1
|
Wist M, Meier L, Gutman O, Haas J, Endres S, Zhou Y, Rösler R, Wiese S, Stilgenbauer S, Hobeika E, Henis YI, Gierschik P, Walliser C. Noncatalytic Bruton's tyrosine kinase activates PLCγ 2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells. J Biol Chem 2020; 295:5717-5736. [PMID: 32184360 DOI: 10.1074/jbc.ra119.011946] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/26/2020] [Indexed: 12/25/2022] Open
Abstract
Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+] i ), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+] i Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs.
Collapse
Affiliation(s)
- Martin Wist
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Laura Meier
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Orit Gutman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jennifer Haas
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sascha Endres
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yuan Zhou
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Reinhild Rösler
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University Medical Center, 89081 Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, 89081 Ulm, Germany
| | - Elias Hobeika
- Institute of Immunology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany.
| | - Claudia Walliser
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
2
|
Zhang C, Yu H, Xu H, Yang L. Expression of secreted phospholipase A2-Group IIA correlates with prognosis of gastric adenocarcinoma. Oncol Lett 2015; 10:3050-3058. [PMID: 26722288 DOI: 10.3892/ol.2015.3736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 08/17/2015] [Indexed: 12/14/2022] Open
Abstract
The present study investigated the expression of secretory phospholipase A2-Group IIA (sPLA2-II) in gastric adenocarcinoma, in order to evaluate the correlation between sPLA2-II expression, and the clinicopathological features and prognosis of patients with gastric adenocarcinoma. Between January 2007 and April 2010, data were collected from 65 patients (44 males, 21 females; age range, 30-79 years; mean 66.7 ± 10.7 years). All patients exhibited a pathologically confirmed diagnosis of gastric adenocarcinoma. Endoscopic biopsy specimens of normal gastric mucosa from 11 of these patients were used as controls. Patients were subsequently followed-up at 3-month intervals, and survival data were recorded until April 2010. Expression of sPLA2-II in 65 gastric adenocarcinoma and 11 normal gastric mucosa specimens was evaluated via immunohistochemistry. A semi-quantitative method, consisting of evaluation of staining percentage and intensity, was utilized for immunohistochemical scoring, and the receiver operating characteristic curve method was applied to select a cut-off score for high and low sPLA2-II expression. The value of 8 was selected as the cut-off score, with maximum sensitivity and specificity. High sPLA2-II expression was observed in stage III/IV cases (83.3%; 40/48) and poorly differentiated cells (94.1%; 32/34), while sPLA2-II expression levels were observed to be significantly lower in stage I/II cases (52.9%; 9/17) and well and moderately differentiated cells (54.8%; 17/31; P=0.021 and P<0.001, respectively). There were no significant correlations observed between sPLA2-II expression and any other clinicopathological parameters, including gender, age, tumor diameter and Helicobacter pylori infection. Patients exhibiting low sPLA2-II expression experienced significantly improved overall survival (OS) and disease-free survival (DFS), compared with those exhibiting high sPLA2-II expression (P=0.043 and P=0.035, respectively). Multivariate analysis confirmed that high sPLA2-II expression may be an independent prognostic factor for OS [relative risk, 2.849; 95% confidence interval (CI), 1.088-7.459; P=0.033] and DFS (relative risk, 2.735; 95% CI, 1.104-6.776; P=0.030) in gastric adenocarcinoma. Therefore, sPLA2-II may be correlated with the histogenesis of gastric adenocarcinoma, and increased sPLA2-II expression may be an indicator of poor prognosis.
Collapse
Affiliation(s)
- Chengwei Zhang
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Haipeng Yu
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Haiyan Xu
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lanlan Yang
- Department of Biliary and Pancreatic Internal Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
3
|
Compeer MG, Janssen GMJ, De Mey JGR. Endothelin-1 and endothelin-2 initiate and maintain contractile responses by different mechanisms in rat mesenteric and cerebral arteries. Br J Pharmacol 2014; 170:1199-209. [PMID: 23941276 DOI: 10.1111/bph.12332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Endothelin (ET)-1 and ET-2 cause potent long-lasting vasoconstrictions by tight binding to smooth muscle ETA receptors. We tested the hypotheses that different mechanisms mediate initiation and maintenance of arterial contractile responses to ET-1 and ET-2 and that this differs among vascular beds. EXPERIMENTAL APPROACH Segments of rat mesenteric resistance artery (MRA) and basilar artery (BA) were studied in wire myographs with and without functional antagonists. KEY RESULTS Sensitivity and maximum of MRA contractile responses to ET-1 were not, or only moderately, reduced by stimulation of soluble GC, AC or K(+) -channels and by an inhibitor of receptor-operated ion channels. However, each of these reduced maintenance of ET-1 effects and relaxed ET-1-induced contractions in MRA. A calcium channel antagonist did not alter sensitivity, maximum and maintenance of ET-1 effects, but relaxed ET-1-induced contractions in MRA. A PLC inhibitor prevented contractile responses to ET-1 and ET-2 in MRA and BA, and relaxed ET-1- and ET-2-induced responses in MRA and ET-1 effects in BA. A Rho-kinase inhibitor did not modify sensitivity, maximum and maintenance of responses to both peptides in both arteries but relaxed ET-2, but not ET-1, effects in MRA and ET-1 effects in BA. CONCLUSIONS AND IMPLICATIONS PLC played a key role in arterial contractile responses to ETs, but ET-1 and ET-2 initiated and maintained vasoconstriction through different mechanisms, and these differed between MRA and BA. Selective functional antagonism may be considered for agonist- and vascular bed selective pharmacotherapy of ET-related diseases.
