1
|
Ghasemi Fard S, Wang F, Sinclair AJ, Elliott G, Turchini GM. How does high DHA fish oil affect health? A systematic review of evidence. Crit Rev Food Sci Nutr 2018; 59:1684-1727. [PMID: 29494205 DOI: 10.1080/10408398.2018.1425978] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The health benefits of fish oil, and its omega-3 long chain polyunsaturated fatty acid content, have attracted much scientific attention in the last four decades. Fish oils that contain higher amounts of eicosapentaenoic acid (EPA; 20:5n-3) than docosahexaenoic acid (DHA; 22:6n-3), in a distinctive ratio of 18/12, are typically the most abundantly available and are commonly studied. Although the two fatty acids have traditionally been considered together, as though they were one entity, different physiological effects of EPA and DHA have recently been reported. New oils containing a higher quantity of DHA compared with EPA, such as fractionated and concentrated fish oil, tuna oil, calamari oil and microalgae oil, are increasingly becoming available on the market, and other oils, including those extracted from genetically modified oilseed crops, soon to come. This systematic review focuses on the effects of high DHA fish oils on various human health conditions, such as the heart and cardiovascular system, the brain and visual function, inflammation and immune function and growth/Body Mass Index. Although inconclusive results were reported in several instances, and inconsistent outcomes observed in others, current data provides substantiated evidence in support of DHA being a beneficial bioactive compound for heart, cardiovascular and brain function, with different, and at times complementary, effects compared with EPA. DHA has also been reported to be effective in slowing the rate of cognitive decline, while its possible effects on depression disorders are still unclear. Interestingly, gender- and age- specific divergent roles for DHA have also been reported. This review provides a comprehensive collection of evidence and a critical summary of the documented physiological effects of high DHA fish oils for human health.
Collapse
Affiliation(s)
- Samaneh Ghasemi Fard
- a School of Medicine, Deakin University , Geelong , Australia.,b Nu-Mega Ingredients Pty Ltd , Altona North , Melbourne , Australia
| | - Fenglei Wang
- c Department of Food Science and Nutrition , Zhejiang University , Hangzhou , China
| | - Andrew J Sinclair
- a School of Medicine, Deakin University , Geelong , Australia.,e Department of Nutrition , Dietetics and Food, Monash University , Clayton , Australia
| | - Glenn Elliott
- b Nu-Mega Ingredients Pty Ltd , Altona North , Melbourne , Australia
| | - Giovanni M Turchini
- d School of Life and Environmental Sciences , Deakin University , Geelong , Australia
| |
Collapse
|
2
|
Ip WTK, McAlindon A, Miller SE, Bell JR, Curl CL, Huggins CE, Mellor KM, Raaijmakers AJA, Bienvenu LA, McLennan PL, Pepe S, Delbridge LMD. Dietary omega-6 fatty acid replacement selectively impairs cardiac functional recovery after ischemia in female (but not male) rats. Am J Physiol Heart Circ Physiol 2016; 311:H768-80. [PMID: 27422989 DOI: 10.1152/ajpheart.00690.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 07/12/2016] [Indexed: 02/05/2023]
Abstract
A definitive understanding of the role of dietary lipids in determining cardioprotection (or cardiodetriment) has been elusive. Randomized trial findings have been variable and sex specificity of dietary interventions has not been determined. In this investigation the sex-selective cardiac functional effects of three diets enriched by omega-3 or omega-6 polyunsaturated fatty acids (PUFA) or enriched to an equivalent extent in saturated fatty acid components were examined in rats after an 8-wk treatment period. In females the myocardial membrane omega-6:omega-3 PUFA ratio was twofold higher than males in the omega-6 diet replacement group. In diets specified to be high in omega-3 PUFA or in saturated fat, this sex difference was not apparent. Isolated cardiomyocyte and heart Langendorff perfusion experiments were performed, and molecular measures of cell viability were assessed. Under basal conditions the contractile performance of omega-6 fed female cardiomyocytes and hearts was reduced compared with males. Omega-6 fed females exhibited impaired systolic resilience after ischemic insult. This response was associated with increased postischemia necrotic cell damage evaluated by coronary lactate dehydrogenase during reperfusion in omega-6 fed females. Cardiac and myocyte functional parameters were not different between omega-3 and saturated fat dietary groups and within these groups there were no discernible sex differences. Our data provide evidence at both the cardiac and cardiomyocyte levels that dietary saturated fatty acid intake replacement with an omega-6 (but not omega-3) enriched diet has selective adverse cardiac effect in females. This finding has potential relevance in relation to women, cardiac risk, and dietary management.
