1
|
López-Vicario C, Sebastián D, Casulleras M, Duran-Güell M, Flores-Costa R, Aguilar F, Lozano JJ, Zhang IW, Titos E, Kang JX, Zorzano A, Arita M, Clària J. Essential lipid autacoids rewire mitochondrial energy efficiency in metabolic dysfunction-associated fatty liver disease. Hepatology 2023; 77:1303-1318. [PMID: 35788956 DOI: 10.1002/hep.32647] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Injury to hepatocyte mitochondria is common in metabolic dysfunction-associated fatty liver disease. Here, we investigated whether changes in the content of essential fatty acid-derived lipid autacoids affect hepatocyte mitochondrial bioenergetics and metabolic efficiency. APPROACH AND RESULTS The study was performed in transgenic mice for the fat-1 gene, which allows the endogenous replacement of the membrane omega-6-polyunsaturated fatty acid (PUFA) composition by omega-3-PUFA. Transmission electron microscopy revealed that hepatocyte mitochondria of fat-1 mice had more abundant intact cristae and higher mitochondrial aspect ratio. Fat-1 mice had increased expression of oxidative phosphorylation complexes I and II and translocases of both inner (translocase of inner mitochondrial membrane 44) and outer (translocase of the outer membrane 20) mitochondrial membranes. Fat-1 mice also showed increased mitofusin-2 and reduced dynamin-like protein 1 phosphorylation, which mediate mitochondrial fusion and fission, respectively. Mitochondria of fat-1 mice exhibited enhanced oxygen consumption rate, fatty acid β-oxidation, and energy substrate utilization as determined by high-resolution respirometry, [1- 14 C]-oleate oxidation and nicotinamide adenine dinucleotide hydride/dihydroflavine-adenine dinucleotide production, respectively. Untargeted lipidomics identified a rich hepatic omega-3-PUFA composition and a specific docosahexaenoic acid (DHA)-enriched lipid fingerprint in fat-1 mice. Targeted lipidomics uncovered a higher content of DHA-derived lipid autacoids, namely resolvin D1 and maresin 1, which rescued hepatocytes from TNFα-induced mitochondrial dysfunction, and unblocked the tricarboxylic acid cycle flux and metabolic utilization of long-chain acyl-carnitines, amino acids, and carbohydrates. Importantly, fat-1 mice were protected against mitochondrial injury induced by obesogenic and fibrogenic insults. CONCLUSION Our data uncover the importance of a lipid membrane composition rich in DHA and its lipid autacoid derivatives to have optimal hepatic mitochondrial and metabolic efficiency.
Collapse
Affiliation(s)
- Cristina López-Vicario
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - David Sebastián
- Institute for Research in Biomedicine , The Barcelona Institute of Science and Technology , Departament de Bioquímica i Biomedicina Molecular , University of Barcelona , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas , Madrid , Spain
| | - Mireia Casulleras
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Ferran Aguilar
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Barcelona , Spain
| | - Ingrid W Zhang
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Esther Titos
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Barcelona , Spain
- Department of Biomedical Sciences , University of Barcelona , Barcelona , Spain
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts , USA
| | - Antonio Zorzano
- Institute for Research in Biomedicine , The Barcelona Institute of Science and Technology , Departament de Bioquímica i Biomedicina Molecular , University of Barcelona , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas , Madrid , Spain
| | - Makoto Arita
- Laboratory for Metabolomics , RIKEN Center for Integrative Medical Sciences , Yokohama , Japan
- Division of Physiological Chemistry and Metabolism , Graduate School of Pharmaceutical Sciences , Keio University , Tokyo , Japan
| | - Joan Clària
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
- Department of Biomedical Sciences , University of Barcelona , Barcelona , Spain
| |
Collapse
|
2
|
Jiang Z, Shen T, Huynh H, Fang X, Han Z, Ouyang K. Cardiolipin Regulates Mitochondrial Ultrastructure and Function in Mammalian Cells. Genes (Basel) 2022; 13:genes13101889. [PMID: 36292774 PMCID: PMC9601307 DOI: 10.3390/genes13101889] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiolipin (CL) is a unique, tetra-acylated diphosphatidylglycerol lipid that mainly localizes in the inner mitochondria membrane (IMM) in mammalian cells and plays a central role in regulating mitochondrial architecture and functioning. A deficiency of CL biosynthesis and remodeling perturbs mitochondrial functioning and ultrastructure. Clinical and experimental studies on human patients and animal models have also provided compelling evidence that an abnormal CL content, acyl chain composition, localization, and level of oxidation may be directly linked to multiple diseases, including cardiomyopathy, neuronal dysfunction, immune cell defects, and metabolic disorders. The central role of CL in regulating the pathogenesis and progression of these diseases has attracted increasing attention in recent years. In this review, we focus on the advances in our understanding of the physiological roles of CL biosynthesis and remodeling from human patients and mouse models, and we provide an overview of the potential mechanism by which CL regulates the mitochondrial architecture and functioning.
Collapse
Affiliation(s)
- Zhitong Jiang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Tao Shen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Helen Huynh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| |
Collapse
|
3
|
Skowronska-Krawczyk D, Narayan P, Tessarz P. Editorial: Molecular Role of Lipids in Aging. FRONTIERS IN AGING 2022; 3:946884. [PMID: 35821810 PMCID: PMC9261349 DOI: 10.3389/fragi.2022.946884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Priyanka Narayan
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, United States
| | - Peter Tessarz
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| |
Collapse
|
4
|
Jayatunga DPW, Hone E, Fernando WMADB, Garg ML, Verdile G, Martins RN. A Synergistic Combination of DHA, Luteolin, and Urolithin A Against Alzheimer's Disease. Front Aging Neurosci 2022; 14:780602. [PMID: 35250535 PMCID: PMC8890506 DOI: 10.3389/fnagi.2022.780602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common form of dementia worldwide. The classical AD brain is characterized by extracellular deposition of amyloid-β (Aβ) protein aggregates as senile plaques and intracellular neurofibrillary tangles (NFTs), composed of hyper-phosphorylated forms of the microtubule-associated protein Tau. There has been limited success in clinical trials for some proposed therapies for AD, so attention has been drawn toward using alternative approaches, including prevention strategies. As a result, nutraceuticals have become attractive compounds for their potential neuroprotective capabilities. The objective of the present study was to derive a synergistic nutraceutical combination in vitro that may act as a potential preventative therapy for AD. The compounds of interest were docosahexaenoic acid (DHA), luteolin (LUT), and urolithin A (UA). The cell viability and cytotoxicity assays MTS and LDH were used to evaluate the compounds individually and in two-compound combinations, for their ability to inhibit Aβ1-42-induced toxicity in human neuroblastoma BE(2)-M17 cells. The LDH-derived% protection values were used in the program CompuSyn v.1.0 to calculate the combination index (CI) of the two-compound combinations. The software-predicted potentially synergistic (CI < 1) two-compound combinations were validated using CellTiter Glo assay. Finally, a three-compound combination was predicted (D5L5U5) and shown to be the most effective at inhibiting Aβ1-42-induced toxicity. The synergistic combination, D5L5U5 warrants further research for its mechanism of action; however, it can serve as a basis to develop an advanced functional food for the prevention or co-treatment of AD.
Collapse
Affiliation(s)
- Dona P. W. Jayatunga
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - W. M. A. D. Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Manohar L. Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
5
|
Smeir E, Leberer S, Blumrich A, Vogler G, Vasiliades A, Dresen S, Jaeger C, Gloaguen Y, Klose C, Beule D, Schulze PC, Bodmer R, Foryst-Ludwig A, Kintscher U. Depletion of cardiac cardiolipin synthase alters systolic and diastolic function. iScience 2021; 24:103314. [PMID: 34805785 PMCID: PMC8581512 DOI: 10.1016/j.isci.2021.103314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiolipin (CL) is a major cardiac mitochondrial phospholipid maintaining regular mitochondrial morphology and function in cardiomyocytes. Cardiac CL production includes its biosynthesis and a CL remodeling process. Here we studied the impact of CL biosynthesis and the enzyme cardiolipin synthase (CLS) on cardiac function. CLS and cardiac CL species were significantly downregulated in cardiomyocytes following catecholamine-induced cardiac damage in mice, accompanied by increased oxygen consumption rates, signs of oxidative stress, and mitochondrial uncoupling. RNAi-mediated cardiomyocyte-specific knockdown of CLS in Drosophila melanogaster resulted in marked cardiac dilatation, severe impairment of systolic performance, and slower diastolic filling velocity assessed by fluorescence-based heart imaging. Finally, we showed that CL72:8 is significantly decreased in cardiac samples from patients with heart failure with reduced ejection fraction (HFrEF). In summary, we identified CLS as a regulator of cardiac function. Considering the cardiac depletion of CL species in HFrEF, pharmacological targeting of CLS may be a promising therapeutic approach.
Collapse
Affiliation(s)
- Elia Smeir
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Sarah Leberer
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Annelie Blumrich
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anastasia Vasiliades
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Sandra Dresen
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Carsten Jaeger
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Yoann Gloaguen
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
- Berlin Institute of Health, BIH, Metabolomics Platform, Berlin, Germany
| | | | - Dieter Beule
- Berlin Institute of Health, BIH, Core Unit Bioinformatics, Berlin, Germany
| | - P. Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anna Foryst-Ludwig
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Ulrich Kintscher
- Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health/ Institute of Pharmacology, Center for Cardiovascular Research, Hessische Street 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| |
Collapse
|
6
|
Ruiz T, Koussoroplis AM, Danger M, Aguer JP, Morel-Desrosiers N, Bec A. Quantifying the energetic cost of food quality constraints on resting metabolism to integrate nutritional and metabolic ecology. Ecol Lett 2021; 24:2339-2349. [PMID: 34337842 DOI: 10.1111/ele.13855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/03/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022]
Abstract
Consumer metabolism controls the energy uptake from the environment and its allocation to biomass production. In natural ecosystems, available energy in food often fails to predict biomass production which is also (co)limited by the relative availability of various dietary compounds. To date, the link between energy metabolism and the effects of food chemical composition on biomass production remains elusive. Here, we measured the resting metabolic rate (RMR) of Daphnia magna along ontogeny when undergoing various (non-energetic) nutritional constraints. All types of dietary (co)limitations (Fatty acids, Sterols, Phosphorus) induced an increase in mass-specific RMR up to 128% between highest and lowest quality diets. We highlight a strong negative correlation between RMR and growth rate indicating RMR as a promising predictor of consumer growth rate. We argue that quantifying the energetic cost imposed by food quality on individual RMR may constitute a common currency enabling the integration of nutritional and metabolic ecology.
