1
|
Kwak M, Succi PJ, Benitez B, Mitchinson CJ, Bergstrom HC. The effects of low vs. high rating of perceived exertion clamp exercise on performance, neuromuscular, and muscle oxygen saturation responses in females. Eur J Appl Physiol 2024:10.1007/s00421-024-05607-y. [PMID: 39254687 DOI: 10.1007/s00421-024-05607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE This study examined the time course of changes in force, relative to critical force (CF), electromyographic amplitude (EMG AMP), neuromuscular efficiency (NE), and muscle oxygen saturation (SmO2), as well as time to task failure (TTF) and performance fatigability (PF) during isometric handgrip holds to failure (HTF) anchored to the rating of perceived exertion (RPE) at 3 and 7. METHODS Ten females completed pre-test maximal voluntary isometric contractions (MVICs), submaximal HTF at four percentages of MVIC, an HTF at RPE = 3 and 7, and post-test MVICs. Analyses included paired samples t-tests, repeated measures ANOVAs and planned comparisons. RESULTS TTF was not different between RPE 3 (540.4 ± 262.1 s) and 7 (592.2 ± 299.6 s), but PF for RPE 7 (42.1 ± 19.1%) was greater than RPE 3 (33.5 ± 15.4%) (p < 0.05). There were RPE-dependent decreases in force, EMG AMP, and NE across three discernable phases during the HTF (p < 0.01), but there were no significant changes in SmO2 across time. CONCLUSION Although there were overall similar patterns across time for force, neuromuscular, and muscle metabolic responses between the RPE holds, the greater PF at RPE 7 than RPE 3 may be explained by the longer sustained time above CF at RPE 7, resulting in greater accumulation of intramuscular metabolites and afferent feedback. Throughout each trial, it is possible that force was adjusted to avoid the sensory tolerance limit, and the task was ended when force could no longer be reduced to maintain the assigned RPE, resulting in a similar TTF for RPE 7 and RPE 3.
Collapse
Affiliation(s)
- Minyoung Kwak
- Department of Kinesiology and Health Promotion, University of Kentucky, 1210 University Drive, Seaton Center, Lexington, KY, 40502, USA.
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, University of Kentucky, 1210 University Drive, Seaton Center, Lexington, KY, 40502, USA
| | - Brian Benitez
- Department of Kinesiology and Health Promotion, University of Kentucky, 1210 University Drive, Seaton Center, Lexington, KY, 40502, USA
| | - Clara J Mitchinson
- Department of Kinesiology and Health Promotion, University of Kentucky, 1210 University Drive, Seaton Center, Lexington, KY, 40502, USA
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, University of Kentucky, 1210 University Drive, Seaton Center, Lexington, KY, 40502, USA
| |
Collapse
|
2
|
Kwak M, Succi PJ, Benitez B, Mitchinson C, Samaan MA, Abel MG, Bergstrom HC. Comparison of Force, Neuromuscular, and Metabolic Responses During Sustained, Isometric Handgrip Holds to Failure Anchored to Low and High Perceptual Intensities in Men: An Exploratory Study. J Strength Cond Res 2024; 38:e405-e416. [PMID: 39072661 PMCID: PMC11296493 DOI: 10.1519/jsc.0000000000004812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
ABSTRACT Kwak, M, Succi, PJ, Benitez, B, Mitchinson, C, Samaan, MA, Abel, MG, and Bergstrom, HC. Comparison of force, neuromuscular, and metabolic responses during sustained, isometric handgrip holds to failure anchored to low and high perceptual intensities in men: An exploratory study. J Strength Cond Res 38(8): e405-e416, 2024-This study examined the responses of force alterations, relative to critical force (CF), neuromuscular parameters, and muscle oxygenation (SmO2) for isometric handgrip holds to failure (HTF) anchored to ratings of perceived exertion (RPE) of 3 and 7. Twelve men completed pre-maximal voluntary isometric contractions (pre-MVIC), submaximal HTF at 4 percentages of pre-MVIC, HTF at RPE = 3 and 7, and post-MVIC. Mechanomyograpic (MMG) signals and SmO2 were recorded during the RPE HTF. Analyses included paired-samples t-tests and repeated-measures ANOVAs at an alpha level of p ≤ 0.05. Time to task failure was not different between RPE 3 (478.7 ± 196.6 s) and RPE 7 (495.8 ± 173.8 s). Performance fatigability (PF) and MMG amplitude (AMP) were greater for RPE 7 (PF: 37.9 ± 12.9%; MMG AMP: 15.7 ± 7.4% MVIC) than RPE 3 (PF: 30.0 ± 14.5%; MMG AMP: 10.2 ± 6.5% MVIC), but MMG mean power frequency (MPF) was greater for RPE 3 (146.2 ± 31.1% MVIC) than RPE 7 (128.8 ± 23.0% MVIC). There were RPE-dependent decreases in force (p ≤ 0.01) across 3 discernable phases during the HTF. There were decreases in MMG AMP across time for both RPEs, but there were no significant changes in MMG MPF or SmO2. There were overall similar motor unit control strategies and local metabolic demand between RPEs. The majority of the HTF performed below CF at RPE 3 and 7 indicated CF did not reflect the highest sustainable force. When prescribing isometric exercise anchored to RPE, practitioners should be aware of the magnitude of force loss and relative intensity of the task to be sure desired training loads are met.
Collapse
Affiliation(s)
- Minyoung Kwak
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Pasquale J. Succi
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Brian Benitez
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Clara Mitchinson
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Michael A. Samaan
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Mark G. Abel
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Haley C. Bergstrom
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
Leahy MG, Busch SA, Thrall SF, Hillen SJ, Sheel AW, Foster GE. Reflex sympathetic activation to inspiratory muscle loading is attenuated in females relative to males. Am J Physiol Heart Circ Physiol 2024; 327:H28-H37. [PMID: 38700472 DOI: 10.1152/ajpheart.00133.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Intense inspiratory muscle work can evoke a metabolite-stimulated pressor reflex, commonly referred to as the respiratory muscle metaboreflex. When completing similar relative and absolute levels of inspiratory work, females have an attenuated blood pressure response. We sought to test the hypothesis that the lower blood pressure response to the respiratory muscle metaboreflex in females is associated with a reduced sympathetic response. Healthy young (26 ± 4 yr) males (n = 9) and females (n = 7) completed two experimental days. On day 1, participants completed pulmonary function testing and became familiarized with an inspiratory pressure-threshold loading (PTL) task. On the second day, balloon-tipped catheters were placed in the esophagus and stomach to measure pleural and gastric pressures, and transdiaphragmatic pressure was calculated. A microelectrode was inserted into the fibular nerve to quantify muscle sympathetic nerve activity (MSNA), and participants then completed isocapnic PTL to task failure. There was a significant sex-by-time interaction in the mean arterial pressure (MAP, P = 0.015) and burst frequency (P = 0.039) response to PTL. Males had a greater rise in MAP (Δ21 ± 9 mmHg) than females (Δ13 ± 5 mmHg, P = 0.026). Males also demonstrated a greater rise in MSNA burst frequency (Δ18 ± 7 bursts/min) than females (Δ10 ± 5 bursts/min, P = 0.015). The effect of sex was observed despite females and males completing the same magnitude of diaphragm work throughout the task (P = 0.755). Our findings provide novel evidence that the lower blood pressure response to similar relative and absolute inspiratory muscle work in females is associated with lower sympathetic activation.NEW & NOTEWORTHY The blood pressure response to high levels of inspiratory muscle work is lower in females and occurs alongside a reduced sympathetic response. The reduced blood pressure and sympathetic response occur despite males and females performing similar levels of absolute inspiratory work. Our findings provide evidence that sex differences in the respiratory muscle metaboreflex are, in part, sympathetically mediated.