Collapse
Affiliation(s)
- Wendy T K Ip
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Andrew McAlindon
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Sarah E Miller
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - James R Bell
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Claire L Curl
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Catherine E Huggins
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Kimberley M Mellor
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Antonia J A Raaijmakers
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Laura A Bienvenu
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia
| | - Peter L McLennan
- Graduate School of Medicine, Centre for Human Applied Physiology, University of Wollongong, Wollongong, Australia; and
| | - Salvatore Pepe
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lea M D Delbridge
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Australia;
| |
Collapse
|
3
|
Mellor KM, Curl CL, Chandramouli C, Pedrazzini T, Wendt IR, Delbridge LMD. Ageing-related cardiomyocyte functional decline is sex and angiotensin II dependent. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9630. [PMID: 24566994 PMCID: PMC4082583 DOI: 10.1007/s11357-014-9630-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/07/2014] [Indexed: 05/19/2023]
Abstract
Clinically, heart failure is an age-dependent pathological phenomenon and displays sex-specific characteristics. The renin-angiotensin system mediates cardiac pathology in heart failure. This study investigated the sexually dimorphic functional effects of ageing combined with angiotensin II (AngII) on cardiac muscle cell function, twitch and Ca(2+)-handling characteristics of isolated cardiomyocytes from young (~13 weeks) and aged (~87 weeks) adult wild type (WT) and AngII-transgenic (TG) mice. We hypothesised that AngII-induced contractile impairment would be exacerbated in aged female cardiomyocytes and linked to Ca(2+)-handling disturbances. AngII-induced cardiomyocyte hypertrophy was evident in young adult mice of both sexes and accentuated by age (aged adult ~21-23 % increases in cell length relative to WT). In female AngII-TG mice, ageing was associated with suppressed cardiomyocyte contractility (% shortening, maximum rate of shortening, maximum rate of relaxation). This was associated with delayed cytosolic Ca(2+) removal during twitch relaxation (Tau ~20 % increase relative to young adult female WT), and myofilament responsiveness to Ca(2+) was maintained. In contrast, aged AngII-TG male cardiomyocytes exhibited peak shortening equivalent to young TG; yet, myofilament Ca(2+) responsiveness was profoundly reduced with ageing. Increased pro-arrhythmogenic spontaneous activity was evident with age and cardiac AngII overexpression in male mice (42-55 % of myocytes) but relatively suppressed in female aged transgenic mice. Female myocytes with elevated AngII appear more susceptible to an age-related contractile deficit, whereas male AngII-TG myocytes preserve contractile function with age but exhibit desensitisation of myofilaments to Ca(2+) and a heightened vulnerability to arrhythmic activity. These findings support the contention that sex-specific therapies are required for the treatment of age-progressive heart failure.
Collapse
Affiliation(s)
- Kimberley M. Mellor
- />Department of Physiology, University of Melbourne, Melbourne, VIC Australia
- />Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Claire L. Curl
- />Department of Physiology, University of Melbourne, Melbourne, VIC Australia
| | | | | | - Igor R. Wendt
- />Department of Physiology, Monash University, Melbourne, VIC Australia
| | - Lea M. D. Delbridge
- />Department of Physiology, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
4
|
Krenz M, Baines C, Kalogeris T, Korthuis R. Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection. ACTA ACUST UNITED AC 2013. [DOI: 10.4199/c00090ed1v01y201309isp044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
von Schacky C. Omega-3 Fatty acids: anti-arrhythmic, pro-arrhythmic, or both? Front Physiol 2012; 3:88. [PMID: 22529815 PMCID: PMC3327892 DOI: 10.3389/fphys.2012.00088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/23/2012] [Indexed: 11/13/2022] Open
Abstract
This review focuses on developments after 2008, when the topic was last reviewed by the author. Pertinent publications were found by medline searches and in the author’s personal data base. Prevention of atrial fibrillation (AF) was investigated in a number of trials, sparked by one positive report on the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), considerations of upstream therapy, data from electrophysiologic laboratories and animal experiments. If EPA + DHA prevent postoperative AF, the effect is probably smaller than initially expected. The same is probably true for maintenance of sinus rhythm after cardioversion and for new-onset AF. Larger trials are currently ongoing. Prevention of ventricular arrhythmias was studied in carriers of an implanted cardioverter-defibrillator, with no clear results. This might have been due to a broad definition of the primary endpoint, including any ventricular arrhythmia and any action of the device. Epidemiologic studies support the contention that high levels of EPA + DHA prevent sudden cardiac death (SCD). However, since SCD is a rare occurrence, it is difficult to conduct an adequately powered trial. In patients with congestive heart failure, EPA + DHA reduced total mortality and rehospitalizations, but not SCD or presumed arrhythmic death. Of three trials in patients after a myocardial infarction, two were inadequately powered, and in one, the dose might have been too low. Taken together, while epidemiologic studies support an inverse relation between EPA + DHA and occurrence of SCD or arrhythmic death, demonstrating this effect in intervention trials remained elusive so far. A pro-arrhythmic effect of EPA + DHA has not been seen in intervention studies, and results of epidemiologic and animal studies also rather argue against such an effect. A different, and probably more productive, perspective is provided by a standardized analytical assessment of a person’s status in EPA + DHA by use of the omega-3 index, EPA + DHA in red cell fatty acids. In populations with a high omega-3 index, SCD is rare. Intervention trials can become more effective by including a low omega-3 index into the inclusion criteria, thus creating a study population more likely to demonstrate an effect of EPA + DHA. This is especially relevant in case of rare endpoints, like new-onset AF or SCD.
Collapse
Affiliation(s)
- C von Schacky
- Preventive Cardiology, Medizinische Klinik and Poliklinik I, Ludwig Maximilians-University Munich Munich, Germany
| |
Collapse
|
6
|
Fares E, Parks RJ, MacDonald JK, Egar JM, Howlett SE. Ovariectomy enhances SR Ca2+ release and increases Ca2+ spark amplitudes in isolated ventricular myocytes. J Mol Cell Cardiol 2012; 52:32-42. [DOI: 10.1016/j.yjmcc.2011.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/18/2011] [Accepted: 09/02/2011] [Indexed: 11/24/2022]
|