Collapse
Affiliation(s)
- M G Compeer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
4
|
Ohanian J, Liao A, Forman SP, Ohanian V. Age-related remodeling of small arteries is accompanied by increased sphingomyelinase activity and accumulation of long-chain ceramides. Physiol Rep 2014; 2:2/5/e12015. [PMID: 24872355 PMCID: PMC4098743 DOI: 10.14814/phy2.12015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The structure and function of large arteries alters with age leading to increased risk of cardiovascular disease. Age‐related large artery remodeling and arteriosclerosis is associated with increased collagen deposition, inflammation, and endothelial dysfunction. Bioactive sphingolipids are known to regulate these processes, and are also involved in aging and cellular senescence. However, less is known about age‐associated alterations in small artery morphology and function or whether changes in arterial sphingolipids occur in aging. We show that mesenteric small arteries from old sheep have increased lumen diameter and media thickness without a change in media to lumen ratio, indicative of outward hypertrophic remodeling. This remodeling occurred without overt changes in blood pressure or pulse pressure indicating it was a consequence of aging per se. There was no age‐associated change in mechanical properties of the arteries despite an increase in total collagen content and deposition of collagen in a thickened intima layer in arteries from old animals. Analysis of the sphingolipid profile showed an increase in long‐chain ceramide (C14–C20), but no change in the levels of sphingosine or sphingosine‐1‐phosphate in arteries from old compared to young animals. This was accompanied by a parallel increase in acid and neutral sphingomyelinase activity in old arteries compared to young. This study demonstrates remodeling of small arteries during aging that is accompanied by accumulation of long‐chain ceramides. This suggests that sphingolipids may be important mediators of vascular aging. In this study, we have investigated remodeling of small arteries in a large animal model of aging, the sheep. We show that there is age‐related formation of neointima and increased collagen deposition that is accompanied by changes in sphingolipid metabolism resulting in ceramide accumulation in the tissues. These are the first data implicating sphingolipids as important mediators of vascular aging in small arteries. Given that aging is a major risk factor for cardiovascular disease, our study opens a new area for further research into the mechanisms that underlie vascular remodeling in aging.
Collapse
Affiliation(s)
- Jacqueline Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Aiyin Liao
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Simon P Forman
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Vasken Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Mackenzie LS, Lymn JS, Hughes AD. Linking phospholipase C isoforms with differentiation function in human vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3006-3012. [PMID: 23954266 DOI: 10.1016/j.bbamcr.2013.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/23/2013] [Accepted: 08/06/2013] [Indexed: 12/23/2022]
Abstract
The phosphoinositol-phospholipase C (PLC) family of enzymes consists of a number of isoforms, each of which has different cellular functions. PLCγ1 is primarily linked to tyrosine kinase transduction pathways, whereas PLCδ1 has been associated with a number of regulatory proteins, including those controlling the cell cycle. Recent studies have shown a central role of PLC in cell organisation and in regulating a wide array of cellular responses. It is of importance to define the precise role of each isoform, and how this changes the functional outcome of the cell. Here we investigated differences in PLC isoform levels and activity in relation to differentiation of human and rat vascular smooth muscle cells. Using Western blotting and PLC activity assay, we show that PLCδ1 and PLCγ1 are the predominant isoforms in randomly cycling human vascular smooth muscle cells (HVSMCs). Growth arrest of HVSMCs for seven days of serum deprivation was consistently associated with increases in PLCδ1 and SM α-actin, whereas there were no changes in PLCγ1 immuno-reactivity. Organ culture of rat mesenteric arteries in serum free media (SFM), a model of de-differentiation, led to a loss of contractility as well as a loss of contractile proteins (SM α-actin and calponin) and PLCδ1, and no change in PLCγ1 immuno-reactivity. Taken together, these data indicate that PLCδ1 is the predominant PLC isoform in vascular smooth muscle, and confirm that PLCδ1 expression is affected by conditions that affect the cell cycle, differentiation status and contractile function.