Collapse
Affiliation(s)
- Thomas Ruiz
- Université Clermont Auvergne, CNRS, LMGE, Clermont-Ferrand, France
| | | | | | | | | | - Alexandre Bec
- Université Clermont Auvergne, CNRS, LMGE, Clermont-Ferrand, France
| |
Collapse
|
7
|
Zirpoli H, Chang CL, Carpentier YA, Michael-Titus AT, Ten VS, Deckelbaum RJ. Novel Approaches for Omega-3 Fatty Acid Therapeutics: Chronic Versus Acute Administration to Protect Heart, Brain, and Spinal Cord. Annu Rev Nutr 2020; 40:161-187. [PMID: 32966188 DOI: 10.1146/annurev-nutr-082018-124539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article reviews novel approaches for omega-3 fatty acid (FA) therapeutics and the linked molecular mechanisms in cardiovascular and central nervous system (CNS) diseases. In vitro and in vivo research studies indicate that omega-3 FAs affect synergic mechanisms that include modulation of cell membrane fluidity, regulation of intracellular signaling pathways, and production of bioactive mediators. We compare how chronic and acute treatments with omega-3 FAs differentially trigger pathways of protection in heart, brain, and spinal cord injuries. We also summarize recent omega-3 FA randomized clinical trials and meta-analyses and discuss possible reasons for controversial results, with suggestions on improving the study design for future clinical trials. Acute treatment with omega-3 FAs offers a novel approach for preserving cardiac and neurological functions, and the combinations of acute treatment with chronic administration of omega-3 FAs might represent an additional therapeutic strategy for ameliorating adverse cardiovascular and CNS outcomes.
Collapse
Affiliation(s)
- Hylde Zirpoli
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Chuchun L Chang
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Yvon A Carpentier
- Clinical Nutrition Unit, Université Libre de Bruxelles, 1050 Brussels, Belgium.,Nutrition Lipid Developments, SPRL, 1050 Brussels, Belgium
| | - Adina T Michael-Titus
- Center for Neuroscience, Surgery, and Trauma, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Vadim S Ten
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
Ghnaimawi S, Baum J, Liyanage R, Huang Y. Concurrent EPA and DHA Supplementation Impairs Brown Adipogenesis of C2C12 Cells. Front Genet 2020; 11:531. [PMID: 32595696 PMCID: PMC7303889 DOI: 10.3389/fgene.2020.00531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/01/2020] [Indexed: 12/27/2022] Open
Abstract
Maternal dietary supplementation of n−3 polyunsaturated fatty acids (n−3 PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is considered to play positive roles in fetal neuro system development. However, maternal n−3 PUFAs may induce molecular reprogramming of uncommitted fetal myoblasts into adipocyte phenotype, in turn affecting lipid metabolism and energy expenditure of the offspring. The objective of this in vitro study was to investigate the combined effects of EPA and DHA on C2C12 cells undergoing brown adipogenic differentiation. C2C12 myoblasts were cultured to confluency and then treated with brown adipogenic differentiation medium with and without 50 μM EPA and 50 μM DHA. After differentiation, mRNA and protein samples were collected. Gene expression and protein levels were analyzed by real-time PCR and western blot. General Proteomics analysis was conducted using mass spectrometric evaluation. The effect of EPA and DHA on cellular oxygen consumption was measured using a Seahorse XFP Analyzer. Cells treated with n−3 PUFAs had significantly less (P < 0.05) expression of the brown adipocyte marker genes PGC1α, DIO2, and UCP3. Expression of mitochondrial biogenesis-related genes TFAM, PGC1α, and PGC1β were significantly downregulated (P < 0.05) by n−3 PUFAs treatment. Expression of mitochondrial electron transportation chain (ETC)-regulated genes were significantly inhibited (P < 0.05) by n−3 PUFAs, including ATP5J2, COX7a1, and COX8b. Mass spectrometric and western blot evaluation showed protein levels of enzymes which regulate the ETC and Krebs cycle, including ATP synthase α and β (F1F0 complex), citrate synthase, succinate CO-A ligase, succinate dehydrogenase (complex II), ubiquinol-cytochrome c reductase complex subunits (complex III), aconitate hydratase, cytochrome c, and pyruvate carboxylase were all decreased in the n−3 PUFAs group (P < 0.05). Genomic and proteomic changes were accompanied by mitochondrial dysfunction, represented by significantly reduced oxygen consumption rate, ATP production, and proton leak (P < 0.05). This study suggested that EPA and DHA may alter the BAT fate of myoblasts by inhibiting mitochondrial biogenesis and activity and induce white-like adipogenesis, shifting the metabolism from lipid oxidation to synthesis.
Collapse
Affiliation(s)
- Saeed Ghnaimawi
- Department of Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Jamie Baum
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
9
|
Yang S, Huo Y, Wang H, Ji J, Chen W, Huang Y. The spatio-temporal features of chicken mitochondrial ND2 gene heteroplasmy and the effects of nutrition factors on this gene. Sci Rep 2020; 10:2972. [PMID: 32075998 PMCID: PMC7031424 DOI: 10.1038/s41598-020-59703-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/17/2020] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial heterogeneity is the presence of two or more types of mitochondrial (mt)DNA in the same individual/tissue/cell. It is closely related to animal health and disease. ND2 is a protein-coding gene in mtDNA, which participates in mitochondrial respiratory chain and oxidative phosphorylation. In previous studies, we observed that the mt.A5703T and mt.T5727G sites in the ND2 gene were the heteroplasmic variation sites. We used pyrophosphate sequencing technology to examine chicken mt.A5703T and mt.T5727G heteroplasmic sites in the ND2 gene, in different tissues and at different development stages in chickens. We also investigated whether nutritional factors could affect the mt.A5703T and mt.T5727G heteroplasmy. Our results showed that chicken mt.A5703T and mt.T5727G heteroplasmy had clear spatio-temporal specificities, which varied between tissues/development stages. The mtDNA heterogeneity was relatively stable upon nutrition intervention, 30% dietary energy restriction (from 18 to 48 days old) and different types of dietary fats (at 5% concentration, from 1 to 42 days old) did not change the breast muscle heteroplasmy of broilers at the mt.A5703T and mt.T5727G sites. In addition, multiple potential heteroplasmic sites were detected by clone sequencing in the ND2 region, which potentially reflected abundant heteroplasmy in the chicken mitochondrial genome. These results provide an important reference for further research on heteroplasmy in chicken mitochondria.
Collapse
Affiliation(s)
- Suliang Yang
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Yangyang Huo
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Huanjie Wang
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Jiefei Ji
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Wen Chen
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China
| | - Yanqun Huang
- College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, No. 15 Longzi Lake University Campus, Zhengzhou, 450046, P.R. China.
| |
Collapse
|
10
|
Semba RD, Moaddel R, Zhang P, Ramsden CE, Ferrucci L. Tetra-linoleoyl cardiolipin depletion plays a major role in the pathogenesis of sarcopenia. Med Hypotheses 2019; 127:142-149. [PMID: 31088638 DOI: 10.1016/j.mehy.2019.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022]
Abstract
Sarcopenia, the progressive loss of muscle mass, strength, and physical performance that occurs during aging, is highly prevalent among the elderly. Sarcopenia increases the risk of falls, disability, and death. The biological basis for sarcopenia is not well understood. There are no specific preventive or therapeutic strategies for sarcopenia except exercise. The elucidation of biological pathways and identification of therapeutic targets for treating or preventing sarcopenia remain a high priority in aging research. Mitochondria play a critical role in skeletal muscle by providing energy in the form of ATP, regulation of signaling, calcium homeostasis, autophagy, and other functions. Cardiolipin, a unique dimeric phospholipid specific to mitochondria and an essential component of mitochondrial membranes, is involved in mitochondrial protein transport, maintaining structural organization of mitochondrial membranes, cellular signaling, regulating enzymes involved in β-oxidation of fatty acids, and facilitating normal electron transport chain (ETC) function and generation of ATP. The fatty acid species composition of cardiolipin is critical to mitochondrial bioenergetics, as cardiolipin affects membrane biophysical properties, binds and stabilizes ETC protein complexes, and shapes the curvature of the mitochondrial cristae. Tetra-linoleoyl cardiolipin (18:2)4 comprises ∼80% of cardiolipin in mitochondria in normal human skeletal and cardiac muscle and is optimal for effective ETC function and ATP generation. Aging is associated with a decrease in cardiolipin content, decrease in tetra-linoleoyl cardiolipin (18:2)4 and replacement of linoleic acid (18:2) with other fatty acids in cardiolipin composition, decline of ETC function, and increased generation of reactive oxygen species in muscle. Together, these findings from the literature prompt the hypothesis that depletion of the cardiolipin (18:2)4 species may be at the root of mitochondrial dysfunction with aging, in turn leading to sarcopenia. Corroboration of the tetra-linoleoyl cardiolipin depletion hypothesis suggests new leads for the prevention and treatment of sarcopenia by enhancing the biosynthesis, accretion, and integrity of tetra-linoleoyl cardiolipin.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Pingbo Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher E Ramsden
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
11
|
Adaptations in Protein Expression and Regulated Activity of Pyruvate Dehydrogenase Multienzyme Complex in Human Systolic Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4532592. [PMID: 30881593 PMCID: PMC6383428 DOI: 10.1155/2019/4532592] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023]
Abstract
Pyruvate dehydrogenase (PDH) complex, a multienzyme complex at the nexus of glycolytic and Krebs cycles, provides acetyl-CoA to the Krebs cycle and NADH to complex I thus supporting a critical role in mitochondrial energy production and cellular survival. PDH activity is regulated by pyruvate dehydrogenase phosphatases (PDP1, PDP2), pyruvate dehydrogenase kinases (PDK 1-4), and mitochondrial pyruvate carriers (MPC1, MPC2). As NADH-dependent oxidative phosphorylation is diminished in systolic heart failure, we tested whether the left ventricular myocardium (LV) from end-stage systolic adult heart failure patients (n = 26) exhibits altered expression of PDH complex subunits, PDK, MPC, PDP, and PDH complex activity, compared to LV from nonfailing donor hearts (n = 21). Compared to nonfailing LV, PDH activity and relative expression levels of E2, E3bp, E1α, and E1β subunits were greater in LV failure. PDK4, MPC1, and MPC2 expressions were decreased in failing LV, whereas PDP1, PDP2, PDK1, and PDK2 expressions did not differ between nonfailing and failing LV. In order to examine PDK4 further, donor human LV cardiomyocytes were induced in culture to hypertrophy with 0.1 μM angiotensin II and treated with PDK inhibitors (0.2 mM dichloroacetate, or 5 mM pyruvate) or activators (0.6 mM NADH plus 50 μM acetyl CoA). In isolated hypertrophic cardiomyocytes in vitro, PDK activators and inhibitors increased and decreased PDK4, respectively. In conclusion, in end-stage failing hearts, greater expression of PDH proteins and decreased expression of PDK4, MPC1, and MPC2 were evident with higher rates of PDH activity. These adaptations support sustained capacity for PDH to facilitate glucose metabolism in the face of other failing bioenergetic pathways.
Collapse
|
12
|
Dudek J, Hartmann M, Rehling P. The role of mitochondrial cardiolipin in heart function and its implication in cardiac disease. Biochim Biophys Acta Mol Basis Dis 2018; 1865:810-821. [PMID: 30837070 DOI: 10.1016/j.bbadis.2018.08.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/21/2023]
Abstract
Mitochondria play an essential role in the energy metabolism of the heart. Many of the essential functions are associated with mitochondrial membranes and oxidative phosphorylation driven by the respiratory chain. Mitochondrial membranes are unique in the cell as they contain the phospholipid cardiolipin. The important role of cardiolipin in cardiovascular health is highlighted by several cardiac diseases, in which cardiolipin plays a fundamental role. Barth syndrome, Sengers syndrome, and Dilated cardiomyopathy with ataxia (DCMA) are genetic disorders, which affect cardiolipin biosynthesis. Other cardiovascular diseases including ischemia/reperfusion injury and heart failure are also associated with changes in the cardiolipin pool. Here, we summarize molecular functions of cardiolipin in mitochondrial biogenesis and morphology. We highlight the role of cardiolipin for the respiratory chain, metabolite carriers, and mitochondrial metabolism and describe links to apoptosis and mitochondria specific autophagy (mitophagy) with possible implications in cardiac disease.
