1
|
Sato T, Kobayashi T, Kuno A, Miki T, Tanno M, Kouzu H, Itoh T, Ishikawa S, Kojima T, Miura T, Tohse N. Type 2 diabetes induces subendocardium-predominant reduction in transient outward K+ current with downregulation of Kv4.2 and KChIP2. Am J Physiol Heart Circ Physiol 2014; 306:H1054-65. [DOI: 10.1152/ajpheart.00414.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we examined if and how cardiac ion channels are modified by type 2 diabetes mellitus (T2DM). Subendocardial (Endo) myocytes and subepicardial (Epi) myocytes were isolated from left ventricles of Otsuka-Long-Evans-Tokushima Fatty rats (OLETF) rats, a rat model of T2DM, and Otsuka-Long-Evans-Tokushima (LETO) rats (nondiabetic control rats). Endo and Epi myocytes were used for whole cell patch-clamp recordings and for protein and mRNA analyses. Action potential durations in Endo and Epi myocytes were longer in OLETF rats than in LETO rats, and the difference was larger in Endo myocytes. Steady-state transient outward K+ current ( Ito) density was reduced in Endo but not Epi myocytes of OLETF rats compared with LETO rats, although the contribution of the fast component of Ito recovery from inactivation was smaller in both Endo and Epi myocytes of OLETF rats than in LETO rats. Kv4.2 protein was reduced only in Endo myocytes in OLETF rats, although voltage-gated K+ channel-interacting protein 2 (KChIP2) protein levels in both Endo and Epi myocytes were lower in OLETF rats than in LETO rats. Corresponding regional differences in mRNA levels of KChIP2 and Kv4.2 were observed between OLETF and LETO rats. mRNA levels of Iroquois homeobox 5 in Endo myocytes were 53% higher in OLETF rats than in LETO rats. Densities of inward rectifier K+ current and L-type Ca2+ current and mRNA levels of Kv4.3 and Kv1.4 were similar in OLETF and LETO rats. In conclusion, T2DM induces Endo-predominant prolongation of the action potential duration via a reduction of the fast component of Ito recovery from inactivation and reduced steady-state Ito, in which downregulation of Kv4.2 and KChIP2 may be involved. Increased Iroquois homeobox 5 expression may underlie Kv4.2 downregulation in T2DM.
Collapse
Affiliation(s)
- Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Kobayashi
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahito Itoh
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoko Ishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute of Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Remodelling of human atrial K+ currents but not ion channel expression by chronic β-blockade. Pflugers Arch 2011; 463:537-48. [PMID: 22160437 DOI: 10.1007/s00424-011-1061-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 10/14/2022]
Abstract
Chronic β-adrenoceptor antagonist (β-blocker) treatment in patients is associated with a potentially anti-arrhythmic prolongation of the atrial action potential duration (APD), which may involve remodelling of repolarising K(+) currents. The aim of this study was to investigate the effects of chronic β-blockade on transient outward, sustained and inward rectifier K(+) currents (I(TO), I(KSUS) and I(K1)) in human atrial myocytes and on the expression of underlying ion channel subunits. Ion currents were recorded from human right atrial isolated myocytes using the whole-cell-patch clamp technique. Tissue mRNA and protein levels were measured using real time RT-PCR and Western blotting. Chronic β-blockade was associated with a 41% reduction in I(TO) density: 9.3 ± 0.8 (30 myocytes, 15 patients) vs 15.7 ± 1.1 pA/pF (32, 14), p < 0.05; without affecting its voltage-, time- or rate dependence. I(K1) was reduced by 34% at -120 mV (p < 0.05). Neither I(KSUS), nor its increase by acute β-stimulation with isoprenaline, was affected by chronic β-blockade. Mathematical modelling suggested that the combination of I(TO)- and I(K1)-decrease could result in a 28% increase in APD(90). Chronic β-blockade did not alter mRNA or protein expression of the I(TO) pore-forming subunit, Kv4.3, or mRNA expression of the accessory subunits KChIP2, KChAP, Kvβ1, Kvβ2 or frequenin. There was no reduction in mRNA expression of Kir2.1 or TWIK to account for the reduction in I(K1). A reduction in atrial I(TO) and I(K1) associated with chronic β-blocker treatment in patients may contribute to the associated action potential prolongation, and this cannot be explained by a reduction in expression of associated ion channel subunits.
Collapse
|
3
|
Gallego M, Alday A, Urrutia J, Casis O. Transient outward potassium channel regulation in healthy and diabetic heartsThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 1 of a 2-part Special Issue). Can J Physiol Pharmacol 2009; 87:77-83. [DOI: 10.1139/y08-106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetic patients have a higher incidence of cardiac arrhythmias, including ventricular fibrillation and sudden death, and show important alterations in the electrocardiogram, most of these related to the repolarization. In myocytes isolated from diabetic hearts, the transient outward K+ current (Ito) is the repolarizing current that is mainly affected. Type 1 diabetes alters Ito at 3 levels: the recovery of inactivation, the responsiveness to physiologic regulators, and the functional expression of the channel. Diabetes slows down Ito recovery of inactivation because it triggers the switching from fast-recovering Kv4.x channels to the slow-recovering Kv1.4. Diabetic animals also have decreased responsiveness of Ito towards the sympathetic nervous system; thus, the diabetic heart develops a resistance to its physiologic regulator. Finally, diabetes impairs support of various trophic factors required for the functional expression of the channel and reduces Ito amplitude by decreasing the amount of Kv4.2 and Kv4.3 proteins.