Collapse
Affiliation(s)
- Louise S Mackenzie
- Department of Pharmacology, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK; Department of Clinical Pharmacology, National Heart & Lung Institute, Imperial College London, QEQM Wing, St. Mary's Hospital, Paddington, London W2 1NY, UK.
| | - Joanne S Lymn
- Department of Clinical Pharmacology, National Heart & Lung Institute, Imperial College London, QEQM Wing, St. Mary's Hospital, Paddington, London W2 1NY, UK; Institute of Cell Signalling, The School of Health Sciences, The University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Alun D Hughes
- Department of Clinical Pharmacology, National Heart & Lung Institute, Imperial College London, QEQM Wing, St. Mary's Hospital, Paddington, London W2 1NY, UK
| |
Collapse
|
6
|
|
7
|
Bandorowicz-Pikula J, Wos M, Pikula S. Do annexins participate in lipid messenger mediated intracellular signaling? A question revisited. Mol Membr Biol 2012; 29:229-42. [PMID: 22694075 DOI: 10.3109/09687688.2012.693210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Annexins are physiologically important proteins that play a role in calcium buffering but also influence membrane structure, participate in Ca²⁺-dependent membrane repair events and in remodelling of the cytoskeleton. Thirty years ago several peptides isolated from lung perfusates, peritoneal leukocytes, neutrophiles and renal cells were proven inhibitory to the activity of phospholipase A₂. Those peptides were found to derive from structurally related proteins: annexins AnxA1 and AnxA2. These findings raised the question whether annexins may participate in regulation of the production of lipid second messengers and, therefore, modulate numerous lipid mediated signaling pathways in the cell. Recent advances in the field of annexins made also with the use of knock-out animal models revealed that these proteins are indeed important constituents of specific signaling pathways. In this review we provide evidence supporting the hypothesis that annexins, as membrane-binding proteins and organizers of the membrane lateral heterogeneity, may participate in lipid mediated signaling pathways by affecting the distribution and activity of lipid metabolizing enzymes (most of the reports point to phospholipase A₂) and of protein kinases regulating activity of these enzymes. Moreover, some experimental data suggest that annexins may directly interact with lipid metabolizing enzymes and, in a calcium-dependent or independent manner, with some of their substrates and products. On the basis of these observations, many investigators suggest that annexins are capable of linking Ca²⁺, redox and lipid signaling to coordinate vital cellular responses to the environmental stimuli.
Collapse
Affiliation(s)
- Joanna Bandorowicz-Pikula
- Laboratory of Cellular Metabolism, Department of Biochemistry, Nencki Institute of Experimental Biology, PL 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
8
|
Kapela A, Parikh J, Tsoukias NM. Multiple factors influence calcium synchronization in arterial vasomotion. Biophys J 2012; 102:211-20. [PMID: 22339857 DOI: 10.1016/j.bpj.2011.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 10/26/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022] Open
Abstract
The intercellular synchronization of spontaneous calcium (Ca(2+)) oscillations in individual smooth muscle cells is a prerequisite for vasomotion. A detailed mathematical model of Ca(2+) dynamics in rat mesenteric arteries shows that a number of synchronizing and desynchronizing pathways may be involved. In particular, Ca(2+)-dependent phospholipase C, the intercellular diffusion of inositol trisphosphate (IP(3), and to a lesser extent Ca(2+)), IP(3) receptors, diacylglycerol-activated nonselective cation channels, and Ca(2+)-activated chloride channels can contribute to synchronization, whereas large-conductance Ca(2+)-activated potassium channels have a desynchronizing effect. Depending on the contractile state and agonist concentrations, different pathways become predominant, and can be revealed by carefully inhibiting the oscillatory component of their total activity. The phase shift between the Ca(2+) and membrane potential oscillations can change, and thus electrical coupling through gap junctions can mediate either synchronization or desynchronization. The effect of the endothelium is highly variable because it can simultaneously enhance the intercellular coupling and affect multiple smooth muscle cell components. Here, we outline a system of increased complexity and propose potential synchronization mechanisms that need to be experimentally tested.