Collapse
Affiliation(s)
- Jan Dudek
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Magnus Hartmann
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
13
|
Lopes SC, Ivanova G, de Castro B, Gameiro P. Revealing cardiolipins influence in the construction of a significant mitochondrial membrane model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2465-2477. [PMID: 30040925 DOI: 10.1016/j.bbamem.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Cardiolipins are essential for the integrity and the dynamics of the mitochondria membrane, where they exclusively exist in eukaryotes. Changes in cardiolipins membrane levels have been related to several cardiac health disorders. To evaluate cardiolipins impact on membrane properties a physico-chemical study was conducted using steady-state fluorescence anisotropy, dynamic light scattering and Nuclear Magnetic Resonance (1H and 31P NMR). Different binary and ternary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and a natural extract of bovine heart cardiolipin were used as models of mitochondrial membrane. The main transition temperatures, obtained by the first two techniques, revealed to be cardiolipins dependent. Cardiolipins also showed to act as a bidirectional regulator of membrane fluidity. 1H and 31P NMR results revealed that cardiolipins affects the conformation, mobility and structural order of the phospholipid molecules. According to 1H NMR results, cardiolipins disturbs the overall structure and packing order of membrane demonstrated with the decrease of the line broadening and shift of all resonances. The 31P NMR line shape analysis confirmed that, at distinct temperatures, different lipid phases coexist in the systems, and their type and quantitative distribution are cardiolipins dependent. In summary, cardiolipins presence/absence dramatically changes the membrane properties and has a major impact in the construction of a mitochondrial membrane model.
Collapse
Affiliation(s)
- S C Lopes
- Requimte, LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - G Ivanova
- Requimte, LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - B de Castro
- Requimte, LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - P Gameiro
- Requimte, LAQV, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
14
|
Yu Q, Zhong C. Membrane Aging as the Real Culprit of Alzheimer's Disease: Modification of a Hypothesis. Neurosci Bull 2017; 34:369-381. [PMID: 29177767 DOI: 10.1007/s12264-017-0192-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/05/2017] [Indexed: 01/10/2023] Open
Abstract
Our previous studies proposed that Alzheimer's disease (AD) is a metabolic disorder and hypothesized that abnormal brain glucose metabolism inducing multiple pathophysiological cascades contributes to AD pathogenesis. Aging is one of the great significant risk factors for AD. Membrane aging is first prone to affect the function and structure of the brain by impairing glucose metabolism. We presume that risk factors of AD, including genetic factors (e.g., the apolipoprotein E ε4 allele and genetic mutations) and non-genetic factors (such as fat, diabetes, and cardiac failure) accelerate biomembrane aging and lead to the onset and development of the disease. In this review, we further modify our previous hypothesis to demonstrate "membrane aging" as an initial pathogenic factor that results in functional and structural alterations of membranes and, consequently, glucose hypometabolism and multiple pathophysiological cascades.
Collapse
Affiliation(s)
- Qiujian Yu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Pollard AK, Ortori CA, Stöger R, Barrett DA, Chakrabarti L. Mouse mitochondrial lipid composition is defined by age in brain and muscle. Aging (Albany NY) 2017; 9:986-998. [PMID: 28325886 PMCID: PMC5391243 DOI: 10.18632/aging.101204] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/12/2017] [Indexed: 01/22/2023]
Abstract
Functionality of the lipid rich mitochondrial organelle declines with increased age. Recent advances in lipidomic technologies allowed us to perform a global characterisation of lipid composition in two different tissue types and age ranges. Ultra-high performance liquid chromatography coupled with high resolution mass spectrometry was used to establish and compare mitochondrial lipidomes of brain and skeletal muscle from young (4-11 weeks old) and middle age (78 weeks old) healthy mice. In middle age the brain mitochondria had reduced levels of fatty acids, particularly polyunsaturated fatty acids, while skeletal muscle mitochondria had a decreased abundance of phosphatidylethanolamine, but a pronounced increase of triglyceride levels. Reduced levels of phosphatidylethanolamines are known to decrease mitochondrial membrane fluidity and are connected with accelerated ageing. In mitochondria from skeletal muscle we propose that increased age causes a metabolic shift in the conversion of diacylglycerol so that triglycerides predominate compared with phosphatidylethanolamines. This is the first time mitochondrial lipid content in normal healthy mammalian ageing brain and muscle has been catalogued in such detail across all lipid classes. We identify distinct mitochondrial lipid signatures that change with age, revealing tissue-specific lipid pathways as possible targets to ameliorate ageing-related mitochondrial decline.
Collapse
Affiliation(s)
- Amelia K Pollard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Catharine A Ortori
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Reinhard Stöger
- Division of Animal Science, School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
16
|
Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 2017; 8:349-369. [PMID: 28432755 PMCID: PMC5476857 DOI: 10.1002/jcsm.12178] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/23/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best-known hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intracellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria generating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues affected by mitochondrial dysfunction are those with a high-energy demand and thus high mitochondrial content. Therefore, the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Maik Kosiol
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| |
Collapse
|
17
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
18
|
Serrano JCE, Cassanye A, Martín-Gari M, Granado-Serrano AB, Portero-Otín M. Effect of Dietary Bioactive Compounds on Mitochondrial and Metabolic Flexibility. Diseases 2016; 4:diseases4010014. [PMID: 28933394 PMCID: PMC5456301 DOI: 10.3390/diseases4010014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/25/2016] [Accepted: 03/07/2016] [Indexed: 12/21/2022] Open
Abstract
Metabolic flexibility is the capacity of an organism to adequately respond to changes in the environment, such as nutritional input, energetic demand, etc. An important player in the capacity of adaptation through different stages of metabolic demands is the mitochondrion. In this context, mitochondrial dysfunction has been attributed to be the onset and center of many chronic diseases, which are denoted by an inability to adapt fuel preferences and induce mitochondrial morphological changes to respond to metabolic demands, such as mitochondrial number, structure and function. Several nutritional interventions have shown the capacity to induce changes in mitochondrial biogenesis/degradation, oxidative phosphorylation efficiency, mitochondrial membrane composition, electron transfer chain capacity, etc., in metabolic inflexibility states that may open new target options and mechanisms of action of bioactive compounds for the treatment of metabolic diseases. This review is focused in three well-recognized food bioactive compounds that modulate insulin sensitivity, polyphenols, ω-3 fatty acids and dietary fiber, by several mechanism of action, like caloric restriction properties and inflammatory environment modulation, both closely related to mitochondrial function and dynamics.
Collapse
Affiliation(s)
- Jose C E Serrano
- Department of Experimental Medicine, University of Lleida, Av. Alcalde Rovira Roure 80, Lleida 25198, Spain.
| | - Anna Cassanye
- Department of Experimental Medicine, University of Lleida, Av. Alcalde Rovira Roure 80, Lleida 25198, Spain.
| | - Meritxell Martín-Gari
- Department of Experimental Medicine, University of Lleida, Av. Alcalde Rovira Roure 80, Lleida 25198, Spain.
| | - Ana Belen Granado-Serrano
- Department of Experimental Medicine, University of Lleida, Av. Alcalde Rovira Roure 80, Lleida 25198, Spain.
| | - Manuel Portero-Otín
- Department of Experimental Medicine, University of Lleida, Av. Alcalde Rovira Roure 80, Lleida 25198, Spain.
| |
Collapse
|
19
|
Barrera G, Gentile F, Pizzimenti S, Canuto RA, Daga M, Arcaro A, Cetrangolo GP, Lepore A, Ferretti C, Dianzani C, Muzio G. Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products. Antioxidants (Basel) 2016; 5:antiox5010007. [PMID: 26907355 PMCID: PMC4808756 DOI: 10.3390/antiox5010007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
In several human diseases, such as cancer and neurodegenerative diseases, the levels of reactive oxygen species (ROS), produced mainly by mitochondrial oxidative phosphorylation, is increased. In cancer cells, the increase of ROS production has been associated with mtDNA mutations that, in turn, seem to be functional in the alterations of the bioenergetics and the biosynthetic state of cancer cells. Moreover, ROS overproduction can enhance the peroxidation of fatty acids in mitochondrial membranes. In particular, the peroxidation of mitochondrial phospholipid cardiolipin leads to the formation of reactive aldehydes, such as 4-hydroxynonenal (HNE) and malondialdehyde (MDA), which are able to react with proteins and DNA. Covalent modifications of mitochondrial proteins by the products of lipid peroxidation (LPO) in the course of oxidative cell stress are involved in the mitochondrial dysfunctions observed in cancer and neurodegenerative diseases. Such modifications appear to affect negatively mitochondrial integrity and function, in particular energy metabolism, adenosine triphosphate (ATP) production, antioxidant defenses and stress responses. In neurodegenerative diseases, indirect confirmation for the pathogenetic relevance of LPO-dependent modifications of mitochondrial proteins comes from the disease phenotypes associated with their genetic alterations.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| | - Fabrizio Gentile
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università del Molise, Campobasso 86100, Italy.
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| | - Rosa Angela Canuto
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| | - Martina Daga
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| | - Alessia Arcaro
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università del Molise, Campobasso 86100, Italy.
| | - Giovanni Paolo Cetrangolo
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università del Molise, Campobasso 86100, Italy.
| | - Alessio Lepore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli 80131, Italy.
| | - Carlo Ferretti
- Dipartimento di Scienze e Tecnologia del Farmaco, Università di Torino, Torino 10125, Italy.
| | - Chiara Dianzani
- Dipartimento di Scienze e Tecnologia del Farmaco, Università di Torino, Torino 10125, Italy.
| | - Giuliana Muzio
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| |
Collapse
|
20
|
Beam J, Botta A, Ye J, Soliman H, Matier BJ, Forrest M, MacLeod KM, Ghosh S. Excess Linoleic Acid Increases Collagen I/III Ratio and "Stiffens" the Heart Muscle Following High Fat Diets. J Biol Chem 2015; 290:23371-84. [PMID: 26240151 DOI: 10.1074/jbc.m115.682195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 12/14/2022] Open
Abstract
Controversy exists on the benefits versus harms of n-6 polyunsaturated fatty acids (n-6 PUFA). Although n-6 PUFA demonstrates anti-atherosclerotic properties, survival following cardiac remodeling may be compromised. We hypothesized that n-6 PUFA like linoleic acid (LA) or other downstream PUFAs like γ-linolenic acid or arachidonic acid alter the transforming growth factor-β (TGFβ)-collagen axis in the heart. Excess dietary LA increased the collagen I/III ratio in the mouse myocardium, leading to cardiac "stiffening" characterized by impaired transmitral flow indicative of early diastolic dysfunction within 5 weeks. In vitro, LA under TGFβ1 stimulation increased collagen I and lysyl oxidase (LOX), the enzyme that cross-links soluble collagen resulting in deposited collagen. Overexpression of fatty acid desaturase 2 (fads2), which metabolizes LA to downstream PUFAs, reduced collagen deposits, LOX maturation, and activity with LA, whereas overexpressing fads1, unrelated to LA desaturation, did not. Furthermore, fads2 knockdown by RNAi elevated LOX activity and collagen deposits in fibroblasts with LA but not oleic acid, implying a buildup of LA for aggravating such pro-fibrotic effects. As direct incubation with γ-linolenic acid or arachidonic acid also attenuated collagen deposits and LOX activity, we concluded that LA itself, independent of other downstream PUFAs, promotes the pro-fibrotic effects of n-6 PUFA. Overall, these results attempt to reconcile opposing views of n-6 PUFA on the cardiovascular system and present evidence supporting a cardiac muscle-specific effect of n-6 PUFAs. Therefore, aggravation of the collagen I/III ratio and cardiac stiffening by excess n-6 PUFA represent a novel pathway of cardiac lipotoxicity caused by high n-6 PUFA diets.
