and human cardiovascular anatomy and physiology will make this pig model a valuable source of information on the putative role of endothelium-derived H(2)O(2) in vasodilation and in the mechanisms underlying vascular health and disease.
Collapse
|
11
|
Mink SN, Jacobs H, Cheng ZQ, Kasian K, Santos-Martinez LE, Light RB. Lysozyme, a mediator of sepsis that intrinsically generates hydrogen peroxide to cause cardiovascular dysfunction. Am J Physiol Heart Circ Physiol 2009; 297:H930-48. [DOI: 10.1152/ajpheart.00732.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In septic shock, cardiovascular collapse is caused by the release of inflammatory mediators. We previously found that lysozyme (Lzm-S), released from leukocytes, contributed to the myocardial depression and arterial vasodilation that develop in canine models of septic shock. To cause vasodilation, Lzm-S generates hydrogen peroxide (H2O2) that activates the smooth muscle soluble guanylate cyclase (sGC) pathway, although the mechanism of H2O2 generation is not known. To cause myocardial depression, Lzm-S binds to the endocardial endothelium, resulting in the formation of nitric oxide (NO) and subsequent activation of myocardial sGC, although the initial signaling event is not clear. In this study, we examined whether the myocardial depression produced by Lzm-S was also caused by the generation of H2O2 and whether Lzm-S could intrinsically generate H2O2 as has been described for other protein types. In a canine ventricular trabecular preparation, we found that the peroxidizing agent Aspergillus niger catalase, that would breakdown H2O2, prevented Lzm-S- induced decrease in contraction. We also found that compound I, a species of catalase formed during H2O2 metabolism, could contribute to the NO generation caused by Lzm-S. In tissue-free experiments, we used a fluorometric assay (Ultra Amplex red H2O2 assay) and electrochemical sensor techniques, respectively, to measure H2O2 generation. We found that Lzm-S could generate H2O2 and, furthermore, that this generation could be attenuated by the singlet oxygen quencher sodium azide. This study shows that Lzm-S, a mediator of sepsis, is able to intrinsically generate H2O2. Moreover, this generation may activate H2O2-dependent pathways leading to cardiovascular collapse in septic shock.
Collapse
|