Collapse
Affiliation(s)
- Adam Kapela
- Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | | | | |
Collapse
|
9
|
Augmented S-nitrosylation contributes to impaired relaxation in angiotensin II hypertensive mouse aorta: role of thioredoxin reductase. J Hypertens 2012; 29:2359-68. [PMID: 22025239 DOI: 10.1097/hjh.0b013e32834d2554] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Vascular dysfunction, including reduced endothelium-dependent dilation, is a major characteristic of hypertension. We previously investigated that thioredoxin reductase (TrxR) inhibition impairs vasodilation via soluble guanylyl cyclase S-nitrosylation, but S-nitrosylation and TrxR function are not known in hypertension. We hypothesized that S-nitrosylation is associated with reduced vasodilation in hypertensive mice. METHOD Aortic rings from normotensive (sham) and angiotensin II (AngII)-induced hypertensive C57BL/6 mice were treated with a TrxR inhibitor, 1-chloro-2,4-dinitrobenzene (DNCB) for 30 min, and relaxation to acetylcholine (ACh) was measured in the rings following contraction with phenylephrine. RESULTS DCNB reduced relaxation to ACh compared with vehicle in sham aorta but not in AngII (sham-vehicle E(max) = 77 ± 2, sham-DNCB E(max) = 59 ± 4, P < 0.05). DNCB shifted the concentration-response relaxation to sodium nitroprusside (SNP) to the right in both sham and AngII aortic rings (sham-vehicle pD(2) = 8.8±0.1, sham-DNCB pD(2) = 8.4±0.1, *P < 0.05; AngII-vehicle pD(2) = 8.5±0.1, AngII-DNCB pD(2) = 8.3 ± 0.1, P < 0.05). As downstream signaling of nitric oxide, cyclic GMP level was reduced by DNCB during activation with SNP. The effect of DNCB to increase S-nitrosylation was confirmed by the biotin-switch method and western blot analysis, and total protein S-nitrosylation was increased in AngII aorta (1.5-fold) compared with sham. TrxR activity was inhibited in AngII aorta compared with sham. CONCLUSION We conclude that increased S-nitrosylation contributes to impaired relaxation in aorta from AngII-induced hypertensive mice. AngII treatment resulted in inactivation of TrxR and increased S-nitrosylation, indicating that TrxR and S-nitrosylation may provide a critical mechanism in hypertension associated with abnormal vascular reactivity.
Collapse
|
10
|
Westcott EB, Goodwin EL, Segal SS, Jackson WF. Function and expression of ryanodine receptors and inositol 1,4,5-trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles. J Physiol 2012; 590:1849-69. [PMID: 22331418 DOI: 10.1113/jphysiol.2011.222083] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We tested the hypothesis that vasomotor control is differentially regulated between feed arteries and downstream arterioles from the cremaster muscle of C57BL/6 mice. In isolated pressurized arteries, confocal Ca(2+) imaging of smooth muscle cells (SMCs) revealed Ca(2+) sparks and Ca(2+) waves. Ryanodine receptor (RyR) antagonists (ryanodine and tetracaine) inhibited both sparks and waves but increased global Ca(2+) and myogenic tone. In arterioles, SMCs exhibited only Ca(2+) waves that were insensitive to ryanodine or tetracaine. Pharmacological interventions indicated that RyRs are functionally coupled to large-conductance, Ca(2+)-activated K(+) channels (BK(Ca)) in SMCs of arteries, whereas BK(Ca) appear functionally coupled to voltage-gated Ca2+ channels in SMCs of arterioles. Inositol 1,4,5-trisphosphate receptor (IP3R) antagonists (xestospongin D or 2-aminoethoxydiphenyl borate) or a phospholipase C inhibitor (U73122) attenuated Ca(2+) waves, global Ca(2+) and myogenic tone in arteries and arterioles but had no effect on arterial sparks. Real-time PCR of isolated SMCs revealed RyR2 as the most abundant isoform transcript; arteries expressed twice the RyR2 but only 65% the RyR3 of arterioles and neither vessel expressed RyR1. Immunofluorescent localisation of RyR protein indicated bright, clustered staining of arterial SMCs in contrast to diffuse staining in arteriolar SMCs. Expression of IP(3)R transcripts and protein immunofluorescence were similar in SMCs of both vessels with IP(3)R1>>IP(3)R2>IP(3)R3. Despite similar expression of IP(3)Rs and dependence of Ca(2+) waves on IP(3)Rs, these data illustrate pronounced regional heterogeneity in function and expression of RyRs between SMCs of the same vascular resistance network. We conclude that vasomotor control is differentially regulated in feed arteries vs. downstream arterioles.
Collapse
Affiliation(s)
- Erika B Westcott
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
11
|
STIM1/Orai1 contributes to sex differences in vascular responses to calcium in spontaneously hypertensive rats. Clin Sci (Lond) 2012; 122:215-26. [PMID: 21966957 DOI: 10.1042/cs20110312] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sex differences in Ca2+-dependent signalling and homoeostasis in the vasculature of hypertensive rats are well characterized. However, sex-related differences in SOCE (store-operated Ca2+ entry) have been minimally investigated. We hypothesized that vascular protection in females, compared with males, reflects decreased Ca2+ mobilization due to diminished activation of Orai1/STIM1 (stromal interaction molecule 1). In addition, we investigated whether ovariectomy in females affects the activation of the Orai1/STIM1 pathway. Endothelium-denuded aortic rings from male and female SHRSP (stroke-prone spontaneously hypertensive rats) and WKY (Wistar-Kyoto) rats and from OVX (ovariectomized) or sham female SHRSP and WKY rats were used to functionally evaluate Ca2+ influx-induced contractions. Compared with females, aorta from male SHRSP displayed: (i) increased contraction during the Ca2+-loading period; (ii) similar transient contraction during Ca2+ release from the intracellular stores; (iii) increased activation of STIM1 and Orai1, as shown by the blockade of STIM1 and Orai1 with neutralizing antibodies, which reversed the sex differences in contraction during the Ca2+-loading period; and (iv) increased expression of STIM1 and Orai1. Additionally, we found that aortas from OVX-SHRSP showed increased contraction during the Ca2+-loading period and increased Orai1 expression, but no changes in the SR (sarcoplasmic reticulum)-buffering capacity or STIM1 expression. These findings suggest that augmented activation of STIM1/Orai1 in aortas from male SHRSP represents a mechanism that contributes to sex-related impaired control of intracellular Ca2+ levels. Furthermore, female sex hormones may negatively modulate the STIM/Orai1 pathway, contributing to vascular protection observed in female rats.