Collapse
Affiliation(s)
- Julianne Beam
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Amy Botta
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Jiayu Ye
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Hesham Soliman
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, British Columbia-Okanagan, Kelowna, British Columbia BC V1V 1V7, Canada, and the Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Main Road, Minia 11432, Egypt
| | - Brieanne J Matier
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Mary Forrest
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| | - Kathleen M MacLeod
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, British Columbia-Okanagan, Kelowna, British Columbia BC V1V 1V7, Canada, and
| | - Sanjoy Ghosh
- From the Department of Biology, IK Barber School of Arts and Sciences, and
| |
Collapse
|
21
|
Tocchi A, Quarles EK, Basisty N, Gitari L, Rabinovitch PS. Mitochondrial dysfunction in cardiac aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1424-33. [PMID: 26191650 DOI: 10.1016/j.bbabio.2015.07.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are the leading cause of death in most developed nations. While it has received the least public attention, aging is the dominant risk factor for developing cardiovascular diseases, as the prevalence of cardiovascular diseases increases dramatically with increasing age. Cardiac aging is an intrinsic process that results in impaired cardiac function, along with cellular and molecular changes. Mitochondria play a great role in these processes, as cardiac function is an energetically demanding process. In this review, we examine mitochondrial dysfunction in cardiac aging. Recent research has demonstrated that mitochondrial dysfunction can disrupt morphology, signaling pathways, and protein interactions; conversely, mitochondrial homeostasis is maintained by mechanisms that include fission/fusion, autophagy, and unfolded protein responses. Finally, we describe some of the recent findings in mitochondrial targeted treatments to help meet the challenges of mitochondrial dysfunction in aging.
Collapse
Affiliation(s)
- Autumn Tocchi
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Ellen K Quarles
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Nathan Basisty
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Lemuel Gitari
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| | - Peter S Rabinovitch
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, USA.
| |
Collapse
|
22
|
Yu L, Fink BD, Herlein JA, Oltman CL, Lamping KG, Sivitz WI. Dietary fat, fatty acid saturation and mitochondrial bioenergetics. J Bioenerg Biomembr 2014; 46:33-44. [PMID: 24121995 DOI: 10.1007/s10863-013-9530-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/20/2013] [Indexed: 12/15/2022]
Abstract
Fat intake alters mitochondrial lipid composition which can affect function. We used novel methodology to assess bioenergetics, including simultaneous ATP and reactive oxygen species (ROS) production, in liver and heart mitochondria of C57BL/6 mice fed diets of variant fatty acid content and saturation. Our methodology allowed us to clamp ADP concentration and membrane potential (ΔΨ) at fixed levels. Mice received a control diet for 17–19 weeks, a high-fat (HF) diet (60% lard) for 17–19 weeks, or HF for 12 weeks followed by 6–7 weeks of HF with 50% of fat as menhaden oil (MO) which is rich in n-3 fatty acids. ATP production was determined as conversion of 2-deoxyglucose to 2-deoxyglucose phosphate by NMR spectroscopy. Respiration and ATP production were significantly reduced at all levels of ADP and resultant clamped ΔΨ in liver mitochondria from mice fed HF compared to controls. At given ΔΨ, ROS production per mg mitochondrial protein, per unit respiration, or per ATP generated were greater for liver mitochondria of HF-fed mice compared to control or MO-fed mice. Moreover, these ROS metrics began to increase at a lower ΔΨ threshold. Similar, but less marked, changes were observed in heart mitochondria of HF-fed mice compared to controls. No changes in mitochondrial bioenergetics were observed in studies of separate mice fed HF versus control for only 12 weeks. In summary, HF feeding of sufficient duration impairs mitochondrial bioenergetics and is associated with a greater ROS “cost” of ATP production compared to controls. These effects are, in part, mitigated by MO.
Collapse
|
23
|
Fernández-Sada E, Silva-Platas C, Villegas CA, Rivero SL, Willis BC, García N, Garza JR, Oropeza-Almazán Y, Valverde CA, Mazzocchi G, Zazueta C, Torre-Amione G, García-Rivas G. Cardiac responses to β-adrenoceptor stimulation is partly dependent on mitochondrial calcium uniporter activity. Br J Pharmacol 2014; 171:4207-21. [PMID: 24628066 DOI: 10.1111/bph.12684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 02/06/2014] [Accepted: 03/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Despite the importance of mitochondrial Ca(2+) to metabolic regulation and cell physiology, little is known about the mechanisms that regulate Ca(2+) entry into the mitochondria. Accordingly, we established a system to determine the role of the mitochondrial Ca(2+) uniporter in an isolated heart model, at baseline and during increased workload following β-adrenoceptor stimulation. EXPERIMENTAL APPROACH Cardiac contractility, oxygen consumption and intracellular Ca(2+) transients were measured in ex vivo perfused murine hearts. Ru360 and spermine were used to modify mitochondrial Ca(2+) uniporter activity. Changes in mitochondrial Ca(2+) content and energetic phosphate metabolite levels were determined. KEY RESULTS The addition of Ru360 , a selective inhibitor of the mitochondrial Ca(2+) uniporter, induced progressively and sustained negative inotropic effects that were dose-dependent with an EC50 of 7 μM. Treatment with spermine, a uniporter agonist, showed a positive inotropic effect that was blocked by Ru360 . Inotropic stimulation with isoprenaline elevated oxygen consumption (2.7-fold), Ca(2+) -dependent activation of pyruvate dehydrogenase (5-fold) and mitochondrial Ca(2+) content (2.5-fold). However, in Ru360 -treated hearts, this parameter was attenuated. In addition, β-adrenoceptor stimulation in the presence of Ru360 did not affect intracellular Ca(2+) handling, PKA or Ca(2+) /calmodulin-dependent PK signalling. CONCLUSIONS AND IMPLICATIONS Inhibition of the mitochondrial Ca(2+) uniporter decreases β-adrenoceptor response, uncoupling between workload and production of energetic metabolites. Our results support the hypothesis that the coupling of workload and energy supply is partly dependent on mitochondrial Ca(2+) uniporter activity.
Collapse
Affiliation(s)
- E Fernández-Sada
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dabkowski ER, O'Connell KA, Xu W, Ribeiro RF, Hecker PA, Shekar KC, Daneault C, Des Rosiers C, Stanley WC. Docosahexaenoic acid supplementation alters key properties of cardiac mitochondria and modestly attenuates development of left ventricular dysfunction in pressure overload-induced heart failure. Cardiovasc Drugs Ther 2014; 27:499-510. [PMID: 24013804 DOI: 10.1007/s10557-013-6487-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Supplementation with the n3 polyunsaturated fatty acid docosahexaenoic acid (DHA) is beneficial in heart failure patients, however the mechanisms are unclear. DHA is incorporated into membrane phospholipids, which may prevent mitochondrial dysfunction. Thus we assessed the effects of DHA supplementation on cardiac mitochondria and the development of heart failure caused by aortic pressure overload. METHODS Pathological cardiac hypertrophy was generated in rats by thoracic aortic constriction. Animals were fed either a standard diet or were supplemented with DHA (2.3 % of energy intake). RESULTS After 14 weeks, heart failure was evident by left ventricular hypertrophy and chamber enlargement compared to shams. Left ventricle fractional shortening was unaffected by DHA treatment in sham animals (44.1 ± 1.6 % vs. 43.5 ± 2.2 % for standard diet and DHA, respectively), and decreased with heart failure in both treatment groups, but to a lesser extent in DHA treated animals (34.9 ± 1.7 %) than with the standard diet (29.7 ± 1.5 %, P < 0.03). DHA supplementation increased DHA content in mitochondrial phospholipids and decreased membrane viscosity. Myocardial mitochondrial oxidative capacity was decreased by heart failure and unaffected by DHA. DHA treatment enhanced Ca(2+) uptake by subsarcolemmal mitochondria in both sham and heart failure groups. Further, DHA lessened Ca(2+)-induced mitochondria swelling, an index of permeability transition, in heart failure animals. Heart failure increased hydrogen peroxide-induced mitochondrial permeability transition compared to sham, which was partially attenuated in interfibrillar mitochondria by treatment with DHA. CONCLUSIONS DHA decreased mitochondrial membrane viscosity and accelerated Ca(2+) uptake, and attenuated susceptibility to mitochondrial permeability transition and development of left ventricular dysfunction.
Collapse
Affiliation(s)
- Erinne R Dabkowski
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Knowlton AA, Korzick DH. Estrogen and the female heart. Mol Cell Endocrinol 2014; 389:31-9. [PMID: 24462775 PMCID: PMC5709037 DOI: 10.1016/j.mce.2014.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/04/2014] [Accepted: 01/05/2014] [Indexed: 12/24/2022]
Abstract
Estrogen has a plethora of effects in the cardiovascular system. Studies of estrogen and the heart span human clinical trials and basic cell and molecular investigations. Greater understanding of cell and molecular responses to estrogens can provide further insights into the findings of clinical studies. Differences in expression and cellular/intracellular distribution of the two main receptors, estrogen receptor (ER) α and β, are thought to account for the specificity and differences in responses to estrogen. Much remains to be learned in this area, but cellular distribution within the cardiovascular system is becoming clearer. Identification of GPER as a third ER has introduced further complexity to the system. 17β-estradiol (E2), the most potent human estrogen, clearly has protective properties activating a signaling cascade leading to cellular protection and also influencing expression of the protective heat shock proteins (HSP). E2 protects the heart from ischemic injury in basic studies, but the picture is more involved in the whole organism and clinical studies. Here the complexity of E2's widespread effects comes into play and makes interpretation of findings more challenging. Estrogen loss occurs primarily with aging, but few studies have used aged models despite clear evidence of differences between the response to estrogen deficiency in adult and aged animals. Thus more work is needed focusing on the effects of aging vs. estrogen loss on the cardiovascular system.