Collapse
Affiliation(s)
- Michael G Leahy
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen A Busch
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott F Thrall
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, British Columbia, Canada
| | - Sam J Hillen
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, British Columbia, Canada
| |
Collapse
|
4
|
Kwak M, Succi PJ, Benitez B, Bergstrom HC. Sustainability and perceptual responses during handgrip holds to failure at two fatigue thresholds. Eur J Appl Physiol 2023; 123:2563-2573. [PMID: 37330924 DOI: 10.1007/s00421-023-05248-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE Critical force (CF) provides an estimate of the asymptote of the force-duration curve and the physical working capacity at the rating of perceived exertion (PWCRPE) estimates the highest force that can be sustained without an increase in perceived exertion. Handgrip-related musculoskeletal disorders and injuries derived from sustained or repetitive motion-induced muscle fatigue are prevalent in the industrial workforce. Thus, it is important to understand the physiological mechanisms underlying performance during handgrip specific tasks to describe individual work capacities. This study examined prolonged, isometric, handgrip exercises by comparing the relative force levels, sustainability, and perceptual responses at two fatigue thresholds, CF and PWCRPE. METHODS Ten women (26.5 ± 3.5 years) performed submaximal, isometric handgrip holds to failure (HTF) with the dominant hand at four, randomly ordered percentages (30, 40, 50, and 60%) of maximal voluntary isometric contraction (MVIC) force to determine CF and PWCRPE. Isometric handgrip HTF were performed at CF and PWCRPE. Time to task failure and RPE responses were recorded. RESULTS There were no differences in the relative forces (p = 0.381) or sustainability (p = 0.390) between CF (18.9 ± 2.5% MVIC; 10.1 ± 2.7 min) and PWCRPE (19.5 ± 7.9% MVIC; 11.6 ± 8.4 min), and the RPE increased throughout both holds at CF and PWCRPE. CONCLUSION It is possible that complex physio-psychological factors may have contributed to the fatigue-induced task failure. CF and PWCRPE may overestimate the highest force output that can be maintained for an extended period of time without fatigue or perceptions of fatigue for isometric handgrip holds.
Collapse
Affiliation(s)
- Minyoung Kwak
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, 40536, USA.
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, 40536, USA
| | - Brian Benitez
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, 40536, USA
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
5
|
Weggen JB, Hogwood AC, Decker KP, Darling AM, Chiu A, Richardson J, Garten RS. Vascular Responses to Passive and Active Movement in Premenopausal Females: Comparisons across Sex and Menstrual Cycle Phase. Med Sci Sports Exerc 2023; 55:900-910. [PMID: 36728956 DOI: 10.1249/mss.0000000000003107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Adequate, robust vascular responses to passive and active movement represent two distinct components linked to normal, healthy cardiovascular function. Currently, limited research exists determining if these vascular responses are altered in premenopausal females (PMF) when compared across sex or menstrual cycle phase. METHODS Vascular responses to passive leg movement (PLM) and handgrip (HG) exercise were assessed in PMF ( n = 21) and age-matched men ( n = 21). A subset of PMF subjects ( n = 11) completed both assessments during the early and late follicular phase of their menstrual cycle. Microvascular function was assessed during PLM via changes in leg blood flow, and during HG exercise, via steady-state arm vascular conductance. Macrovascular (brachial artery [BA]) function was assessed during HG exercise via BA dilation responses as well as BA shear rate-dilation slopes. RESULTS Leg microvascular function, determined by PLM, was not different between sexes or across menstrual cycle phase. However, arm microvascular function, demonstrated by arm vascular conductance, was lower in PMF compared with men at rest and during HG exercise. Macrovascular function was not different between sexes or across menstrual cycle phase. CONCLUSIONS This study identified similar vascular function across sex and menstrual cycle phase seen in microvasculature of the leg and macrovascular (BA) of the arm. Although arm microvascular function was unaltered by menstrual cycle phase in PMF, it was revealed to be significantly lower when compared with age-matched men highlighting a sex difference in vascular/blood flow regulation during small muscle mass exercise.
Collapse
Affiliation(s)
- Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, VA
| | - Kevin P Decker
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE
| | - Ashley M Darling
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - Alex Chiu
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Jacob Richardson
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
6
|
Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073909. [PMID: 35409591 PMCID: PMC8997532 DOI: 10.3390/ijerph19073909] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The study of the origin and implications of fatigue in exercise has been widely investigated, but not completely understood given the complex multifactorial mechanisms involved. Then, it is essential to understand the fatigue mechanism to help trainers and physicians to prescribe an adequate training load. The present narrative review aims to analyze the multifactorial factors of fatigue in physical exercise. To reach this aim, a consensus and critical review were performed using both primary sources, such as scientific articles, and secondary ones, such as bibliographic indexes, web pages, and databases. The main search engines were PubMed, SciELO, and Google Scholar. Central and peripheral fatigue are two unison constructs part of the Integrative Governor theory, in which both psychological and physiological drives and requirements are underpinned by homeostatic principles. The relative activity of each one is regulated by dynamic negative feedback activity, as the fundamental general operational controller. Fatigue is conditioned by factors such as gender, affecting men and women differently. Sleep deprivation or psychological disturbances caused, for example, by stress, can affect neural activation patterns, realigning them and slowing down simple mental operations in the context of fatigue. Then, fatigue can have different origins not only related with physiological factors. Therefore, all these prisms must be considered for future approaches from sport and clinical perspectives.
Collapse
|
7
|
Rakshit R, Xiang Y, Yang J. Functional muscle group- and sex-specific parameters for a three-compartment controller muscle fatigue model applied to isometric contractions. J Biomech 2021; 127:110695. [PMID: 34454329 DOI: 10.1016/j.jbiomech.2021.110695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
The three-compartment controller with enhanced recovery (3CC-r) model of muscle fatigue has previously been validated separately for both sustained (SIC) and intermittent isometric contractions (IIC) using different objective functions, but its performance has not yet been tested against both contraction types simultaneously using a common objective function. Additionally, prior validation has been performed using common parameters at the joint level, whereas applications to many real-world tasks will require the model to be applied to agonistic and synergistic muscle groups. Lastly, parameters for the model have previously been derived for a mixed-sex cohort not considering the differece in fatigabilities between the sexes. In this work we validate the 3CC-r model using a comprehensive isometric contraction database drawn from 172 publications segregated by functional muscle group (FMG) and sex. We find that prediction errors are reduced by 19% on average when segregating the dataset by FMG alone, and by 34% when segregating by both sex and FMG. However, minimum prediction errors are found to be higher when validated against both SIC and IIC data together using torque decline as the outcome variable than when validated sequentially against hypothesized SIC intensity-endurance time curves with endurance time as the outcome variable and against raw IIC data with torque decline as the outcome variable.
Collapse
Affiliation(s)
- Ritwik Rakshit
- Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Yujiang Xiang
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - James Yang
- Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
8
|
Barbosa TC, Young BE, Stephens BY, Nandadeva D, Kaur J, Keller DM, Fadel PJ. Functional sympatholysis is preserved in healthy young Black men during rhythmic handgrip exercise. Am J Physiol Regul Integr Comp Physiol 2020; 319:R323-R328. [PMID: 32783690 DOI: 10.1152/ajpregu.00105.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Black men have attenuated increases in forearm vascular conductance (FVC) and forearm blood flow (FBF) during moderate- and high-intensity rhythmic handgrip exercise compared with White men, but the underlying mechanisms are unclear. Here, we tested for the first time the hypothesis that functional sympatholysis (i.e., attenuation of sympathetic vasoconstriction in the exercising muscles) is impaired in Black men compared with White men. Thirteen White and 14 Black healthy young men were studied. FBF (duplex Doppler ultrasound) and mean arterial pressure (MAP; Finometer) were measured at rest and during rhythmic handgrip exercise at 30% maximal voluntary contraction. FVC was calculated as FBF/MAP. Sympathetic activation was induced via lower body negative pressure (LBNP) at -20 Torr for 2 min at rest and from the 3rd to the 5th min of handgrip. Sympathetic vasoconstriction was assessed as percent reductions in FVC during LBNP. The groups presented similar resting FVC, FBF, and MAP. During LBNP at rest, reductions in FVC were not different between White (-35 ± 10%) and Black men (-32 ± 14%, P = 0.616), indicating similar reflex-induced sympathetic vasoconstriction. During handgrip exercise, there were minimal reductions in FVC with LBNP in either group (White: -1 ± 7%; Black: +1 ± 8%; P = 0.523), indicating functional sympatholysis in both groups. Thus, contrary to our hypothesis, our findings indicate a preserved functional sympatholysis in healthy young Black men compared with White men, suggesting that this mechanism does not appear to contribute to reduced exercise hyperemia during moderate-intensity rhythmic handgrip in this population.