Collapse
|
12
|
Murakami R, Osanai T, Tomita H, Sasaki S, Maruyama A, Itoh K, Homma Y, Okumura K. p122 protein enhances intracellular calcium increase to acetylcholine: its possible role in the pathogenesis of coronary spastic angina. Arterioscler Thromb Vasc Biol 2010; 30:1968-75. [PMID: 20634475 DOI: 10.1161/atvbaha.110.203083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Phospholipase C-δ1 activity is enhanced in patients with coronary artery spasm, and a p122 protein was recently cloned to potentiate phospholipase C-δ1 activity. To investigate the role of p122 in enhanced vasomotility, we examined p122 expression in the cultured skin fibroblasts obtained from patients with and without coronary spasm, intracellular Ca(2+) concentration ([Ca(2+)]i) [corrected] at baseline and after stimulation with acetylcholine in the cells transfected with p122, and promoter in genomic DNA. METHODS AND RESULTS [corrected] p122 protein and gene expression levels in patients with coronary spasm (n=11) were enhanced compared with levels in control subjects (n=9) (P<0.01 for both). [Ca(2+)](i) at baseline and the peak increase in [Ca(2+)](i) in response to acetylcholine were both 2 times higher in cells transfected with p122 than in those without p122. Conversely, knockdown of p122 resulted in diminished [Ca(2+)](i) response. In the p122 promoter analysis, the -228G/A and -1466C/T variants revealed the increase in luciferase activity. Although the -1466C/T variant was similar between 144 patients with coronary spasm and 148 controls, the -228G/A variant was more frequent in male patients than in male controls (P<0.05). CONCLUSIONS The p122 protein is upregulated in patients with coronary spasm, causing increased [Ca(2+)](i) to acetylcholine, and thereby seems to be related to enhanced coronary vasomotility.
Collapse
Affiliation(s)
- Reiichi Murakami
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mateos MV, Salvador GA, Giusto NM. Selective localization of phosphatidylcholine-derived signaling in detergent-resistant membranes from synaptic endings. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:624-36. [PMID: 20026046 DOI: 10.1016/j.bbamem.2009.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/19/2009] [Accepted: 12/14/2009] [Indexed: 01/21/2023]
Abstract
Detergent-resistant membranes (DRMs) are a class of specialized microdomains that compartmentalize several signal transduction processes. In this work, DRMs were isolated from cerebral cortex synaptic endings (Syn) on the basis of their relative insolubility in cold Triton X-100 (1%). The lipid composition and marker protein content were analyzed in DRMs obtained from adult and aged animals. Both DRM preparations were enriched in Caveolin, Flotillin-1 and c-Src and also presented significantly higher sphingomyelin (SM) and cholesterol content than purified Syn. Total phospholipid-fatty acid composition presented an increase in 16:0 (35%), and a decrease in 20:4n-6 (67%) and 22:6n-3 (68%) content in DRM from adults when compared to entire synaptic endings. A more dramatic decrease was observed in the 20:4n-6 and 22:6n-3 content in DRMs from aged animals (80%) with respect to the results found in adults. The coexistence of phosphatidylcholine-specific-phospholipase C (PC-PLC) and phospholipase D (PLD) in Syn was previously reported. The presence of these signaling pathways was also investigated in DRMs isolated from adult and aged rats. Both PC-PLC and PLD pathways generate the lipid messenger diacylglycerol (DAG) by catalyzing PC hydrolysis. PC-PLC and PLD1 localization were increased in the DRM fraction. The increase in DAG generation (60%) in the presence of ethanol, confirmed that PC-PLC was also activated when compartmentalized in DRMs. Conversely, PLD2 was excluded from the DRM fraction. Our results show an age-related differential fatty acid composition and a selective localization of PC-derived signaling in synaptic DRMs obtained from adult and aged rats.