Collapse
Affiliation(s)
- A A Knowlton
- The Department of Veteran's Affairs, Northern California VA, Sacramento, CA, USA; Molecular & Cellular Cardiology, Departments of Medicine and Pharmacology, University of California, Davis, USA.
| | - D H Korzick
- Intercollege Program in Physiology and Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
26
|
The influence of dietary omega-3 polyunsaturated fatty acids on functional parameters of myocardial mitochondria during isoproterenol-induced heart injury. ACTA ACUST UNITED AC 2014. [DOI: 10.15407/fz60.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Goo S, Han JC, Nisbet LA, LeGrice IJ, Taberner AJ, Loiselle DS. Dietary pre-exposure of rats to fish oil does not enhance myocardial efficiency of isolated working hearts or their left ventricular trabeculae. J Physiol 2014; 592:1795-808. [PMID: 24535444 DOI: 10.1113/jphysiol.2013.269977] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Numerous epidemiological studies, supported by clinical and experimental findings, have suggested beneficial effects of dietary fish or fish oil supplementation on cardiovascular health. One such experimental study showed a profound (100%) increase in myocardial efficiency (i.e. the ratio of work output to metabolic energy input) of the isolated whole heart, achieved by a corresponding decrease in the rate of myocardial oxygen consumption. However, a number of other investigations have returned null results on the latter energetic index. Such conflicting findings have motivated us to undertake a re-examination. To that effect, we investigated the effects of dietary fatty acid supplementation on myocardial mechano-energetics, with our primary focus on cardiac efficiency. We used both isolated hearts and isolated left ventricular trabeculae of rats fed with one of three distinct diets: reference (REF), fish oil-supplemented (FO) or saturated fat-supplemented (SFA). For all three groups, and at both spatial levels, we supplied 10 mm glucose as the exogenous metabolic substrate. In the working heart experiments, we found no difference in the average mechanical efficiency among the three dietary groups: 14.8 ± 1.1% (REF), 13.9 ± 0.6% (FO) and 13.6 ± 0.7% (SFA). Likewise, we observed no difference in peak mechanical efficiency of left ventricular trabeculae among the REF, FO and SFA groups: 13.3 ± 1.4, 11.2 ± 2.2 and 12.5 ± 1.5%, respectively. We conclude that there is no effect of a period of pre-exposure to a diet supplemented with either fish oil or saturated fatty acids on the efficiency of the myocardium at either spatial level: tissue or whole heart.
Collapse
Affiliation(s)
- Soyeon Goo
- Department of Physiology, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
28
|
Ghio S, Scelsi L, Latini R, Masson S, Eleuteri E, Palvarini M, Vriz O, Pasotti M, Gorini M, Marchioli R, Maggioni A, Tavazzi L. Effects of n
-3 polyunsaturated fatty acids and of rosuvastatin on left ventricular function in chronic heart failure: a substudy of GISSI-HF trial. Eur J Heart Fail 2014; 12:1345-53. [DOI: 10.1093/eurjhf/hfq172] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stefano Ghio
- Divisione di Cardiologia; Fondazione IRCCS Policlinico San Matteo; Pavia Italy
| | - Laura Scelsi
- Divisione di Cardiologia; Fondazione IRCCS Policlinico San Matteo; Pavia Italy
| | - Roberto Latini
- Department of Cardiovascular Research; Istituto di Ricerche Farmacologiche Mario Negri; Milan Italy
| | - Serge Masson
- Department of Cardiovascular Research; Istituto di Ricerche Farmacologiche Mario Negri; Milan Italy
| | - Ermanno Eleuteri
- Divisione di Cardiologia Riabilitativa; Fondazione IRCCS Salvatore Maugeri; Veruno Italy
| | - Michela Palvarini
- Divisione di Cardiologia Riabilitativa; Ospedale Civile; Passirana-Rho Italy
| | - Olga Vriz
- Dipartimento di Cardiologia; Ospedale San Antonio; San Daniele del Friuli Italy
| | - Michele Pasotti
- Divisione di Cardiologia; Fondazione IRCCS Policlinico San Matteo; Pavia Italy
| | | | - Roberto Marchioli
- Department of Cardiovascular Research; Istituto di Ricerche Farmacologiche Mario Negri; Milan Italy
| | | | - Luigi Tavazzi
- GVM Care and Research; Maria Cecilia Hospital; Cotignola Italy
| | | |
Collapse
|
29
|
Peart JN, Pepe S, Reichelt ME, Beckett N, See Hoe L, Ozberk V, Niesman IR, Patel HH, Headrick JP. Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Exp Gerontol 2013; 50:72-81. [PMID: 24316036 DOI: 10.1016/j.exger.2013.11.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/03/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
Changes in cytoprotective signaling may influence cardiac aging, and underpin sensitization to ischemic insult and desensitization to 'anti-ischemic' therapies. We tested whether age-dependent shifts in ischemia-reperfusion (I-R) tolerance in murine and human myocardium are associated with reduced efficacies and coupling of membrane, cytoplasmic and mitochondrial survival-signaling. Hormesis (exemplified in ischemic preconditioning; IPC) and expression of proteins influencing signaling/stress-resistance were also assessed in mice. Mouse hearts (18 vs. 2-4 mo) and human atrial tissue (75±2 vs. 55±2 yrs) exhibited profound age-dependent reductions in I-R tolerance. In mice aging negated cardioprotection via IPC, G-protein coupled receptor (GPCR) agonism (opioid, A1 and A3 adenosine receptors) and distal protein kinase c (PKC) activation (4 nM phorbol 12-myristate 13-acetate; PMA). In contrast, p38-mitogen activated protein kinase (p38-MAPK) activation (1 μM anisomycin), mitochondrial ATP-sensitive K(+) channel (mKATP) opening (50 μM diazoxide) and permeability transition pore (mPTP) inhibition (0.2 μM cyclosporin A) retained protective efficacies in older hearts (though failed to eliminate I-R tolerance differences). A similar pattern of change in protective efficacies was observed in human tissue. Murine hearts exhibited molecular changes consistent with altered membrane control (reduced caveolin-3, cholesterol and caveolae), kinase signaling (reduced p70 ribosomal s6 kinase; p70s6K) and stress-resistance (increased G-protein receptor kinase 2, GRK2; glycogen synthase kinase 3β, GSK3β; and cytosolic cytochrome c). In summary, myocardial I-R tolerance declines with age in association with dysfunctional hormesis and transduction of survival signals from GPCRs/PKC to mitochondrial effectors. Differential changes in proteins governing caveolar and mitochondrial function may contribute to signal dysfunction and stress-intolerance.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Melissa E Reichelt
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Nikkie Beckett
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Louise See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Victoria Ozberk
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | | | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, USA; Department of Anesthesiology, University of California San Diego, USA
| | - John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia.
| |
Collapse
|
30
|
Yaniv Y, Juhaszova M, Sollott SJ. Age-related changes of myocardial ATP supply and demand mechanisms. Trends Endocrinol Metab 2013; 24:495-505. [PMID: 23845538 PMCID: PMC3783621 DOI: 10.1016/j.tem.2013.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 01/03/2023]
Abstract
In advanced age, the resting myocardial oxygen consumption rate (MVO2) and cardiac work (CW) in the rat remain intact. However, MVO2, CW and cardiac efficiency achieved at high demand are decreased with age, compared to maximal values in the young. Whether this deterioration is due to decrease in myocardial ATP demand, ATP supply, or the control mechanisms that match them remains controversial. Here we discuss evolving perspectives of age-related changes of myocardial ATP supply and demand mechanisms, and critique experimental models used to investigate aging. Specifically, we evaluate experimental data collected at the level of isolated mitochondria, tissue, or organism, and discuss how mitochondrial energetic mechanisms change in advanced age, both at basal and high energy-demand levels.
Collapse
Affiliation(s)
- Yael Yaniv
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | | | | |
Collapse
|
31
|
Monteiro JP, Oliveira PJ, Jurado AS. Mitochondrial membrane lipid remodeling in pathophysiology: a new target for diet and therapeutic interventions. Prog Lipid Res 2013; 52:513-28. [PMID: 23827885 DOI: 10.1016/j.plipres.2013.06.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Mitochondria are arbiters in the fragile balance between cell life and death. These organelles present an intricate membrane system, with a peculiar lipid composition and displaying transverse as well as lateral asymmetry. Some lipids are synthesized inside mitochondria, while others have to be imported or acquired in the form of precursors. Here, we review different processes, including external interventions (e.g., diet) and a range of biological events (apoptosis, disease and aging), which may result in alterations of mitochondrial membrane lipid content. Cardiolipin, the mitochondria lipid trademark, whose biosynthetic pathway is highly regulated, will deserve special attention in this review. The modulation of mitochondrial membrane lipid composition, especially by diet, as a therapeutic strategy for the treatment of some pathologies will be also addressed.
Collapse
Affiliation(s)
- João P Monteiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal
| | | | | |
Collapse
|
32
|
O'Connell KA, Dabkowski ER, de Fatima Galvao T, Xu W, Daneault C, de Rosiers C, Stanley WC. Dietary saturated fat and docosahexaenoic acid differentially effect cardiac mitochondrial phospholipid fatty acyl composition and Ca(2+) uptake, without altering permeability transition or left ventricular function. Physiol Rep 2013; 1:e00009. [PMID: 24303101 PMCID: PMC3831937 DOI: 10.1002/phy2.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/11/2013] [Accepted: 05/16/2013] [Indexed: 12/28/2022] Open
Abstract
High saturated fat diets improve cardiac function and survival in rodent models of heart failure, which may be mediated by changes in mitochondrial function. Dietary supplementation with the n3-polyunsaturated fatty acid docosahexaenoic acid (DHA, 22:6n3) is also beneficial in heart failure and can affect mitochondrial function. Saturated fatty acids and DHA likely have opposing effects on mitochondrial phospholipid fatty acyl side chain composition and mitochondrial membrane function, though a direct comparison has not been previously reported. We fed healthy adult rats a standard low-fat diet (11% of energy intake from fat), a low-fat diet supplemented with DHA (2.3% of energy intake) or a high-fat diet comprised of long chain saturated fatty acids (45% fat) for 6 weeks. There were no differences among the three diets in cardiac mass or function, mitochondrial respiration, or Ca2+-induced mitochondrial permeability transition. On the other hand, there were dramatic differences in mitochondrial phospholipid fatty acyl side chains. Dietary supplementation with DHA increased DHA from 7% to ∼25% of total phospholipid fatty acids in mitochondrial membranes, and caused a proportional depletion of arachidonic acid (20:4n6). The saturated fat diet increased saturated fat and DHA in mitochondria and decreased linoleate (18:2n6), which corresponded to a decrease in Ca2+ uptake by isolated mitochondria compared to the other diet groups. In conclusion, despite dramatic changes in mitochondrial phospholipid fatty acyl side chain composition by both the DHA and high saturated fat diets, there were no effects on mitochondrial respiration, permeability transition, or cardiac function.