Collapse
Affiliation(s)
- Thales C Barbosa
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Benjamin E Young
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Brandi Y Stephens
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Damsara Nandadeva
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Jasdeep Kaur
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - David M Keller
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
9
|
Tabuchi A, Craig JC, Hirai DM, Colburn TD, Kano Y, Poole DC, Musch TI. Systemic NOS inhibition reduces contracting muscle oxygenation more in intact female than male rats. Nitric Oxide 2020; 100-101:38-44. [PMID: 32371102 DOI: 10.1016/j.niox.2020.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Females respond to baroreceptor stimulation with enhanced modulation of heart rate (HR) to regulate blood pressure and also express greater reliance on nitric oxide (NO) for vascular control compared to males. Sex differences in muscle oxygenation consequent to central hemodynamic challenge induced by systemic NO synthase (NOS) inhibition are unknown. We tested the hypotheses that systemic NOS inhibition would induce lower contracting skeletal muscle oxygenation in females compared to males. The spinotrapezius of Sprague-Dawley rats (females (♀) = 9, males (♂) = 9) was surgically exposed and contracted by electrical stimulation (180s, 1 Hz, ~6 V) under pentobarbital sodium anesthesia. Oxyphor G4 was injected into the muscle and phosphorescence quenching was used to measure the interstitial PO2 (PO2is, determined by O2 delivery-to-utilization matching) under control (Krebs-Henseleit solution) and after intra-arterial infusion of nitro-l-arginine methyl ester (l-NAME; NOS blockade; 10 mg kg-1). At rest, females showed a greater PO2is increase (ΔPO2is/ΔMAP) and HR (ΔHR/ΔMAP) reduction than males in response to the elevated MAP induced by systemic NOS inhibition (both p < 0.05). Following l-NAME, during the contracting steady-state, females exhibited lower PO2is than males (♂: 17.1 ± 1.4 vs ♀: 10.8 ± 1.4 mmHg, p < 0.05). The rate pressure product was lower in females than males (♂: 482 ± 14 vs ♀: 392 ± 29, p < 0.05) and correlated with the steady-state PO2is (r = 0.66, p < 0.05). These results support that females express greater reductions in HR than males in response to l-NAME-induced elevation of MAP via the baroreceptor reflex and provide new insights on how central hemodynamics affect skeletal muscle oxygenation in a sex-specific manner.
Collapse
Affiliation(s)
- Ayaka Tabuchi
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA; Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan
| | - Jesse C Craig
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| | - Daniel M Hirai
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| | - Trenton D Colburn
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan
| | - David C Poole
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
10
|
Senefeld J, Pereira HM, Elliott N, Yoon T, Hunter SK. Sex Differences in Mechanisms of Recovery after Isometric and Dynamic Fatiguing Tasks. Med Sci Sports Exerc 2019; 50:1070-1083. [PMID: 29298217 DOI: 10.1249/mss.0000000000001537] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this study was to determine whether supraspinal mechanisms contribute to the sex difference in fatigability during and recovery from a dynamic and isometric fatiguing task with the knee extensors. METHODS Transcranial magnetic stimulation and electrical stimulation were used to determine voluntary activation and contractile properties of the knee extensors in 14 men and 17 women (20.8 ± 1.9 yr) after a 1) 60-s sustained, maximal voluntary isometric contraction (MVIC), and 2) dynamic fatiguing task involving 120 maximal voluntary concentric contractions with a 20% MVIC load. RESULTS There were no differences between men and women in the reduction of maximal torque during the sustained MVIC (54.4% ± 18.9% vs 55.9% ± 11.2%, P = 0.49) or in the decrease in power during the dynamic fatiguing task (14.7% ± 20.1% vs 14.2% ± 18.5%, P = 0.92). However, MVIC torque recovered more quickly for women than men after the sustained MVIC and the dynamic task (P < 0.05). The transcranial magnetic stimulation-elicited superimposed twitch was larger for men than for women during the sustained MVIC and in recovery (immediately post, R0.1: 4.7% ± 3.3% vs 2.4% ± 1.9% MVIC; P = 0.02), with no sex difference after the dynamic task (P = 0.35). The reduction in resting twitch amplitude was larger for men than for women immediately after the dynamic task (37% ± 22% vs 23% ± 18%; P = 0.016) with no sex difference after the sustained MVIC (64% ± 16% vs 67% ± 11%; P = 0.46). CONCLUSIONS Supraspinal fatigue contributed to fatigability of the knee extensors more for men than for women after a maximal isometric task, whereas contractile mechanisms explained the sex difference in torque recovery after the fast-velocity dynamic task. The mechanisms for the sex difference in fatigability are task dependent.
Collapse
Affiliation(s)
- Jonathon Senefeld
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Hugo M Pereira
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Nicholas Elliott
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Tejin Yoon
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| |
Collapse
|
11
|
Hill EC, Housh TJ, Smith CM, Keller JL, Schmidt RJ, Johnson GO. The Contributions of Arterial Cross-Sectional Area and Time-Averaged Flow Velocity to Arterial Blood Flow. J Med Ultrasound 2019; 26:186-193. [PMID: 30662149 PMCID: PMC6314092 DOI: 10.4103/jmu.jmu_20_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/02/2018] [Indexed: 11/09/2022] Open
Abstract
Background: Ultrasound has been used for noninvasive assessments of endothelial function in both clinical and athletic settings and to identify changes in muscle blood flow in response to exercise, nutritional supplementation, and occlusion. The purposes of the present study were to examine the reliability and relative contributions of arterial cross-sectional area and time-averaged flow velocity to predict muscle blood flow as a result of fatiguing exercise in men and women. Methods: Eighteen healthy men and 18 healthy women performed 50 consecutive eccentric repetitions of the elbow flexors at 60% of their pretest eccentric peak torque at a velocity of 180° s−1. Test-retest reliability and stepwise linear regression analyses were performed to determine the ability of arterial cross-sectional area and time-averaged flow velocity to predict brachial artery muscle blood flow for the men, women, and combined sample. Results: There was no systematic test versus retest mean differences (P > 0.05) for any of the ultrasound determined variables. The two-variable regression models significantly improved the ability to predict muscle blood flow and were associated with smaller standard error of the estimates (3.7%–10.1% vs. 16.8%–37.0% of the mean baseline muscle blood flow values) compared to the one-variable models. Conclusions: The findings of the present study supported the use of ultrasound for reliable assessments of arterial diameter, arterial cross-sectional area, time-averaged flow velocity, and muscle blood flow from the brachial artery in men and women. Furthermore, time-averaged flow velocity was a more powerful predictor of muscle blood flow than arterial cross-sectional area.
Collapse
Affiliation(s)
- Ethan C Hill
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68505, USA
| | - Terry J Housh
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68505, USA
| | - Cory M Smith
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68505, USA
| | - Joshua L Keller
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68505, USA
| | - Richard J Schmidt
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68505, USA
| | - Glen O Johnson
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68505, USA
| |
Collapse
|
12
|
Hill EC, Housh TJ, Smith CM, Schmidt RJ, Johnson GO. Gender- and Muscle-Specific Responses During Fatiguing Exercise. J Strength Cond Res 2018; 32:1471-1478. [PMID: 29334581 DOI: 10.1519/jsc.0000000000001996] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hill, EC, Housh, TJ, Smith, CM, Schmidt, RJ, and Johnson, GO. Gender- and muscle-specific responses during fatiguing exercise. J Strength Cond Res 32(5): 1471-1478, 2018-The purpose of the present investigation was to examine potential gender-related differences in electromyographic (EMG) and mechanomyographic (MMG) responses during submaximal, concentric, isokinetic, forearm flexion muscle contractions. Twelve men and 12 women performed concentric peak torque trials before (pretest) and after (posttest) a fatiguing exercise bout that consisted of 50 submaximal (65% of concentric peak torque), concentric, isokinetic (60°·s), forearm flexion muscle contractions. Surface EMG and MMG signals were simultaneously recorded from the biceps brachii and brachioradialis muscles. There was a gender-related difference in the decline in absolute concentric peak torque for the men (23.8%) vs. women (18.5%) that was eliminated when covaried for differences in pretest concentric peak torque values. During the fatiguing exercise bout, EMG amplitude(AMP) increased and EMG mean power frequency (MPF) decreased for both genders and muscles. There were, however, muscle- and gender-specific increases, decreases, and no changes for MMG AMP and MMG MPF. The gender-related difference for the posttest decline in concentric peak torque was associated with differences in muscle strength which may have resulted in greater blood flow occlusion in the men than the women. The muscles with the most pronounced fatigue-induced neuromuscular responses were the biceps brachii in men and the brachioradialis in women. These findings may be related to gender differences in the usage patterns of synergistic muscles during a fatiguing task.