Collapse
Affiliation(s)
- M V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 857, B8000FWB Bahía Blanca, Argentina
| | | | | |
Collapse
|
14
|
Lima VV, Giachini FR, Carneiro FS, Carneiro ZN, Saleh MA, Pollock DM, Fortes ZB, Carvalho MHC, Ergul A, Webb RC, Tostes RC. O-GlcNAcylation contributes to augmented vascular reactivity induced by endothelin 1. Hypertension 2009; 55:180-8. [PMID: 19948983 DOI: 10.1161/hypertensionaha.109.143818] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
O-GlcNAcylation augments vascular contractile responses, and O-GlcNAc-proteins are increased in the vasculature of deoxycorticosterone-acetate salt rats. Because endothelin 1 (ET-1) plays a major role in vascular dysfunction associated with salt-sensitive forms of hypertension, we hypothesized that ET-1-induced changes in vascular contractile responses are mediated by O-GlcNAc modification of proteins. Incubation of rat aortas with ET-1 (0.1 mumol/L) produced a time-dependent increase in O-GlcNAc levels and decreased expression of O-GlcNAc transferase and beta-N-acetylglucosaminidase, key enzymes in the O-GlcNAcylation process. Overnight treatment of aortas with ET-1 increased phenylephrine vasoconstriction (maximal effect [in moles]: 19+/-5 versus 11+/-2 vehicle). ET-1 effects were not observed when vessels were previously instilled with anti-O-GlcNAc transferase antibody or after incubation with an O-GlcNAc transferase inhibitor (3-[2-adamantanylethyl]-2-[{4-chlorophenyl}azamethylene]-4-oxo-1,3-thiazaperhyd roine-6-carboxylic acid; 100 mumol/L). Aortas from deoxycorticosterone-acetate salt rats, which exhibit increased prepro-ET-1, displayed increased contractions to phenylephrine and augmented levels of O-GlcNAc proteins. Treatment of deoxycorticosterone-acetate salt rats with an endothelin A antagonist abrogated augmented vascular levels of O-GlcNAc and prevented increased phenylephrine vasoconstriction. Aortas from rats chronically infused with low doses of ET-1 (2 pmol/kg per minute) exhibited increased O-GlcNAc proteins and enhanced phenylephrine responses (maximal effect [in moles]: 18+/-2 versus 10+/-3 control). These changes are similar to those induced by O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate, an inhibitor of beta-N-acetylglucosaminidase. Systolic blood pressure (in millimeters of mercury) was similar between control and ET-1-infused rats (117+/-3 versus 123+/-4 mm Hg; respectively). We conclude that ET-1 indeed augments O-GlcNAc levels and that this modification contributes to the vascular changes induced by this peptide. Increased vascular O-GlcNAcylation by ET-1 may represent a mechanism for hypertension-associated vascular dysfunction or other pathological conditions associated with increased levels of ET-1.
Collapse
Affiliation(s)
- Victor V Lima
- Medical College of Georgia, Department of Physiology, 1120 Fifteenth St, CA-3141, Augusta, GA 30912-3000, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ii M, Nishimura H, Sekiguchi H, Kamei N, Yokoyama A, Horii M, Asahara T. Concurrent Vasculogenesis and Neurogenesis From Adult Neural Stem Cells. Circ Res 2009; 105:860-8. [DOI: 10.1161/circresaha.109.199299] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rationale
:
Recent reports have demonstrated that signals from vascular endothelial cells are necessary for organogenesis that may precede vasculogenesis. However, the origin of these neovascular cells in regenerating tissue has not been clarified.
Objective
:
Here we tested the hypothesis that adult neural stem cells (NSCs) can differentiate into vascular lineage, as well as neural lineage, in the process of collaborative organogenesis.
Methods and Results
:
NSCs, clonally isolated from mouse brain, were shown to develop endothelial and smooth muscle phenotypes in vitro. To elucidate whether NSCs can simultaneously differentiate into vascular and neural cells in vivo, genetically labeled NSCs were administered to mice with unilateral sciatic nerve crush injury or operatively induced brain and myocardial ischemia. Two weeks later, necropsy examination disclosed recruitment of the labeled NSCs to sites of injury differentiating into vascular cells (endothelial cells and vascular smooth muscle cells) and Schwann cells in regenerating nerve. Similarly, NSC-derived vascular cells/astrocytes and endothelial cells were identified in ischemic brain tissue and capillaries in myocardium 2 weeks following transplantation, respectively.
Conclusions
:
These findings, concurrent vasculogenesis and neurogenesis from a common stem cell, suggest that certain somatic stem cells are capable of differentiating into not only somatic cells of identity but also into vascular cells for tissue regeneration.