Collapse
Affiliation(s)
- Kelly A O'Connell
- Division of Cardiology, Department of Medicine, University of Maryland Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
33
|
Stavrovskaya IG, Bird SS, Marur VR, Sniatynski MJ, Baranov SV, Greenberg HK, Porter CL, Kristal BS. Dietary macronutrients modulate the fatty acyl composition of rat liver mitochondrial cardiolipins. J Lipid Res 2013; 54:2623-35. [PMID: 23690505 DOI: 10.1194/jlr.m036285] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The interaction of dietary fats and carbohydrates on liver mitochondria were examined in male FBNF1 rats fed 20 different low-fat isocaloric diets. Animal growth rates and mitochondrial respiratory parameters were essentially unaffected, but mass spectrometry-based mitochondrial lipidomics profiling revealed increased levels of cardiolipins (CLs), a family of phospholipids essential for mitochondrial structure and function, in rats fed saturated or trans fat-based diets with a high glycemic index. These mitochondria showed elevated monolysocardiolipins (a CL precursor/product of CL degradation), elevated ratio of trans-phosphocholine (PC) (18:1/18:1) to cis-PC (18:1/18:1) (a marker of thiyl radical stress), and decreased ubiquinone Q9; the latter two of which imply a low-grade mitochondrial redox abnormality. Extended analysis demonstrated: i) dietary fats and, to a lesser extent, carbohydrates induce changes in the relative abundance of specific CL species; ii) fatty acid (FA) incorporation into mature CLs undergoes both positive (>400-fold) and negative (2.5-fold) regulation; and iii) dietary lipid abundance and incorporation of FAs into both the CL pool and specific mature tetra-acyl CLs are inversely related, suggesting previously unobserved compensatory regulation. This study reveals previously unobserved complexity/regulation of the central lipid in mitochondrial metabolism.
Collapse
Affiliation(s)
- Irina G Stavrovskaya
- Department of Neurosurgery, Brigham and Women's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rapeseed oil-rich diet alters hepatic mitochondrial membrane lipid composition and disrupts bioenergetics. Arch Toxicol 2013; 87:2151-63. [PMID: 23636270 DOI: 10.1007/s00204-013-1068-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
Abstract
Diet is directly related with physiological alterations occurring at a cell and subcellular level. However, the role of diet manipulation on mitochondrial physiology is still largely unexplored. Aiming at correlating diet with alterations of mitochondrial membrane composition and bioenergetics, Wistar-Han male rats were fed for 11, 22 and 33 days with a rapeseed oil-based diet and mitochondrial bioenergetics, and membrane composition were compared at each time point with a standard diet group. Considerable differences were noticed in mitochondrial membrane lipid composition, namely in terms of fatty acyl chains and relative proportions of phospholipid classes, the modified diet inducing a decrease in the saturated to unsaturated molar ratio and an increase in the phosphatidylcholine to phosphatidylethanolamine molar ratio. Mass spectrometry lipid analysis showed significant differences in the major species of cardiolipin, with an apparent increased incorporation of oleic acid as a result of exposure to the modified diet. Rats fed the modified diet during 22 days showed decreased hepatic mitochondrial state 3 respiration and were more susceptible to Ca(2+)-induced transition pore opening. Rapeseed oil-enriched diet also appeared to promote a decrease in hydroperoxide production by the respiratory chain, although a simultaneous decrease in vitamin E content was detected. In conclusion, our data indicate that the rapeseed oil diet causes negative alterations on hepatic mitochondrial bioenergetics, which may result from membrane remodeling. Such alterations may have an impact not only on energy supply to the cell, but also on drug-induced hepatic mitochondrial liabilities.
Collapse
|
35
|
Korzick DH, Lancaster TS. Age-related differences in cardiac ischemia-reperfusion injury: effects of estrogen deficiency. Pflugers Arch 2013; 465:669-85. [PMID: 23525672 DOI: 10.1007/s00424-013-1255-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 01/17/2023]
Abstract
Despite conflicting evidence for the efficacy of hormone replacement therapy in cardioprotection of postmenopausal women, numerous studies have demonstrated reductions in ischemia/reperfusion (I/R) injury following chronic or acute exogenous estradiol (E2) administration in adult male and female, gonad-intact and gonadectomized animals. It has become clear that ovariectomized adult animals may not accurately represent the combined effects of age and E2 deficiency on reductions in ischemic tolerance seen in the postmenopausal female. E2 is known to regulate the transcription of several cardioprotective genes. Acute, non-genomic E2 signaling can also activate many of the same signaling pathways recruited in cardioprotection. Alterations in cardioprotective gene expression or cardioprotective signal transduction are therefore likely to result within the context of aging and E2 deficiency and may help explain the reduced ischemic tolerance and loss of cardioprotection in the senescent female heart. Quantification of the mitochondrial proteome as it adapts to advancing age and E2 deficiency may also represent a key experimental approach to uncover proteins associated with disruptions in cardiac signaling contributing to age-associated declines in ischemic tolerance. These alterations have important ramifications for understanding the increased morbidity and mortality due to ischemic cardiovascular disease seen in postmenopausal females. Functional perturbations that occur in mitochondrial respiration and Ca(2+) sensitivity with age-associated E2 deficiency may also allow for the identification of alternative therapeutic targets for reducing I/R injury and treatment of the leading cause of death in postmenopausal women.
Collapse
Affiliation(s)
- Donna H Korzick
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
36
|
Raza Shaikh S, Brown DA. Models of plasma membrane organization can be applied to mitochondrial membranes to target human health and disease with polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 2013; 88:21-5. [PMID: 22464052 PMCID: PMC3391319 DOI: 10.1016/j.plefa.2012.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 12/14/2022]
Abstract
Bioactive n-3 polyunsaturated fatty acids (PUFA), abundant in fish oil, have potential for treating symptoms associated with inflammatory and metabolic disorders; therefore, it is essential to determine their fundamental molecular mechanisms. Recently, several labs have demonstrated the n-3 PUFA docosahexaenoic acid (DHA) exerts anti-inflammatory effects by targeting the molecular organization of plasma membrane microdomains. Here we briefly review the evidence that DHA reorganizes the spatial distribution of microdomains in several model systems. We then emphasize how models on DHA and plasma membrane microdomains can be applied to mitochondrial membranes. We discuss the role of DHA acyl chains in regulating mitochondrial lipid-protein clustering, and how these changes alter several aspects of mitochondrial function. In particular, we summarize effects of DHA on mitochondrial respiration, electron leak, permeability transition, and mitochondrial calcium handling. Finally, we conclude by postulating future experiments that will augment our understanding of DHA-dependent membrane organization in health and disease.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC 28590, USA.
| | | |
Collapse
|
37
|
Stavrovskaya IG, Bird SS, Marur VR, Baranov SV, Greenberg HK, Porter CL, Kristal BS. Dietary Omega-3 Fatty Acids Do Not Change Resistance of Rat Brain or Liver Mitochondria to Ca(2+) and/or Prooxidants. J Lipids 2012; 2012:797105. [PMID: 22970378 PMCID: PMC3434410 DOI: 10.1155/2012/797105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/24/2012] [Indexed: 11/18/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) block apoptotic neuronal cell death and are strongly neuroprotective in acute and chronic neurodegeneration. Theoretical considerations, indirect data, and consideration of parsimony lead to the hypothesis that modulation of mitochondrial pathway(s) underlies at least some of the neuroprotective effects of n-3 PUFAs. We therefore systematically tested this hypothesis on healthy male FBFN1 rats fed for four weeks with isocaloric, 10% fat-containing diets supplemented with 1, 3, or 10% fish oil (FO). High resolution mass spectrometric analysis confirmed expected diet-driven increases in docosahexaenoic acid (DHA, 22:6, n-3) and eicosapentaenoic acid (EPA, 20:5, n-3) in sera, liver and nonsynaptosomal brain mitochondria. We further evaluated the resistance of brain and liver mitochondria to Ca(2+) overload and prooxidants. Under these conditions, neither mitochondrial resistance to Ca(2+) overload and prooxidants nor mitochondrial physiology is altered by diet, despite the expected incorporation of DHA and EPA in mitochondrial membranes and plasma. Collectively, the data eliminate one of the previously proposed mechanism(s) that n-3 PUFA induced augmentation of mitochondrial resistance to the oxidant/calcium-driven dysfunction. These data furthermore allow us to define a specific series of follow-up experiments to test related hypotheses about the effect of n-3 PUFAs on brain mitochondria.
Collapse
Affiliation(s)
- Irina G. Stavrovskaya
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Avenue, Room LM322, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Susan S. Bird
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Avenue, Room LM322, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Vasant R. Marur
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Avenue, Room LM322, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Sergei V. Baranov
- Department of Neurological Surgery, Presbyterian Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Heather K. Greenberg
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Avenue, Room LM322, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Caryn L. Porter
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Avenue, Room LM322, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce S. Kristal
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Avenue, Room LM322, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Khairallah RJ, Kim J, O'Shea KM, O'Connell KA, Brown BH, Galvao T, Daneault C, Rosiers CD, Polster BM, Hoppel CL, Stanley WC. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids. PLoS One 2012; 7:e34402. [PMID: 22479624 PMCID: PMC3316678 DOI: 10.1371/journal.pone.0034402] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/27/2012] [Indexed: 01/11/2023] Open
Abstract
Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP). We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA; 22:6n3) and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6) in mitochondrial membranes is associated with a greater Ca2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6). Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.
Collapse
Affiliation(s)
- Ramzi J. Khairallah
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Junhwan Kim
- Department of Medicine and Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Karen M. O'Shea
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Kelly A. O'Connell
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Bethany H. Brown
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Tatiana Galvao
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Caroline Daneault
- Department of Nutrition and Montreal Heart Institute, Université de Montréal, Montreal, Quebecc, Canada
| | - Christine Des Rosiers
- Department of Nutrition and Montreal Heart Institute, Université de Montréal, Montreal, Quebecc, Canada
| | - Brian M. Polster
- Department of Anesthesiology, and Shock, Trauma, and the Anesthesiology Research (STAR) Center, University of Maryland, Baltimore, Maryland, United States of America
| | - Charles L. Hoppel
- Department of Medicine and Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - William C. Stanley
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
39
|
Rosenfeldt F, Wilson M, Lee G, Kure C, Ou R, Braun L, de Haan J. Oxidative stress in surgery in an ageing population: pathophysiology and therapy. Exp Gerontol 2012; 48:45-54. [PMID: 22465624 DOI: 10.1016/j.exger.2012.03.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 01/22/2023]
Abstract
Reactive oxygen species (ROS) play an important role in the regulation of normal cellular function. When ROS are produced in excess they can have detrimental effects, a state known as oxidative stress. Thus ROS play both physiological and pathophysiological roles in the body. In clinical practice oxidative stress and its counterpart, antioxidant capacity can be measured and can guide remedial therapy. Oxidative stress can have a negative impact in all forms of major surgery including cardiac surgery, general surgery, trauma surgery, orthopedic surgery and plastic surgery; this is particularly marked in an ageing population. Many different therapies to reduce oxidative stress in surgery have been tried with variable results. We conclude that in surgical patients the assessment of oxidative stress, improvement of the understanding of its role, both positive and negative, and devising appropriate therapies represent fruitful fields for future research.