Collapse
Affiliation(s)
- Ethan C Hill
- Human Performance Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | | | | | | |
Collapse
|
13
|
Barbosa TC, Kaur J, Stephens BY, Akins JD, Keller DM, Brothers RM, Fadel PJ. Attenuated forearm vascular conductance responses to rhythmic handgrip in young African-American compared with Caucasian-American men. Am J Physiol Heart Circ Physiol 2018; 315:H1316-H1321. [PMID: 30118345 DOI: 10.1152/ajpheart.00387.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that African-American (AA) individuals have heightened vasoconstrictor and reduced vasodilator responses under resting conditions compared with Caucasian-American (CA) individuals. However, potential differences in vascular responses to exercise remain unclear. Therefore, we tested the hypothesis that, compared with CA subjects, AA subjects would present an attenuated increase in forearm vascular conductance (FVC) during rhythmic handgrip exercise. Forearm blood flow (FBF; duplex Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured in healthy young CA ( n = 10) and AA ( n = 10) men during six trials of rhythmic handgrip performed at workloads of 4, 8, 12, 16, 20, and 24 kg. FVC (calculated as FBF/MAP), FBF, and MAP were similar between groups at rest (FVC: 63 ± 7 ml·min-1·100 mmHg-1 in CA subjects vs. 62 ± 7 ml·min-1·100 mmHg-1 in AA subjects, P = 0.862). There was an intensity-dependent increase in FVC during exercise in both groups; however, AA subjects presented lower FVC (interaction P < 0.001) at 8-, 12-, 16-, 20-, and 24-kg workloads (e.g., 24 kg: 324 ± 20 ml·min-1·100 mmHg-1 in CA subjects vs. 241 ± 21 ml·min-1·100 mmHg-1 in AA subjects, P < 0.001). FBF responses to exercise were also lower in AA subjects (interaction P < 0.001), whereas MAP responses did not differ between groups (e.g., ∆MAP at 24 kg: +19 ± 2 mmHg in CA subjects vs. +19 ± 2 mmHg in AA subjects, interaction P = 0.950). These findings indicate lower hyperemic responses to rhythmic handgrip exercise in AA men compared with CA men. NEW & NOTEWORTHY It is known that African-American individuals have heightened vasoconstriction and reduced vasodilation under resting conditions compared with Caucasian-American individuals. Here, we identified that the hyperemic response to moderate and high-intensity rhythmic handgrip exercise was lower in healthy young African-American men.
Collapse
Affiliation(s)
- Thales C Barbosa
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - Jasdeep Kaur
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - Brandi Y Stephens
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - John D Akins
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - David M Keller
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - R Matthew Brothers
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| |
Collapse
|
14
|
Gelabert-Rebato M, Wiebe JC, Martin-Rincon M, Gericke N, Perez-Valera M, Curtelin D, Galvan-Alvarez V, Lopez-Rios L, Morales-Alamo D, Calbet JAL. Mangifera indica L. Leaf Extract in Combination With Luteolin or Quercetin Enhances VO 2peak and Peak Power Output, and Preserves Skeletal Muscle Function During Ischemia-Reperfusion in Humans. Front Physiol 2018; 9:740. [PMID: 29937737 PMCID: PMC6002676 DOI: 10.3389/fphys.2018.00740] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
It remains unknown whether polyphenols such as luteolin (Lut), mangiferin and quercetin (Q) have ergogenic effects during repeated all-out prolonged sprints. Here we tested the effect of Mangifera indica L. leaf extract (MLE) rich in mangiferin (Zynamite®) administered with either quercetin (Q) and tiger nut extract (TNE), or with luteolin (Lut) on sprint performance and recovery from ischemia-reperfusion. Thirty young volunteers were randomly assigned to three treatments 48 h before exercise. Treatment A: placebo (500 mg of maltodextrin/day); B: 140 mg of MLE (60% mangiferin) and 50 mg of Lut/day; and C: 140 mg of MLE, 600 mg of Q and 350 mg of TNE/day. After warm-up, subjects performed two 30 s Wingate tests and a 60 s all-out sprint interspaced by 4 min recovery periods. At the end of the 60 s sprint the circulation of both legs was instantaneously occluded for 20 s. Then, the circulation was re-opened and a 15 s sprint performed, followed by 10 s recovery with open circulation, and another 15 s final sprint. MLE supplements enhanced peak (Wpeak) and mean (Wmean) power output by 5.0-7.0% (P < 0.01). After ischemia, MLE+Q+TNE increased Wpeak by 19.4 and 10.2% compared with the placebo (P < 0.001) and MLE+Lut (P < 0.05), respectively. MLE+Q+TNE increased Wmean post-ischemia by 11.2 and 6.7% compared with the placebo (P < 0.001) and MLE+Lut (P = 0.012). Mean VO2 during the sprints was unchanged, suggesting increased efficiency or recruitment of the anaerobic capacity after MLE ingestion. In women, peak VO2 during the repeated sprints was 5.8% greater after the administration of MLE, coinciding with better brain oxygenation. MLE attenuated the metaboreflex hyperpneic response post-ischemia, may have improved O2 extraction by the Vastus Lateralis (MLE+Q+TNE vs. placebo, P = 0.056), and reduced pain during ischemia (P = 0.068). Blood lactate, acid-base balance, and plasma electrolytes responses were not altered by the supplements. In conclusion, a MLE extract rich in mangiferin combined with either quercetin and tiger nut extract or luteolin exerts a remarkable ergogenic effect, increasing muscle power in fatigued subjects and enhancing peak VO2 and brain oxygenation in women during prolonged sprinting. Importantly, the combination of MLE+Q+TNE improves skeletal muscle contractile function during ischemia/reperfusion.
Collapse
Affiliation(s)
- Miriam Gelabert-Rebato
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Nektium Pharma, Las Palmas de Gran Canaria, Spain
| | | | - Marcos Martin-Rincon
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Mario Perez-Valera
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Curtelin
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Laura Lopez-Rios
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jose A. L. Calbet
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
15
|
Elliott RO, Alsalahi S, Fisher JP. Impact of acute dynamic exercise on radial artery low-flow mediated constriction in humans. Eur J Appl Physiol 2018; 118:1463-1472. [PMID: 29748721 PMCID: PMC6028889 DOI: 10.1007/s00421-018-3876-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/26/2018] [Indexed: 01/22/2023]
Abstract
Purpose A “low-flow mediated constriction” (L-FMC) is evoked in the radial artery by the inflation of an ipsilateral wrist cuff to a supra-systolic pressure. We sought to test the hypothesis that the radial artery L-FMC response is augmented immediately following acute dynamic leg exercise in young healthy individuals. Methods Ten healthy and recreationally active men (23 ± 4 years) undertook a 30-min trial of incremental dynamic leg cycling exercise (10 min at 50, 100 and 150 W) and a 30-min time control trial (seated rest). Trials were randomly assigned and performed on separate days. Radial artery characteristics (diameter, blood flow and shear rate) were assessed throughout each trial, with L-FMC and flow-mediated vasodilatation (FMD) assessments conducted prior to and immediately following (10 min) trials. Results Dynamic leg cycling exercise increased radial artery blood flow, along with mean, retrograde and anterograde shear rate (P < 0.05). Blood flow profiles were unchanged during the time control trial (P > 0.05). Following exercise L-FMC was increased (mean [SD]; − 5.6 [3.3] vs. − 10.1 [3.8] %, P < 0.05), while it was not different in the time control condition (− 8.1 [3.2] vs. − 6.7 [3.4] %, P > 0.05). FMD was not different following either the exercise or time control trials (P > 0.05), but the composite end-point of L-FMC + FMD was enhanced post-exercise (P < 0.05). Conclusions Dynamic exercise with a large muscle mass acutely augments the vasoconstrictor response of the radial artery in response to a reduction in blood flow (L-FMC) in young healthy individuals. The time course of this post-exercise response and the underlying vasoregulatory mechanisms require elucidation.