Collapse
Affiliation(s)
- Masaaki Ii
- From the Group of Vascular Regeneration Research (M.I., H.N., H.S., N.K., A.Y., M.H., T.A.), Institute of Biomedical Research and Innovation, Kobe; Stem Cell Translational Research Team (M.I., M.H., T.A.), RIKEN Center for Developmental Biology, Kobe; Department of Pharmacology (M.I.), Osaka Medical College; Department of Cardiology (H.S.), Tokyo Women’s Medical University School of Medicine; Department of Orthopaedic Surgery (N.K.), Graduate School of Biomedical Sciences, Hiroshima University; and
| | - Hiromi Nishimura
- From the Group of Vascular Regeneration Research (M.I., H.N., H.S., N.K., A.Y., M.H., T.A.), Institute of Biomedical Research and Innovation, Kobe; Stem Cell Translational Research Team (M.I., M.H., T.A.), RIKEN Center for Developmental Biology, Kobe; Department of Pharmacology (M.I.), Osaka Medical College; Department of Cardiology (H.S.), Tokyo Women’s Medical University School of Medicine; Department of Orthopaedic Surgery (N.K.), Graduate School of Biomedical Sciences, Hiroshima University; and
| | - Haruki Sekiguchi
- From the Group of Vascular Regeneration Research (M.I., H.N., H.S., N.K., A.Y., M.H., T.A.), Institute of Biomedical Research and Innovation, Kobe; Stem Cell Translational Research Team (M.I., M.H., T.A.), RIKEN Center for Developmental Biology, Kobe; Department of Pharmacology (M.I.), Osaka Medical College; Department of Cardiology (H.S.), Tokyo Women’s Medical University School of Medicine; Department of Orthopaedic Surgery (N.K.), Graduate School of Biomedical Sciences, Hiroshima University; and
| | - Naosuke Kamei
- From the Group of Vascular Regeneration Research (M.I., H.N., H.S., N.K., A.Y., M.H., T.A.), Institute of Biomedical Research and Innovation, Kobe; Stem Cell Translational Research Team (M.I., M.H., T.A.), RIKEN Center for Developmental Biology, Kobe; Department of Pharmacology (M.I.), Osaka Medical College; Department of Cardiology (H.S.), Tokyo Women’s Medical University School of Medicine; Department of Orthopaedic Surgery (N.K.), Graduate School of Biomedical Sciences, Hiroshima University; and
| | - Ayumi Yokoyama
- From the Group of Vascular Regeneration Research (M.I., H.N., H.S., N.K., A.Y., M.H., T.A.), Institute of Biomedical Research and Innovation, Kobe; Stem Cell Translational Research Team (M.I., M.H., T.A.), RIKEN Center for Developmental Biology, Kobe; Department of Pharmacology (M.I.), Osaka Medical College; Department of Cardiology (H.S.), Tokyo Women’s Medical University School of Medicine; Department of Orthopaedic Surgery (N.K.), Graduate School of Biomedical Sciences, Hiroshima University; and
| | - Miki Horii
- From the Group of Vascular Regeneration Research (M.I., H.N., H.S., N.K., A.Y., M.H., T.A.), Institute of Biomedical Research and Innovation, Kobe; Stem Cell Translational Research Team (M.I., M.H., T.A.), RIKEN Center for Developmental Biology, Kobe; Department of Pharmacology (M.I.), Osaka Medical College; Department of Cardiology (H.S.), Tokyo Women’s Medical University School of Medicine; Department of Orthopaedic Surgery (N.K.), Graduate School of Biomedical Sciences, Hiroshima University; and
| | - Takayuki Asahara
- From the Group of Vascular Regeneration Research (M.I., H.N., H.S., N.K., A.Y., M.H., T.A.), Institute of Biomedical Research and Innovation, Kobe; Stem Cell Translational Research Team (M.I., M.H., T.A.), RIKEN Center for Developmental Biology, Kobe; Department of Pharmacology (M.I.), Osaka Medical College; Department of Cardiology (H.S.), Tokyo Women’s Medical University School of Medicine; Department of Orthopaedic Surgery (N.K.), Graduate School of Biomedical Sciences, Hiroshima University; and
| |
Collapse
|
16
|
A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique. Proc Natl Acad Sci U S A 2009; 106:9256-61. [PMID: 19470488 DOI: 10.1073/pnas.0900216106] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple functionally independent pools of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] have been postulated to occur in the cell membrane, but the existing techniques lack sufficient resolution to unequivocally confirm their presence. To analyze the distribution of PI(4,5)P(2) at the nanoscale, we developed an electron microscopic technique that probes the freeze-fractured membrane preparation by the pleckstrin homology domain of phospholipase C-delta1. This method does not require chemical fixation or expression of artificial probes, it is applicable to any cell in vivo and in vitro, and it can define the PI(4,5)P(2) distribution quantitatively. By using this method, we found that PI(4,5)P(2) is highly concentrated at the rim of caveolae both in cultured fibroblasts and mouse smooth muscle cells in vivo. PI(4,5)P(2) was also enriched in the coated pit, but only a low level of clustering was observed in the flat undifferentiated membrane. When cells were treated with angiotensin II, the PI(4,5)P(2) level in the undifferentiated membrane decreased to 37.9% within 10 sec and then returned to the initial level. Notably, the PI(4,5)P(2) level in caveolae showed a slower but more drastic change and decreased to 20.6% at 40 sec, whereas the PI(4,5)P(2) level in the coated pit was relatively constant and decreased only to 70.2% at 10 sec. These results show the presence of distinct PI(4,5)P(2) pools in the cell membrane and suggest a unique role for caveolae in phosphoinositide signaling.