Collapse
Affiliation(s)
- Franklin Rosenfeldt
- Cardiac Surgical Research Unit, Department of Cardiothoracic Surgery, Alfred Hospital, Department of Surgery, Monash University, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Stanley WC, Dabkowski ER, Ribeiro RF, O'Connell KA. Dietary fat and heart failure: moving from lipotoxicity to lipoprotection. Circ Res 2012; 110:764-76. [PMID: 22383711 PMCID: PMC3356700 DOI: 10.1161/circresaha.111.253104] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 01/27/2011] [Indexed: 02/07/2023]
Abstract
There is growing evidence suggesting that dietary fat intake affects the development and progression of heart failure. Studies in rodents show that in the absence of obesity, replacing refined carbohydrate with fat can attenuate or prevent ventricular expansion and contractile dysfunction in response to hypertension, infarction, or genetic cardiomyopathy. Relatively low intake of n-3 polyunsaturated fatty acids from marine sources alters cardiac membrane phospholipid fatty acid composition, decreases the onset of new heart failure, and slows the progression of established heart failure. This effect is associated with decreased inflammation and improved resistance to mitochondrial permeability transition. High intake of saturated, monounsaturated, or n-6 polyunsaturated fatty acids has also shown beneficial effects in rodent studies. The underlying mechanisms are complex, and a more thorough understanding is needed of the effects on cardiac phospholipids, lipid metabolites, and metabolic flux in the normal and failing heart. In summary, manipulation of dietary fat intake shows promise in the prevention and treatment of heart failure. Clinical studies generally support high intake of n-3 polyunsaturated fatty acids from marine sources to prevent and treat heart failure. Additional clinical and animals studies are needed to determine the optimal diet in terms of saturated, monounsaturated, and n-6 polyunsaturated fatty acids intake for this vulnerable patient population.
Collapse
Affiliation(s)
- William C Stanley
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
41
|
Stanley WC, Khairallah RJ, Dabkowski ER. Update on lipids and mitochondrial function: impact of dietary n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 2012; 15:122-6. [PMID: 22248591 PMCID: PMC4067133 DOI: 10.1097/mco.0b013e32834fdaf7] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Recent evidence has linked n-3 polyunsaturated fatty acid (PUFA) supplementation with dramatic alterations of mitochondrial phospholipid membranes and favorable changes in mitochondrial function. In the present review, we examine the novel effects of n-3 PUFA on mitochondria, with an emphasis on cardiac mitochondrial phospholipids. RECENT FINDINGS There is growing evidence that dietary n-3 PUFA, particularly docosahexaenoic acid (DHA), has profound effects on mitochondrial membrane phospholipid composition and mitochondrial function. Supplementation with n-3 PUFA increases membrane phospholipid DHA and depletes arachidonic acid, and can increase cardiolipin, a tetra-acyl phospholipid that is unique to mitochondrial and essential for optimal mitochondrial function. Recent studies show that supplementation with DHA decreases propensity for cardiac mitochondria to undergo permeability transition, a catastrophic event often leading to cell death. This finding provides a potential mechanism for the cardioprotective effect of DHA. Interestingly, other n-3 PUFAs that modify membrane composition to a lesser extent have substantially less of an effect on mitochondria and do not appear to directly protect the heart. SUMMARY Current data support a role for n-3 PUFA supplementation, particularly DHA, on mitochondria that are strongly associated with changes in mitochondrial phospholipid composition.
Collapse
Affiliation(s)
- William C Stanley
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
42
|
Aldehyde stress and up-regulation of Nrf2-mediated antioxidant systems accompany functional adaptations in cardiac mitochondria from mice fed n-3 polyunsaturated fatty acids. Biochem J 2012; 441:359-66. [PMID: 21880016 DOI: 10.1042/bj20110626] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diets replete with n-3 PUFAs (polyunsaturated fatty acids) are known to have therapeutic potential for the heart, although a specifically defined duration of the n-3 PUFA diet required to achieve these effects remains unknown, as does their mechanism of action. The present study was undertaken to establish whether adaptations in mitochondrial function and stress tolerance in the heart is evident following short- (3 weeks) and long- (14 weeks) term dietary intervention of n-3 PUFAs, and to identify novel mechanisms by which these adaptations occur. Mitochondrial respiration [mO2 (mitochondrial O2)], H2O2 emission [mH2O2 (mitochondrial H2O2)] and Ca2+-retention capacity [mCa2+ (mitochondrial Ca2+)] were assessed in mouse hearts following dietary intervention. Mice fed n-3 PUFAs for 14 weeks showed significantly lower mH2O2 and greater mCa2+ compared with all other groups. However, no significant differences were observed after 3 weeks of the n-3 PUFA diet, or in mice fed on an HFC (high-fat control) diet enriched with vegetable shortening, containing almost no n-3 PUFAs, for 14 weeks. Interestingly, expression and activity of key enzymes involved in antioxidant and phase II detoxification pathways, all mediated by Nrf2 (nuclear factor E2-related factor 2), were elevated in hearts from mice fed the n-3 PUFA diet, but not hearts from mice fed the HFC diet, even at 3 weeks. This increase in antioxidant systems in hearts from mice fed the n-3 PUFA diet was paralleled by increased levels of 4-hydroxyhexenal protein adducts, an aldehyde formed from peroxidation of n-3 PUFAs. The findings of the present study demonstrate distinct time-dependent effects of n-3 PUFAs on mitochondrial function and antioxidant response systems in the heart. In addition, they are the first to provide direct evidence that non-enzymatic oxidation products of n-3 PUFAs may be driving mitochondrial and redox-mediated adaptations, thereby revealing a novel mechanism for n-3 PUFA action in the heart.
Collapse
|
43
|
Peart JN, See Hoe L, Pepe S, Johnson P, Headrick JP. Opposing effects of age and calorie restriction on molecular determinants of myocardial ischemic tolerance. Rejuvenation Res 2012; 15:59-70. [PMID: 22236144 DOI: 10.1089/rej.2011.1226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We test the hypothesis that moderate calorie restriction (CR) reverses negative influences of age on molecular determinants of myocardial stress resistance. Postischemic contractile dysfunction, cellular damage, and expression of regulators of autophagy/apoptosis and of prosurvival and prodeath kinases were assessed in myocardium from young adult (YA; 2- to 4-month-old) and middle-aged (MA; 12-month-old) mice, and MA mice subjected to 14 weeks of 40% CR (MA-CR). Ventricular dysfunction after 25%±2%), as was cell death indicated by troponin I (TnI) efflux (1,701±214 ng vs. 785±102 ng in YA). MA hearts exhibited 30% and 65% reductions in postischemic Beclin1 and Parkin, respectively, yet 50% lower proapoptotic Bax and 85% higher antiapoptotic Bcl2, increasing the Bcl2/Bax ratio. Age did not influence Akt or p38-mitogen-activated protein kinase (MAPK) expression; reduced expression of increasingly phosphorylated ribosomal protein S6 kinase (p70S6K), increased expression of dephosphorylated glycogen synthase kinase 3β (GSK3β) and enhanced postischemic p38-MAPK phosphorylation. CR countered the age-related decline in ischemic tolerance, improving contractile recovery (60%±4%) and reducing cell death (123±22 ng of TnI). Protection was not associated with changes in Parkin or Bax, whereas CR partially limited the age-related decline in Beclin1 and further increased Bcl2. CR counteracted age-related changes in p70S6K, increased Akt levels, and reduced p38-MAPK (albeit increasing preischemic phosphorylation), and paradoxically reduced postischemic GSK3β phosphorylation. In summary, moderate age worsens cardiac ischemic tolerance; this is associated with reduced expression of autophagy regulators, dysregulation of p70S6K and GSK3β, and postischemic p38-MAPK activation. CR counters age effects on postischemic dysfunction/cell death; this is associated with reversal of age effects on p70S6K, augmentation of Akt and Bcl2 levels, and preischemic p38-MAPK activation. Age and CR thus impact on distinct determinants of ischemic tolerance, although p70S6K signaling presents a point of convergence.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast Campus, Queensland, Australia.
| | | | | | | | | |
Collapse
|
44
|
Ischemic preconditioning: the role of mitochondria and aging. Exp Gerontol 2011; 47:1-7. [PMID: 22100642 DOI: 10.1016/j.exger.2011.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/24/2011] [Accepted: 11/02/2011] [Indexed: 11/22/2022]
Abstract
Aging represents a triple threat for myocardial infarction (MI). Not only does the incidence of MI increase with age, but the heart becomes more susceptible to MI induced damage and protective interventions such as ischemic preconditioning (IPC) become less effective. Therefore, any rational therapeutic strategy must be built around the ability to combat the detrimental effects of ischemia in aged individuals. To accomplish this, we need to develop a better understanding of how ischemic damage, protection, and aging are linked. In this regard, mitochondria have emerged as a common theme. First, mitochondria contribute to cell damage during ischemia-reperfusion (IR) and are central to cell death. Second, the protective signaling pathways activated by IPC converge on mitochondria, and the opening of mitochondrial ion channels alone is sufficient to elicit protection. Finally, mitochondria clearly influence the aging process, and specific defects in mitochondrial activity are associated with age-related functional decline. This review will summarize the effects of aging on myocardial IR injury and discuss relevant and emerging strategies to protect against MI with an emphasis on mitochondrial function.
Collapse
|
45
|
Age-related regulation of excitation-contraction coupling in rat heart. J Physiol Biochem 2011; 67:317-30. [PMID: 21287310 DOI: 10.1007/s13105-011-0077-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
Hearts from subjects with different ages have different Ca(2+) signaling. Release of Ca(2+) from intracellular stores in response to an action potential initiates cardiac contraction. Both depolarization-stimulated and spontaneous Ca(2+) releases, Ca(2+) transients and Ca(2+) sparks, demonstrate the main events of excitation-contraction coupling (ECC). Global increase in free Ca(2+) concentration ([Ca(2+)]( i )) consists of summation of Ca(2+) release events in cardiomyocytes. Since the Ca(2+) flux induced by Ca(2+) sparks reports a summation of ryanodine-sensitive Ca(2+) release channels (RyR2s)'s behavior in a spark cluster, evaluation of the properties of Ca(2+) sparks and Ca(2+) transients may provide insight into the role of RyR2s on altered heart function between 3-month-old (young adult) and 6-month-old (mature adult) rats. Basal [Ca(2+)]( i ) and Ca(2+) sparks frequency were significantly higher in mature adult rats compared to those of young adults. Moreover, amplitudes of Ca(2+) sparks and Ca(2+) transients were significantly smaller in mature adults than those of young adults with longer time courses. A smaller L-type Ca(2+) current density and decreased SR Ca(2+) load was observed in mature adult rats. In addition, RyR2s were markedly hyperphosphorylated, and phosphorylation levels of PKA and CaMKII were higher in heart from mature adults compared to those of young adults, whereas their SERCA protein levels were similar. Our data demonstrate that hearts from rats with different ages have different Ca(2+) signaling including hyperphosphorylation of RyR2s and higher basal [Ca(2+)]( i ) together with increased oxidized protein-thiols in mature adult rats compared to those of young adults, which play important roles in ECC. Finally, we report that ECC efficiency changes with age during maturation, partially related with an increased cellular oxidation level leading to reduced free protein-thiols in cardiomyocytes.