Collapse
Affiliation(s)
- Robert O Elliott
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Sultan Alsalahi
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - James P Fisher
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
16
|
Craig JC, Colburn TD, Hirai DM, Schettler MJ, Musch TI, Poole DC. Sex and nitric oxide bioavailability interact to modulate interstitial Po 2 in healthy rat skeletal muscle. J Appl Physiol (1985) 2018; 124:1558-1566. [PMID: 29369738 DOI: 10.1152/japplphysiol.01022.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Premenopausal women express reduced blood pressure and risk of cardiovascular disease relative to age-matched men. This purportedly relates to elevated estrogen levels increasing nitric oxide synthase (NOS) activity and NO-mediated vasorelaxation. We tested the hypotheses that female rat skeletal muscle would: 1) evince a higher O2 delivery-to-utilization ratio (Q̇o2/V̇o2) during contractions; and 2) express greater modulation of Q̇o2/V̇o2 with changes to NO bioavailability compared with male rats. The spinotrapezius muscle of Sprague-Dawley rats (females = 8, males = 8) was surgically exposed and electrically-stimulated (180 s, 1 Hz, 6 V). OxyphorG4 was injected into the muscle and phosphorescence quenching employed to determine the temporal profile of interstitial Po2 (Po2is, determined by Q̇o2/V̇o2). This was performed under three conditions: control (CON), 300 µM sodium nitroprusside (SNP; NO donor), and 1.5 mM Nω-nitro-l-arginine methyl ester (l-NAME; NOS blockade) superfusion. No sex differences were found for the Po2is kinetics parameters in CON or l-NAME ( P > 0.05), but females elicited a lower baseline following SNP (males 42 ± 3 vs. females 36 ± 2 mmHg, P < 0.05). Females had a lower ΔPo2is during contractions following SNP (males 22 ± 3 vs. females 17 ± 2 mmHg, P < 0.05), but there were no sex differences for the temporal response to contractions ( P > 0.05). The total NO effect (SNP minus l-NAME) on Po2is was not different between sexes. However, the spread across both conditions was shifted to a lower absolute range for females (reduced SNP baseline and greater reduction following l-NAME). These data support that females have a greater reliance on basal NO bioavailability and males have a greater responsiveness to exogenous NO and less responsiveness to reduced endogenous NO. NEW & NOTEWORTHY Interstitial Po2 (Po2is; determined by O2 delivery-to-utilization matching) plays an important role for O2 flux into skeletal muscle. We show that both sexes regulate Po2is at similar levels at rest and during skeletal muscle contractions. However, modulating NO bioavailability exposes sex differences in this regulation with females potentially having a greater reliance on basal NO bioavailability and males having a greater responsiveness to exogenous NO and less responsiveness to reduced endogenous NO.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Daniel M Hirai
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Michael J Schettler
- Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
17
|
Smith JR, Hageman KS, Harms CA, Poole DC, Musch TI. Respiratory muscle blood flow during exercise: Effects of sex and ovarian cycle. J Appl Physiol (1985) 2017; 122:918-924. [PMID: 28126910 DOI: 10.1152/japplphysiol.01007.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 11/22/2022] Open
Abstract
Sex and ovarian cycle have been speculated to modify respiratory muscle blood flow control during exercise, but the findings are inconclusive. We tested the hypotheses that females would have higher respiratory muscle blood flow and vascular conductance (VC) compared with males during exercise and that this difference would be accentuated in proestrus vs. ovariectomized (OVA) females. Mean arterial pressure (carotid artery catheter) and respiratory muscle blood flow (radiolabeled microspheres) were measured during moderate-intensity (24 m/min, 10% grade) exercise in male (n = 9), female (n = 9), and OVA female (n = 7) rats and near-maximal (60 m/min, 5% grade) exercise in male (n = 5) and female (n = 7) rats. At rest, diaphragm, intercostal, and transversus abdominis blood flow were not different (P = 0.33) among groups. During moderate-intensity exercise, diaphragm (M: 124 ± 16; F: 140 ± 14; OVA: 140 ± 20 ml·min-1·100 g-1), intercostal (M: 33 ± 5; F: 34 ± 5; OVA: 30 ± 5 ml·min-1·100 g-1), and transversus abdominis blood flow (M: 24 ± 4; F: 35 ± 7; OVA: 35 ± 9 ml·min-1·100 g-1) significantly increased in all groups compared with rest but were not different (P = 0.12) among groups. From rest to moderate-intensity exercise, diaphragm (P < 0.03) and transversus abdominis (P < 0.04) VC increased in all groups, whereas intercostal VC increased only for males and females (P = 0.01). No differences (P > 0.13) existed in VC among groups. During near-maximal exercise, diaphragm (M: 304 ± 62; F: 283 ± 17 ml·min-1·100 g-1), intercostal (M: 29 ± 8; F: 40 ± 6 ml·min-1·100 g-1), and transversus abdominis (M: 85 ± 14; F: 86 ± 9 ml·min-1·100 g-1) blood flow and VC were not different (P > 0.27) between males and females. These data demonstrate that respiratory muscle blood flow and vascular conductance at rest and during exercise are not affected by sex or ovarian cycle in rats.NEW & NOTEWORTHY It has been proposed that sex and ovarian cycle modulate respiratory muscle blood flow control during exercise. We demonstrate herein that neither sex nor ovarian cycle influences respiratory muscle blood flow or vascular conductance at rest or during exercise in rats.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Craig A Harms
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
18
|
Martin J, Perry R, Baptista R, McArtor J, Clutter L, Symons T, de Paleville DT, Roberts A, Cesarz G, Caruso J. Workload impact on gender-based differences in delta blood lactate concentrations from supramaximal exercise. ISOKINET EXERC SCI 2016. [DOI: 10.3233/ies-160615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- J.L. Martin
- Department Chemistry and Biochemistry, University of Tulsa, Tulsa, OK, USA
| | - R.A. Perry
- Exercise and Sports Science Program, University of Tulsa, Tulsa, OK, USA
| | - R.A. Baptista
- Exercise and Sports Science Program, University of Tulsa, Tulsa, OK, USA
| | - J.D. McArtor
- Exercise and Sports Science Program, University of Tulsa, Tulsa, OK, USA
| | - L.B. Clutter
- School of Nursing, University of Tulsa, Tulsa, OK, USA
| | - T.B. Symons
- Department Health and Sport Sciences, University of Louisville, Louisville, KY, USA
| | | | - A. Roberts
- Department Health and Sport Sciences, University of Louisville, Louisville, KY, USA
| | - G. Cesarz
- Department Health and Sport Sciences, University of Louisville, Louisville, KY, USA
| | - J.F. Caruso
- Department Health and Sport Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
19
|
McNeil CJ, Allen MD, Olympico E, Shoemaker JK, Rice CL. Blood flow and muscle oxygenation during low, moderate, and maximal sustained isometric contractions. Am J Physiol Regul Integr Comp Physiol 2015; 309:R475-81. [PMID: 26084698 PMCID: PMC4591373 DOI: 10.1152/ajpregu.00387.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 06/15/2015] [Indexed: 11/22/2022]
Abstract
A reduction of blood flow to active muscle will precipitate fatigue, and sustained isometric contractions produce intramuscular and compartmental pressures that can limit flow. The present study explored how blood flow and muscle oxygenation respond to isometric contractions at low, moderate, and maximal intensities. Over two visits, 10 males (26 ± 2 yr; means ± SD) performed 1-min dorsiflexion contractions at 30, 60, and 100% of maximal voluntary contraction (MVC) torque. Doppler ultrasound of the anterior tibial artery was used to record arterial diameter and mean blood velocity and to calculate absolute blood flow. The tissue oxygenation index (TOI) of tibialis anterior was acquired with near-infrared spectroscopy (NIRS). There was a progressive increase in blood flow at 30% MVC (peak of 289 ± 139% resting value), no change from rest until an increase in the final 10 s of exercise at 60% MVC (peak of 197 ± 102% rest), and an initial decrease (59 ± 30% resting value) followed by a progressive increase at 100% MVC (peak of 355 ± 133% rest). Blood flow was greater at 30 and 100% than 60% MVC during the last 30 s of exercise. TOI was ∼63% at rest and, within 30 s of exercise, reached steady-state values of ∼42%, ∼22%, and ∼22% for 30, 60, and 100% MVC, respectively. Even maximal contraction of the dorsiflexors is unable to cause more than a transient decrease of flow in the anterior tibial artery. Unlike dynamic or intermittent isometric exercise, our results indicate blood flow is not linearly graded with intensity or directly coupled with oxygenation during sustained isometric contractions.