Collapse
|
17
|
Pani B, Singh BB. Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 2009; 45:625-33. [PMID: 19324409 DOI: 10.1016/j.ceca.2009.02.009] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 02/24/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
Abstract
Ca(2+) is a major signaling molecule in both excitable and non-excitable cells, where it serves critical functions ranging from cell growth to differentiation to cell death. The physiological functions of these cells are tightly regulated in response to changes in cytosolic Ca(2+) that is achieved by the activation of several plasma membrane (PM) Ca(2+) channels as well as release of Ca(2+) from the internal stores. One such channel is referred to as store-operated Ca(2+) channel that is activated by the release of endoplasmic reticulum (ER) Ca(2+) which initiates store-operated Ca(2+) entry (SOCE). Recent advances in the field suggest that some members of TRPCs and Orai channels function as SOCE channels. However, the molecular mechanisms that regulate channel activity and the exact nature of where these channels are assembled and regulated remain elusive. Research from several laboratories has demonstrated that key proteins involved in Ca(2+) signaling are localized in discrete PM lipid rafts/caveolar microdomains. Lipid rafts are cholesterol and sphingolipid-enriched microdomains that function as unique signal transduction platforms. In addition lipid rafts are dynamic in nature which tends to scaffold certain signaling molecules while excluding others. By such spatial segregation, lipid rafts not only provide a favorable environment for intra-molecular cross-talk but also aid to expedite the signal relay. Importantly, Ca(2+) signaling is shown to initiate from these lipid raft microdomains. Clustering of Ca(2+) channels and their regulators in such microdomains can provide an exquisite spatiotemporal regulation of Ca(2+)-mediated cellular function. Thus in this review we discuss PM lipid rafts and caveolae as Ca(2+)-signaling microdomains and highlight their importance in organizing and regulating SOCE channels.
Collapse
Affiliation(s)
- Biswaranjan Pani
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA
| | | |
Collapse
|
18
|
Giachini FRC, Chiao CW, Carneiro FS, Lima VV, Carneiro ZN, Dorrance AM, Tostes RC, Webb RC. Increased activation of stromal interaction molecule-1/Orai-1 in aorta from hypertensive rats: a novel insight into vascular dysfunction. Hypertension 2008; 53:409-16. [PMID: 19075091 DOI: 10.1161/hypertensionaha.108.124404] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Disturbances in the regulation of cytosolic calcium (Ca(2+)) concentration play a key role in the vascular dysfunction associated with arterial hypertension. Stromal interaction molecules (STIMs) and Orai proteins represent a novel mechanism to control store-operated Ca(2+) entry. Although STIMs act as Ca(2+) sensors for the intracellular Ca(2+) stores, Orai is the putative pore-forming component of Ca(2+) release-activated Ca(2+) channels at the plasma membrane. We hypothesized that augmented activation of Ca(2+) release-activated Ca(2+)/Orai-1, through enhanced activity of STIM-1, plays a role in increased basal tonus and vascular reactivity in hypertensive animals. Endothelium-denuded aortic rings from Wistar-Kyoto and stroke-prone spontaneously hypertensive rats were used to evaluate contractions because of Ca(2+) influx. Depletion of intracellular Ca(2+) stores, which induces Ca(2+) release-activated Ca(2+) activation, was performed by placing arteries in Ca(2+) free-EGTA buffer. The addition of the Ca(2+) regular buffer produced greater contractions in aortas from stroke-prone spontaneously hypertensive rats versus Wistar-Kyoto rats. Thapsigargin (10 micromol/L), an inhibitor of the sarcoplasmic reticulum Ca(2+) ATPase, further increased these contractions, especially in stroke-prone spontaneously hypertensive rat aorta. Addition of the Ca(2+) release-activated Ca(2+) channel inhibitors 2-aminoethoxydiphenyl borate (100 micromol/L) or gadolinium (100 micromol/L), as well as neutralizing antibodies to STIM-1 or Orai-1, abolished thapsigargin-increased contraction and the differences in spontaneous tone between the groups. Expression of Orai-1 and STIM-1 proteins was increased in aorta from stroke-prone spontaneously hypertensive rats when compared with Wistar-Kyoto rats. These results support the hypothesis that both Orai-1 and STIM-1 contribute to abnormal vascular function in hypertension. Augmented activation of STIM-1/Orai-1 may represent the mechanism that leads to impaired control of intracellular Ca(2+) levels in hypertension.
Collapse
Affiliation(s)
- Fernanda R C Giachini
- Medical College of Georgia, Department of Physiology, 1120 15th St, CA-3141, Augusta, GA 30912-3000, USA.
| | | | | | | | | | | | | | | |
Collapse
|