Collapse
|
46
|
Janczewski AM, Lakatta EG. Modulation of sarcoplasmic reticulum Ca(2+) cycling in systolic and diastolic heart failure associated with aging. Heart Fail Rev 2010; 15:431-45. [PMID: 20419345 PMCID: PMC2945822 DOI: 10.1007/s10741-010-9167-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hypertension, atherosclerosis, and resultant chronic heart failure (HF) reach epidemic proportions among older persons, and the clinical manifestations and the prognoses of these worsen with increasing age. Thus, age per se is the major risk factor for cardiovascular disease. Changes in cardiac cell phenotype that occur with normal aging, as well as in HF associated with aging, include deficits in ss-adrenergic receptor (ss-AR) signaling, increased generation of reactive oxygen species (ROS), and altered excitation-contraction (EC) coupling that involves prolongation of the action potential (AP), intracellular Ca(2+) (Ca(i)(2+)) transient and contraction, and blunted force- and relaxation-frequency responses. Evidence suggests that altered sarcoplasmic reticulum (SR) Ca(2+) uptake, storage, and release play central role in these changes, which also involve sarcolemmal L-type Ca(2+) channel (LCC), Na(+)-Ca(2+) exchanger (NCX), and K(+) channels. We review the age-associated changes in the expression and function of Ca(2+) transporting proteins, and functional consequences of these changes at the cardiac myocyte and organ levels. We also review sexual dimorphism and self-renewal of the heart in the context of cardiac aging and HF.
Collapse
MESH Headings
- Adaptation, Physiological
- Age Factors
- Aged
- Aged, 80 and over
- Aging
- Disease Progression
- Female
- Heart Failure, Diastolic/enzymology
- Heart Failure, Diastolic/epidemiology
- Heart Failure, Diastolic/physiopathology
- Heart Failure, Systolic/enzymology
- Heart Failure, Systolic/epidemiology
- Heart Failure, Systolic/physiopathology
- Humans
- Male
- Muscle Cells/pathology
- Prognosis
- Receptors, Adrenergic, beta/biosynthesis
- Risk Factors
- Sarcoplasmic Reticulum/enzymology
- Sarcoplasmic Reticulum/pathology
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Sex Factors
- Signal Transduction
- Stress, Physiological
- United States/epidemiology
Collapse
Affiliation(s)
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, Intramural Research Program, 5600 Nathan Shock Dr, Baltimore, MD 21224-6825
| |
Collapse
|
47
|
Khairallah RJ, Sparagna GC, Khanna N, O’Shea KM, Hecker PA, Kristian T, Fiskum G, Rosiers CD, Polster BM, Stanley WC. Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1555-62. [PMID: 20471951 PMCID: PMC3071681 DOI: 10.1016/j.bbabio.2010.05.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/04/2010] [Accepted: 05/07/2010] [Indexed: 12/25/2022]
Abstract
Treatment with the omega-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest the triglyceride lowering effects of DHA and EPA are equivalent, little is known about the independent effects of DHA and EPA on mitochondria function. We compared the effects of dietary supplementation with the omega-3 PUFAs DHA and EPA on cardiac mitochondrial phospholipid fatty acid composition and Ca2+-induced MPTP opening. Rats were fed a standard lab diet with either normal low levels of omega-3 PUFA, or DHA or EPA at 2.5% of energy intake for 8 weeks, and cardiac mitochondria were isolated and analyzed for Ca2+-induced MPTP opening and phospholipid fatty acyl composition. DHA supplementation increased both DHA and EPA and decreased ARA in mitochondrial phospholipid, and significantly delayed MPTP opening as assessed by increased Ca2+ retention capacity and decreased Ca2+-induced mitochondria swelling. EPA supplementation increased EPA in mitochondrial phospholipids, but did not affect DHA, only modestly lowered ARA, and did not affect MPTP opening. In summary, dietary supplementation with DHA but not EPA, profoundly altered mitochondrial phospholipid fatty acid composition and delayed Ca2+-induced MPTP opening.
Collapse
Affiliation(s)
- Ramzi J. Khairallah
- Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, MD, 21201 USA
| | | | - Nishanth Khanna
- Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, MD, 21201 USA
| | - Karen M. O’Shea
- Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, MD, 21201 USA
| | - Peter A. Hecker
- Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, MD, 21201 USA
| | - Tibor Kristian
- Department of Anesthesiology, and Shock, Trauma, and the Anesthesiology Research (STAR) Center, University of Maryland, MSTF Room 534, Baltimore, MD, 21201, USA
| | - Gary Fiskum
- Department of Anesthesiology, and Shock, Trauma, and the Anesthesiology Research (STAR) Center, University of Maryland, MSTF Room 534, Baltimore, MD, 21201, USA
| | - Christine Des Rosiers
- Department of Nutrition and Montreal Heart Institute, Université de Montréal, Montreal, Qc, Canada
| | - Brian M. Polster
- Department of Anesthesiology, and Shock, Trauma, and the Anesthesiology Research (STAR) Center, University of Maryland, MSTF Room 534, Baltimore, MD, 21201, USA
| | - William C. Stanley
- Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, MD, 21201 USA
| |
Collapse
|
48
|
O’Shea KM, Khairallah RJ, Sparagna GC, Xu W, Hecker PA, Robillard-Frayne I, Des Rosiers C, Kristian T, Murphy RC, Fiskum G, Stanley WC. Dietary omega-3 fatty acids alter cardiac mitochondrial phospholipid composition and delay Ca2+-induced permeability transition. J Mol Cell Cardiol 2009; 47:819-27. [PMID: 19703463 PMCID: PMC2783943 DOI: 10.1016/j.yjmcc.2009.08.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/07/2009] [Accepted: 08/12/2009] [Indexed: 01/23/2023]
Abstract
Consumption of omega-3 fatty acids from fish oil, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), decreases risk for heart failure and attenuates pathologic cardiac remodeling in response to pressure overload. Dietary supplementation with EPA + DHA may also impact cardiac mitochondrial function and energetics through alteration of membrane phospholipids. We assessed the role of EPA + DHA supplementation on left ventricular (LV) function, cardiac mitochondrial membrane phospholipid composition, respiration, and sensitivity to mitochondrial permeability transition pore (MPTP) opening in normal and infarcted myocardium. Rats were subjected to sham surgery or myocardial infarction by coronary artery ligation (n=10-14), and fed a standard diet, or supplemented with EPA + DHA (2.3% of energy intake) for 12 weeks. EPA + DHA altered fatty acid composition of total mitochondrial phospholipids and cardiolipin by reducing arachidonic acid content and increasing DHA incorporation. EPA + DHA significantly increased calcium uptake capacity in both subsarcolemmal and intrafibrillar mitochondria from sham rats. This treatment effect persisted with the addition of cyclosporin A, and was not accompanied by changes in mitochondrial respiration or coupling, or cyclophilin D protein expression. Myocardial infarction resulted in heart failure as evidenced by LV dilation and contractile dysfunction. Infarcted LV myocardium had decreased mitochondrial protein yield and activity of mitochondrial marker enzymes, however respiratory function of isolated mitochondria was normal. EPA + DHA had no effect on LV function, mitochondrial respiration, or MPTP opening in rats with heart failure. In conclusion, dietary supplementation with EPA + DHA altered mitochondrial membrane phospholipid fatty acid composition in normal and infarcted hearts, but delayed MPTP opening only in normal hearts.
Collapse
Affiliation(s)
- Karen M. O’Shea
- Department of Nutrition, Case Western Reserve University; Cleveland, OH
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD
| | - Ramzi J. Khairallah
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD
| | | | - Wenhong Xu
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD
| | - Peter A. Hecker
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD
| | | | - Christine Des Rosiers
- Department of Nutrition and Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Tibor Kristian
- Department of Anesthesiology and Trauma and Anesthesiology Research Center, University of Maryland, Baltimore, MD
| | - Robert C. Murphy
- Department of Pharmacology, University of Colorado Denver and Health Sciences Center, Aurora, CO
| | - Gary Fiskum
- Department of Anesthesiology and Trauma and Anesthesiology Research Center, University of Maryland, Baltimore, MD
| | - William C. Stanley
- Department of Nutrition, Case Western Reserve University; Cleveland, OH
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD
| |
Collapse
|
49
|
Shah KB, Duda MK, O'Shea KM, Sparagna GC, Chess DJ, Khairallah RJ, Robillard-Frayne I, Xu W, Murphy RC, Des Rosiers C, Stanley WC. The cardioprotective effects of fish oil during pressure overload are blocked by high fat intake: role of cardiac phospholipid remodeling. Hypertension 2009; 54:605-11. [PMID: 19597033 PMCID: PMC3103889 DOI: 10.1161/hypertensionaha.109.135806] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/16/2009] [Indexed: 11/16/2022]
Abstract
Supplementation with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil may prevent development of heart failure through alterations in cardiac phospholipids that favorably impact inflammation and energy metabolism. A high-fat diet may block these effects in chronically stressed myocardium. Pathological left ventricle (LV) hypertrophy was generated by subjecting rats to pressure overload by constriction of the abdominal aorta. Animals were fed: (1) standard diet (10% of energy from fat), (2) standard diet with EPA+DHA (2.3% of energy intake as EPA+DHA), (3) high fat (60% fat); or (4) high fat with EPA+DHA. Pressure overload increased LV mass by approximately 40% in both standard and high-fat diets without fish oil. Supplementation with fish oil increased their incorporation into cardiac phospholipids, and decreased the proinflammatory fatty acid arachidonic acid and urine thromboxane B(2) with both the standard and high-fat diet. Linoleic acid and tetralinoloyl cardiolipin (an essential mitochondrial phospholipid) were decreased with pressure overload on standard diet, which was prevented by fish oil. Animals fed high-fat diet had decreased linoleic acid and tetralinoloyl cardiolipin regardless of fish oil supplementation. Fish oil limited LV hypertrophy on the standard diet, and prevented upregulation of fetal genes associated with heart failure (myosin heavy chain-beta and atrial natriuetic factor). These beneficial effects of fish oil were absent in animals on the high-fat diet. In conclusion, whereas treatment with EPA+DHA prevented tetralinoloyl cardiolipin depletion, LV hypertrophy, and abnormal genes expression with pressure overload, these effects were absent with a high-fat diet.
Collapse
Affiliation(s)
- Keyur B Shah
- Division of Cardiology, Department of Medicine, University of Maryland-Baltimore, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Duda MK, O'Shea KM, Stanley WC. omega-3 polyunsaturated fatty acid supplementation for the treatment of heart failure: mechanisms and clinical potential. Cardiovasc Res 2009; 84:33-41. [PMID: 19474179 DOI: 10.1093/cvr/cvp169] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome with multiple aetiologies. Current treatment options can slow the progression to HF, but overall the prognosis remains poor. Clinical studies suggest that high dietary intake of the omega-3 polyunsaturated fatty acids (omega-3PUFA) found in fish oils (eicosapentaenoic and docosahexaenoic acids) may lower the incidence of HF, and that supplementation with pharmacological doses prolongs event-free survival in patients with established HF. The mechanisms for these potential benefits are complex and not well defined. It is well established that fish oil supplementation lowers plasma triglyceride levels, and more recent work demonstrates anti-inflammatory effects, including reduced circulating levels of inflammatory cytokines and arachidonic acid-derived eicosanoids, and elevated plasma adiponectin. In animal studies, fish oil favourably alters cardiac mitochondrial function. All of these effects may work to prevent the development and progression of HF. The omega-3PUFA found in plant sources, alpha-linolenic acid, may also be protective in HF; however, the evidence is not as compelling as for fish oil. This review summarizes the evidence related to use of omega-3PUFA supplementation as a potential treatment for HF and discusses possible mechanisms of action. In general, there is growing evidence that supplementation with omega-3PUFA positively impacts established pathophysiological targets in HF and has potential therapeutic utility for HF patients.
Collapse
Affiliation(s)
- Monika K Duda
- Department of Clinical Physiology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | | | | |
Collapse
|