Collapse
Affiliation(s)
- Chris J McNeil
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Matti D Allen
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Eric Olympico
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada; and
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Allen MD, Kimpinski K, Doherty TJ, Rice CL. Decreased muscle endurance associated with diabetic neuropathy may be attributed partially to neuromuscular transmission failure. J Appl Physiol (1985) 2015; 118:1014-22. [PMID: 25663671 DOI: 10.1152/japplphysiol.00441.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/03/2015] [Indexed: 01/25/2023] Open
Abstract
Diabetic polyneuropathy (DPN) can cause muscle atrophy, weakness, contractile slowing, and neuromuscular transmission instability. Our objective was to assess the response of the impaired neuromuscular system of DPN in humans when stressed with a sustained maximal voluntary contraction (MVC). Baseline MVC and evoked dorsiflexor contractile properties were assessed in DPN patients (n = 10) and controls (n = 10). Surface electromyography was used to record tibialis anterior evoked maximal compound muscle action potentials (CMAPs) and neuromuscular activity during MVCs. Participants performed a sustained isometric dorsiflexion MVC for which task termination was determined by the inability to sustain ≥60% MVC torque. The fatigue protocol was immediately followed by a maximal twitch, with additional maximal twitches and MVCs assessed at 30 s and 2 min postfatigue. DPN patients fatigued ∼21% more quickly than controls (P < 0.05) and featured less relative electromyographic activity during the first one-third of the fatigue protocol compared with controls (P < 0.05). Immediately following fatigue, maximal twitch torque was reduced similarly (∼20%) in both groups, and concurrently CMAPs were reduced (∼12%) in DPN patients, whereas they were unaffected in controls (P > 0.05). Twitch torque and CMAP amplitude recovered to baseline 30 s postfatigue. Additionally, at 30 s postfatigue, both groups had similar (∼10%) reductions in MVC torque relative to baseline, and MVC strength recovered by 2 min postfatigue. We conclude DPN patients possess less endurance than controls, and neuromuscular transmission failure may contribute to this greater fatigability.
Collapse
Affiliation(s)
- Matti D Allen
- School of Medicine, Queen's University, Kingston, Ontario, Canada; School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada;
| | - Kurt Kimpinski
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Timothy J Doherty
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; and
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol (Oxf) 2014; 210:768-89. [PMID: 24433272 DOI: 10.1111/apha.12234] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/29/2013] [Accepted: 01/08/2014] [Indexed: 12/17/2022]
Abstract
Sex-related differences in physiology and anatomy are responsible for profound differences in neuromuscular performance and fatigability between men and women. Women are usually less fatigable than men for similar intensity isometric fatiguing contractions. This sex difference in fatigability, however, is task specific because different neuromuscular sites will be stressed when the requirements of the task are altered, and the stress on these sites can differ for men and women. Task variables that can alter the sex difference in fatigability include the type, intensity and speed of contraction, the muscle group assessed and the environmental conditions. Physiological mechanisms that are responsible for sex-based differences in fatigability may include activation of the motor neurone pool from cortical and subcortical regions, synaptic inputs to the motor neurone pool via activation of metabolically sensitive small afferent fibres in the muscle, muscle perfusion and skeletal muscle metabolism and fibre type properties. Non-physiological factors such as the sex bias of studying more males than females in human and animal experiments can also mask a true understanding of the magnitude and mechanisms of sex-based differences in physiology and fatigability. Despite recent developments, there is a tremendous lack of understanding of sex differences in neuromuscular function and fatigability, the prevailing mechanisms and the functional consequences. This review emphasizes the need to understand sex-based differences in fatigability to shed light on the benefits and limitations that fatigability can exert for men and women during daily tasks, exercise performance, training and rehabilitation in both health and disease.
Collapse
Affiliation(s)
- S. K. Hunter
- Exercise Science Program; Department of Physical Therapy; Marquette University; Milwaukee WI USA
| |
Collapse
|
22
|
Willcocks RJ, Fulford J, Armstrong N, Barker AR, Williams CA. Muscle metabolism during fatiguing isometric quadriceps exercise in adolescents and adults. Appl Physiol Nutr Metab 2013; 39:439-45. [PMID: 24669985 DOI: 10.1139/apnm-2013-0192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Children and adolescents are less susceptible to muscle fatigue during repeated bouts of high-intensity exercise than adults, but the physiological basis for these differences is not clear. The purpose of the current investigation was to investigate the muscle metabolic responses, using 31-phosphorus magnetic resonance spectroscopy, during fatiguing isometric quadriceps exercise in 13 adolescents (7 females) and 14 adults (8 females). Participants completed 30 maximal voluntary contractions (6-s duration) separated by 6 s of rest. Fatigue was quantified as the relative decrease in force over the test. Fatigue was not significantly different with age (p = 0.20) or sex (p = 0.63). Metabolic perturbation (change in phosphocreatine, inorganic phosphate, and ADP concentrations) was significantly greater in adults compared with adolescents; no sex effects were present. Muscle pH did not differ with age or sex. Phosphocreatine recovery following exercise was not significantly different with age (p = 0.27) or sex (p = 0.97) but a significant interaction effect was present (p = 0.04). Recovery tended to be faster in boys than men but slower in girls than women, though no significant group differences were identified. The results of this study show that at a comparable level of muscle fatigue, the metabolic profile is profoundly different between adolescents and adults.
Collapse
Affiliation(s)
- Rebecca J Willcocks
- a Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Magdalen Rd., Exeter EX1 2LU, UK
| | | | | | | | | |
Collapse
|
23
|
Intravoxel Incoherent Motion Imaging of Masticatory Muscles: Pilot Study for the Assessment of Perfusion and Diffusion During Clenching. AJR Am J Roentgenol 2013; 201:1101-7. [DOI: 10.2214/ajr.12.9729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Philippe M, Wegst D, Müller T, Raschner C, Burtscher M. Climbing-specific finger flexor performance and forearm muscle oxygenation in elite male and female sport climbers. Eur J Appl Physiol 2011; 112:2839-47. [PMID: 22131087 DOI: 10.1007/s00421-011-2260-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/19/2011] [Indexed: 11/28/2022]
Abstract
Climbing performance relies to a great extent on the performance of the finger flexor muscles. Only a few studies investigated this performance in top class climbers and only one study compared gender-specific differences. This study investigated the climbing-specific finger flexor strength and endurance and related muscular oxygenation in 12 elite female and male climbers and 12 non-climbers. After the assessment of maximum voluntary finger flexor contraction (MVC), two isometric finger flexor endurance tests were performed at 40% MVC until exhaustion. A continuous isometric test was followed by an intermittent isometric test (10 s contraction, 3 s rest). Changes in oxygenation of finger flexor muscles were recorded using near infrared spectroscopy. MVC and strength-to-weight ratio were greater in climbers than non-climbers (P = 0.003; P < 0.001) and greater in men than women (P < 0.001; P = 0.002). Time to task failure for the intermittent test and the force-time integrals for the continuous and the intermittent test were also significantly greater in climbers (P = 0.030; P = 0.027; P = 0.005). During the intermittent test, re-oxygenation of the working muscles was faster in climbers (P < 0.05) without gender-specific differences. Close correlations were demonstrated between the best on-sight climbing performance and strength-to-weight ratio (r (2) = 0.946, P < 0.001) only in female climbers. The superior intermittent finger flexor endurance of climbers over non-climbers may be explained by the faster re-oxygenation of the finger flexor muscles during the short rest phases.