Collapse
Affiliation(s)
- Mónica Gallego
- Department of Physiology, School of Pharmacy, Universidad del País Vasco, P.O. Box 699, Bilbao 48080, Spain
| | - Aintzane Alday
- Department of Physiology, School of Pharmacy, Universidad del País Vasco, P.O. Box 699, Bilbao 48080, Spain
| | - Janire Urrutia
- Department of Physiology, School of Pharmacy, Universidad del País Vasco, P.O. Box 699, Bilbao 48080, Spain
| | - Oscar Casis
- Department of Physiology, School of Pharmacy, Universidad del País Vasco, P.O. Box 699, Bilbao 48080, Spain
| |
Collapse
|
4
|
Bru-Mercier G, Deroubaix E, Rousseau D, Coulombe A, Renaud JF. Depressed transient outward potassium current density in catecholamine-depleted rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2002; 282:H1237-47. [PMID: 11893557 DOI: 10.1152/ajpheart.00180.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of catecholamine depletion (induced by prior treatment with reserpine) was studied in Wistar rat ventricular myocytes using whole cell voltage-clamp methods. Two calcium-independent outward currents, the transient outward potassium current (I(to)) and the sustained outward potassium current (I(sus)), were measured. Reserpine treatment decreased tissue norepinephrine content by 97%. Action potential duration in the isolated perfused heart was significantly increased in reserpine-treated hearts. In isolated ventricular myocytes, I(to) density was decreased by 49% in reserpine-treated rats. This treatment had no effect on I(sus). The I(to) steady-state inactivation-voltage relationship and recovery from inactivation remained unchanged, whereas the conductance-voltage activation curve for reserpine-treated rats was significantly shifted (6.7 mV) toward negative potentials. The incubation of myocytes with 10 microM norepinephrine for 7-10 h restored I(to), an effect that was abolished by the presence of actinomycin D. Norepinephrine (0.5 microM) had no effect on I(to). However, in the presence of both 0.5 microM norepinephrine and neuropeptide Y (0.1 microM), I(to) density was restored to its control value. These results suggest that the sympathetic nervous system is involved in I(to) regulation. Sympathetic norepinephrine depletion decreased the number of functional channels via an effect on the alpha-adrenergic cascade and norepinephrine is able to restore expression of I(to) channels.
Collapse
Affiliation(s)
- Gilles Bru-Mercier
- Département de Physiologie Cardiovasculaire et Thymique, Centre National de la Recherche Scientifique, and Hôpital Marie Lannelongue, 92350 Le Plessis Robinson, France
| | | | | | | | | |
Collapse
|
5
|
Zhang LM, Wang Z, Nattel S. Effects of sustained beta-adrenergic stimulation on ionic currents of cultured adult guinea pig cardiomyocytes. Am J Physiol Heart Circ Physiol 2002; 282:H880-9. [PMID: 11834482 DOI: 10.1152/ajpheart.01138.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Short-term stimulation of beta-receptors is known to affect cardiac ion channels; however, the impact of longer-term stimulation on intrinsic channel function is poorly understood. To evaluate this, cultured guinea pig ventricular myocytes were exposed to isoproterenol (10 nM), vehicle, or isoproterenol plus propranolol (1 microM) for 48 h. Sustained exposure to isoproterenol decreased the density of the inward rectifier (I(K1)), slow delayed rectifier (I(Ks)), and L-type Ca2+ (I(Ca L)) currents, effects that were fully prevented by propranolol. Changes in K+ currents were prevented by the beta1-selective antagonist CGP-20712A, unaffected by the beta2-antagonist ICI-118,551, and mimicked by the membrane-permeable cAMP analog 8-bromo-cAMP. Isoproterenol did not alter the current-voltage relationship of the K+ currents but increased the density of T-type Ca2+ current (I(Ca T)) and thereby increased the proportion of the total Ca2+ current at more negative potentials. We conclude that sustained exposure to isoproterenol reduces I(K1), I(Ks), and I(Ca L) density and increases the density of I(Ca T). The direct ionic current remodeling effects of sustained beta-adrenoceptor stimulation resemble changes reported with heart failure and may be important in arrhythmogenic ionic remodeling.
Collapse
Affiliation(s)
- Li-Ming Zhang
- Research Center and Department of Medicine, Montreal Heart Institute, Montreal, Quebec H1T 1C8, Canada
| | | | | |
Collapse
|