Collapse
Affiliation(s)
- Marc Philippe
- Department of Sport Science, Medical Section, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
25
|
Schraml C, Schwenzer NF, Martirosian P, Claussen CD, Schick F. Temporal course of perfusion in human masseter muscle during isometric contraction assessed by arterial spin labeling at 3T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 24:201-9. [DOI: 10.1007/s10334-011-0254-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 11/29/2022]
|
26
|
Avin KG, Naughton MR, Ford BW, Moore HE, Monitto-Webber MN, Stark AM, Gentile AJ, Law LAF. Sex differences in fatigue resistance are muscle group dependent. Med Sci Sports Exerc 2011; 42:1943-50. [PMID: 20195184 DOI: 10.1249/mss.0b013e3181d8f8fa] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Women are often reported to be generally more resistant to fatigue than men for relative-intensity tasks. This has been observed repeatedly for elbow flexors, whereas at the ankle, sex differences appear less robust, suggesting localized rather than systemic influences. Thus, the purpose of this study was to examine sex differences in fatigue resistance at muscle groups in a single cohort and which factors, if any, predict endurance time. METHODS Thirty-two young adults (age = 19-44 yr, 16 women) performed sustained isometric contractions at 50% maximum voluntary isometric contraction to failure for elbow flexion and ankle dorsiflexion. Pain, exertion, and muscle EMG were assessed throughout. Self-reported baseline activity was measured using the International Physical Activity Questionnaire. RESULTS Women were significantly more resistant to fatigue than men at the elbow (112.3 ± 6.2 vs 80.3 ± 5.8 s, P = 0.001) but not at the ankle (140.6 ± 10.7 vs 129.2 ± 10.5 s, P = 0.45). Peak torque was greater in men than that in women (P < 0.0001) at the ankle (45.0 ± 1.7 vs 30.1 ± 1.0 N·m) and at the elbow (75.7 ± 3.1 vs 34.4 ± 2.2 N·m). Peak torque was significantly related to endurance time at the elbow (R2= 0.30) but not at the ankle (R2 = 0.03). Peak pain, rate of pain increase, peak exertion, EMG, and baseline physical activity did not differ between sexes. CONCLUSIONS Sex differences in fatigue resistance are muscle group specific. Women were more fatigue resistant at the elbow but not at the ankle during a sustained isometric contraction. Further, factors that may contribute to fatigue resistance for one muscle group (e.g., sex, peak torque) may not be critical at another.
Collapse
Affiliation(s)
- Keith G Avin
- Graduate Program in Physical Therapy and Rehabilitation Science, The University of Iowa, Iowa City, IA 52242-1190, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
The effect of recovery time on strength performance following a high-intensity bench press workout in males and females. Int J Sports Physiol Perform 2010; 5:184-96. [PMID: 20625191 DOI: 10.1123/ijspp.5.2.184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine the effects of training sessions, involving high-resistance, low-repetition bench press exercise, on strength recovery patterns, as a function of gender and training background. METHODS The subjects were 12 athletes (6 males and 6 females) and age-matched college students of both genders (4 males and 4 females). The subjects completed a 3-wk resistance training program involving a bench press exercise, 3 d/wk, to become familiar with the testing procedure. After the completion of the resistance training program, the subjects, on three consecutive weeks, participated in two testing sessions per week, baseline session and recovery session. During the testing sessions, subjects performed five sets of the bench press exercise at 50% to 100% of perceived five repetition maximum (5-RM). Following the weekly baseline sessions, subjects rested during a 4-, 24-, or 48-h recovery period. Strength measurements were estimates of one repetition maximum (1-RM), using equivalent percentages for the number of repetitions completed by the subject at the perceived 5-RM effort of the bench press exercise. RESULTS The full-factorial ANOVA model revealed a Gender by Recovery Period by Testing Session interaction effect, F(2, 32) = 10.65; P < .05. Among male subjects, decreases in estimated 1-RM were detected at the 4- and 24-h recovery times. There were no differences in muscle strength among the female subjects, regardless of recovery time. CONCLUSIONS For bench press exercises, using different recovery times of 48 h for males and 4 h for females may optimize strength development as a function of gender.
Collapse
|
28
|
Sartori TE, Nunes RAB, da Silva GT, da Silva SC, Rondon MUPB, Negrão CE, Mansur AJ. Influence of demographic and metabolic variables on forearm blood flow and vascular conductance in individuals without overt heart disease. Vasc Health Risk Manag 2010; 6:431-7. [PMID: 20539845 PMCID: PMC2882895 DOI: 10.2147/vhrm.s10683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Vascular reactivity is involved in the regulation of vascular function either in normal conditions or in the pathophysiology of cardiovascular diseases. We tested the hypothesis that vascular reactivity evaluated by forearm blood flow may vary according to demographic and metabolic variables in a cohort of individuals without any evidence of heart disease after clinical examination. SUBJECTS AND METHODS We studied 186 individuals (mean age 41.4 years, standard deviation 13.1 years; 95 (51%) men and 91 (49%) women. We investigated forearm blood flow and vascular conductance with venous occlusion plethysmography at baseline, during handgrip isometric exercise and during the recovery phase. Demographic and laboratory data were collected. Statistical analysis was performed with mixed linear models appropriate for repeated measurements. RESULTS Mean forearm blood flow values in the different study conditions ranged between 1.7+/-0.47 mL.min(-1).100 mL(-1) of tissue and 2.82+/-1.13 mL.min(-1).100 mL(-1) of tissue. Forearm blood flow was higher in men than in women (P<0.005) and increased as the heart rate increased during handgrip maneuver (P<0.0001). Serum triglyceride levels were inversely related to forearm blood flow at baseline, during isometric exercise and recovery phase (P=0.0209). Body mass index was inversely related to forearm vascular conductance at baseline, during isometric exercise and recovery phase (P=0.0223). CONCLUSION Our findings suggest that forearm blood flow and vascular conductance as a surrogate of the vascular function may be influenced by gender, heart rate, serum triglyceride levels and body mass index in individuals without overt heart disease.
Collapse
Affiliation(s)
- Thiago E Sartori
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
29
|
Springer BK, Pincivero DM. Differences in ratings of perceived exertion between the sexes during single-joint and whole-body exercise. J Sports Sci 2010; 28:75-82. [PMID: 19967581 DOI: 10.1080/02640410903390097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Law LAF, Avin KG. Endurance time is joint-specific: a modelling and meta-analysis investigation. ERGONOMICS 2010; 53:109-29. [PMID: 20069487 PMCID: PMC2891087 DOI: 10.1080/00140130903389068] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Static task intensity-endurance time (ET) relationships (e.g. Rohmert's curve) were first reported decades ago. However, a comprehensive meta-analysis to compare experimentally-observed ETs across bodily regions has not been reported. We performed a systematic literature review of ETs for static contractions, developed joint-specific power and exponential models of the intensity-ET relationships, and compared these models between each joint (ankle, trunk, hand/grip, elbow, knee, and shoulder) and the pooled data (generalised curve). 194 publications were found, representing a total of 369 data points. The power model provided the best fit to the experimental data. Significant intensity-dependent ET differences were predicted between each pair of joints. Overall, the ankle was most fatigue-resistant, followed by the trunk, hand/grip, elbow, knee and finally the shoulder was most fatigable. We conclude ET varies systematically between joints, in some cases with large effect sizes. Thus, a single generalised ET model does not adequately represent fatigue across joints. STATEMENT OF RELEVANCE: Rohmert curves have been used in ergonomic analyses of fatigue, as there are limited tools available to accurately predict force decrements. This study provides updated endurance time-intensity curves using a large meta-analysis of fatigue data. Specific models derived for five distinct joint regions should further increase prediction accuracy.
Collapse
|
31
|
Abstract
Women can be less fatigable than men because of sex-related differences within the neuromuscular system that impact physiological adjustments during a fatiguing task. However, the involved mechanism(s) for the sex difference is task specific. This review explores the novel hypothesis that variation of the task will alter the magnitude of the sex-difference in muscle fatigue and the contribution of involved mechanisms.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201, USA.
| |
Collapse
|
32
|
Springer BK, Pincivero DM. The effects of localized muscle and whole-body fatigue on single-leg balance between healthy men and women. Gait Posture 2009; 30:50-4. [PMID: 19327999 DOI: 10.1016/j.gaitpost.2009.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 12/05/2008] [Accepted: 02/25/2009] [Indexed: 02/02/2023]
Abstract
The purpose was to examine the effects of localized muscle and whole-body fatigue on indices of single-leg balance between healthy young men (n=10) and women (n=10). Subjects performed 10, 10-s single-leg balance trials on a force platform prior to performing each of three conditions (local, whole-body, and control), in a randomized order, on separate days. Localized muscle and whole-body fatigue consisted of single-leg, weight-bearing heel raises on an inclined platform, and exercise on a rowing ergometer, respectively, to the point of volitional failure. During the control condition, subjects remained in a seated position for 5 min. Immediately following each condition, five, 10-s, single-leg balance trials were performed. The localized muscle and whole-body fatigue protocols produced significant (p<0.05) increases in medial/lateral (M/L) and total sway (TS). Men experienced a greater (p<0.05) increase in anterior/posterior (A/P) sway following the localized muscle, than whole-body, fatigue protocol, whereas A/P sway increased more following the whole-body, than localized muscle, fatigue protocol for the women. Total sway variability increased significantly (p<0.05) more following the localized muscle fatigue protocol than the whole-body fatigue protocol for both men and women. The major findings of the present investigation demonstrated that measures of postural control, namely M/L, A/P sway and total sway, were adversely affected following fatiguing exercise, with differential effects between men and women.
Collapse
|
33
|
THIJSSEN DICKHJ, DAWSON ELLENA, BLACK MARKA, HOPMAN MARIATE, CABLE NT, GREEN DANIELJ. Brachial Artery Blood Flow Responses to Different Modalities of Lower Limb Exercise. Med Sci Sports Exerc 2009; 41:1072-9. [DOI: 10.1249/mss.0b013e3181923957] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Dipla K, Tsirini T, Zafeiridis A, Manou V, Dalamitros A, Kellis E, Kellis S. Fatigue resistance during high-intensity intermittent exercise from childhood to adulthood in males and females. Eur J Appl Physiol 2009; 106:645-53. [PMID: 19404672 DOI: 10.1007/s00421-009-1058-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2009] [Indexed: 02/01/2023]
Abstract
This study examined the maturation pattern of fatigue resistance (FR) from childhood to adulthood in females and males during high-intensity intermittent exercise and compared FR between females and males in childhood and adolescence. Thirty males (boys 11.3 +/- 0.5 years, teen-males 14.7 +/- 0.3 years, men 24.0 +/- 2.1 years) and 30 females (girls 10.9 +/- 0.6 years, teen-females 14.4 +/- 0.7 years, women 25.2 +/- 1.4) participated in this study. They performed high-intensity intermittent exercise (4 x 18 maximal knee flexions and extensions with 1-min rest) on an isokinetic dynamometer at 120 degrees s(-1). Peak torque of flexors (PTFL) and extensors (PTEX), and total work (TW) were measured. FR was calculated as % of PTEX, PTFL, and TW in 4th versus 1st set. FR was greater (P < 0.05) in boys versus teen-males and men, and in teen-males versus men. In females, FR was greater (P < 0.05) in girls versus teen-females and women, but not different between teen-females and women. FR was not different in boys versus girls and in teen-males versus teen-females. FR for PTFL, PTEX, and TW correlated negatively (P < 0.001) with the respective peak values (r = -0.68 to -0.84), and FR for TW with peak lactate (r = -0.58 to -0.69). In addition, age correlated (P < 0.01) with FR for males (r = -0.75) and females (r = -0.55). In conclusion, FR during high-intensity intermittent exercise undergoes a gradual decline from childhood to adulthood in males, while in females the adult profile establishes at mid-puberty (14-15 years). The maturation profile of FR in males and females during development appears to reflect the maturation profiles of peak torque, short-term muscle power, and lactate concentration after exercise.
Collapse
Affiliation(s)
- Konstantina Dipla
- Department of Physical Education & Sport Sciences at Serres, Aristotle University of Thessaloniki, Ag. Ioannis, 62110 Serres, Greece
| | | | | | | | | | | | | |
Collapse
|
35
|
Ischaemia and insulin, but not ischaemia and contraction, act synergistically in stimulating muscle glucose uptake in vivo in humans. Clin Sci (Lond) 2008; 116:157-64. [DOI: 10.1042/cs20080087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ischaemia, like muscle contraction, has been reported to induce skeletal muscle glucose uptake in in vitro models. This stimulating effect appears independent of insulin and is probably mediated by activation of AMPK (AMP-activated protein kinase). In the present study, we hypothesized that in vivo in humans ischaemia- and insulin-induced glucose uptake are additive, and that the combined impact of ischaemia and contraction on glucose uptake is of a similar magnitude when each is applied separately. We assessed the effects of ischaemia with and without euglycaemic–hyperinsulinaemia (clamp; protocol 1) and with and without muscle contraction (protocol 2) on muscle FGU (forearm glucose uptake) in healthy subjects. Furthermore, we assessed the impact of ischaemia on FBF (forearm blood flow; plethysmography). In protocol 1, ischaemia increased FGU from 0.6±0.1 at baseline to 5.5±1.9 μmol·min−1·dl−1, and insulin increased FGU to 1.6±0.3 μmol·min−1·dl−1 (P<0.05 for both). The combination of ischaemia+insulin increased FGU to 15.5±2.2 μmol·min−1·dl−1 (P<0.05 compared with each stimulus alone). Maximal FBF obtained after ischaemia was similar with and without hyperinsulinaemia. In protocol 2, isometric contraction increased FGU from 0.3±0.1 to 2.7±0.8 μmol·min−1·dl−1 (P<0.05), but FGU was not significantly different from ischaemia compared with ischaemia+contraction. However, combined ischaemia+contraction resulted in a greater increase in FBF. In summary, ischaemia and insulin independently stimulate skeletal muscle glucose uptake in vivo in humans, whereas ischaemia and contraction do not. The observed differential effects of these stimuli on glucose uptake appear to be unrelated to changes in muscle blood flow.
Collapse
|
36
|
SAITO YOKO, IEMITSU MOTOYUKI, OTSUKI TAKESHI, MAEDA SEIJI, AJISAKA RYUICHI. Gender Differences in Brachial Blood Flow during Fatiguing Intermittent Handgrip. Med Sci Sports Exerc 2008; 40:684-90. [DOI: 10.1249/mss.0b013e3181614327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Gonzales JU, Thompson BC, Thistlethwaite JR, Harper AJ, Scheuermann BW. Forearm blood flow follows work rate during submaximal dynamic forearm exercise independent of sex. J Appl Physiol (1985) 2007; 103:1950-7. [PMID: 17932302 DOI: 10.1152/japplphysiol.00452.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To test the hypothesis that sex influences forearm blood flow (FBF) during exercise, 15 women and 16 men of similar age [women 24.3 +/- 4.0 (SD) vs. men 24.9 +/- 4.5 yr] but different forearm muscle strength (women 290.7 +/- 44.4 vs. men 509.6 +/- 97.8 N; P < 0.05) performed dynamic handgrip exercise as the same absolute workload was increased in a ramp function (0.25 W/min). Task failure was defined as the inability to maintain contraction rate. Blood pressure and FBF were measured on separate arms during exercise by auscultation and Doppler ultrasound, respectively. Muscle strength was positively correlated with endurance time (r = 0.72, P < 0.01) such that women had a shorter time to task failure than men (450.5 +/- 113.0 vs. 831.3 +/- 272.9 s; P < 0.05). However, the percentage of maximal handgrip strength achieved at task failure was similar between sexes (14% maximum voluntary contraction). FBF was similar between women and men throughout exercise and at task failure (women 13.6 +/- 5.3 vs. men 14.5 +/- 4.9 ml.min(-1).100 ml(-1)). Mean arterial pressure was lower in women at rest and during exercise; thus calculated forearm vascular conductance (FVC) was higher in women during exercise but similar between sexes at task failure (women 0.13 +/- 0.05 vs. men 0.11 +/- 0.04 ml.min(-1).100 ml(-1).mmHg(-1)). In conclusion, the similar FBF during exercise was achieved by a higher FVC in the presence of a lower MAP in women than men. Still, FBF remained coupled to work rate (and presumably metabolic demand) during exercise irrespective of sex.
Collapse
Affiliation(s)
- Joaquin U Gonzales
- Cardiopulmonary and Metabolism Research Laboratory, Department of Kinesiology, The University of Toledo, Toledo, OH 43606, USA
| | | | | | | | | |
Collapse
|