1
|
Hemodynamic patterns associated with activation of bradykinin-sensitive pericardial afferents. Curr Res Physiol 2022; 5:73-78. [PMID: 35141530 PMCID: PMC8814590 DOI: 10.1016/j.crphys.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
The heart is endowed with reflexogenic areas capable of powerful blood pressure responses. Relatively little work has studied the hemodynamic mechanisms underlying these responses and whether these are sexually dimorphic. We hypothesized that activation of bradykinin-sensitive pericardial afferents would produce a sexually dimorphic cardiac output response. Male and female Sprague Dawley rats were anesthetized and instrumented with catheters for recording arterial pressure, with an aortic arch flow probe to record cardiac output and with a catheter in the pericardial sac. Mean arterial pressure (MAP), cardiac index (CI) and total peripheral resistance index (TPRI) responses to pericardial bradykinin injection (0.1, 1 μg/kg) were recorded. Pericardial bradykinin injection caused similar increases in MAP in male and female rats. However, the underlying hemodynamic patterns varied considerably. We identified a cluster of CI responders and TPRI responders in both male and female rats. Within CI responders, females exhibited greater CI increases than males. Conversely, in TPRI responders, males exhibited a greater TPRI increase than females. We conclude that aggregate activation of bradykinin-sensitive pericardial afferents is associated with a relatively uniform pressor response but different hemodynamic patterns with males exhibiting a more robust vascular response and females a more robust cardiac output response. Mixed cardiac afferent activation caused similar pressor responses in male and female rats. Subsets of cardiac output and vascular resistance responders were identified. Cardiac output responses were greater in female rats.
Collapse
|
2
|
Abstract
Heart failure (HF) and atrial fibrillation (AF) frequently coexist, and they can beget one another due to similar factors and shared pathophysiology. These pathophysiologic changes promote the episodes of AF, while they in turn predispose to the exacerbation of HF. In this review, we will discuss pathophysiological mechanisms shared by AF and HF. Patients with concomitant HF and AF are at a particularly high risk of thromboembolism, which contribute to even worse symptoms and poorer prognosis. Vitamin K antagonists (VKA) (warfarin) were the traditional medication in AF patients for the prevention of stroke, whereas the advance of novel non-VKA oral anticoagulants (NOACs) (dabigatran, apixaban, rivaroxaban, and edoxaban) is challenging these standard prescriptions. NOACs' potential advantages over warfarin, including fixed dosing regimens, wide therapeutic window, and more sustained anticoagulant response, promote clinicians to consider these novel agents in the first place. However, some data suggested patients with AF and HF may receive different therapeutic response than those with AF alone in anticoagulant treatment. Accordingly, we aim to assess the potential role of oral anticoagulants, especially NOACs, in the management of patients with concomitant AF and HF.
Collapse
|
3
|
Yoshie K, Rajendran PS, Massoud L, Kwon O, Tadimeti V, Salavatian S, Ardell JL, Shivkumar K, Ajijola OA. Cardiac vanilloid receptor-1 afferent depletion enhances stellate ganglion neuronal activity and efferent sympathetic response to cardiac stress. Am J Physiol Heart Circ Physiol 2018; 314:H954-H966. [PMID: 29351450 DOI: 10.1152/ajpheart.00593.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Afferent fibers expressing the vanilloid receptor 1 (VR1) channel have been implicated in cardiac nociception; however, their role in modulating reflex responses to cardiac stress is not well understood. We evaluated this role in Yorkshire pigs by percutaneous epicardial application of resiniferatoxin (RTX), a toxic activator of the VR1 channel, resulting in the depletion of cardiac VR1-expressing afferents. Hemodynamics, epicardial activation recovery intervals, and in vivo activity of stellate ganglion neurons (SGNs) were recorded in control and RTX-treated animals. Stressors included inferior vena cava or aortic occlusion and rapid right ventricular pacing (RVP) to induce dyssynchrony and ischemia. In the epicardium, stellate ganglia, and dorsal root ganglia, immunostaining for the VR1 channel, calcitonin gene-related peptide, and substance P was significantly diminished by RTX. RTX-treated animals exhibited higher basal systolic blood pressures and contractility than control animals. Reflex responses to epicardial bradykinin and capsaicin were mitigated by RTX. Cardiovascular reflex function, as assessed by inferior vena cava or aortic occlusion, was similar in RTX-treated versus control animals. RTX-treated animals exhibited resistance to hemodynamic collapse induced by RVP. Activation recovery interval shortening during RVP, a marker of cardiac sympathetic outflow, was greater in RTX-treated animals and exhibited significant delay in returning to baseline values after cessation of RVP. The basal firing rate of SGNs and firing rates in response to RVP were also greater in RTX-treated animals, as was the SGN network activity in response to cardiac stressors. These data suggest that elimination of cardiac nociceptive afferents reorganizes the central-peripheral nervous system interaction to enhance cardiac sympathetic outflow. NEW & NOTEWORTHY Our work demonstrates a role for cardiac vanilloid receptor-1-expressing afferents in reflex processing of cardiovascular stress. Current understanding suggests that elimination of vanilloid receptor-1 afferents would decrease reflex cardiac sympathetic outflow. We found, paradoxically, that sympathetic outflow to the heart is instead enhanced at baseline and during cardiac stress.
Collapse
Affiliation(s)
- Koji Yoshie
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Pradeep S Rajendran
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Louis Massoud
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - OhJin Kwon
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Vasudev Tadimeti
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Siamak Salavatian
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Jeffrey L Ardell
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Kalyanam Shivkumar
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| | - Olujimi A Ajijola
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and UCLA Neurocardiology Research Center of Excellence, UCLA, Los Angeles, California
| |
Collapse
|
4
|
Floras JS, Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J 2015; 36:1974-82b. [PMID: 25975657 DOI: 10.1093/eurheartj/ehv087] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular autonomic imbalance, a cardinal phenotype of human heart failure, has adverse implications for symptoms during wakefulness and sleep; for cardiac, renal, and immune function; for exercise capacity; and for lifespan and mode of death. The objectives of this Clinical Review are to summarize current knowledge concerning mechanisms for disturbed parasympathetic and sympathetic circulatory control in heart failure with reduced ejection fraction and its clinical and prognostic implications; to demonstrate the patient-specific nature of abnormalities underlying this common phenotype; and to illustrate how such variation provides opportunities to improve or restore normal sympathetic/parasympathetic balance through personalized drug or device therapy.
Collapse
Affiliation(s)
- John S Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Suite 1614, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | - Piotr Ponikowski
- Department for Heart Disease, Medical University, Clinical Military Hospital, Wroclaw, Poland
| |
Collapse
|
5
|
Ito K, Hirooka Y, Sunagawa K. Cardiac sympathetic afferent stimulation induces salt-sensitive sympathoexcitation through hypothalamic epithelial Na+ channel activation. Am J Physiol Heart Circ Physiol 2014; 308:H530-9. [PMID: 25527778 DOI: 10.1152/ajpheart.00586.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiac sympathetic afferent (CSA), which plays an important role in heart-brain communication for sympathoexcitation, is stimulated in heart failure. Additionally, high salt intake leads to further sympathoexcitation due to activation of hypothalamic epithelial Na(+) channels (ENaCs) in heart failure. In the present study, we stimulated the CSA in adult male mice by epicardial application of capsaicin and using ethanol as a control to determine whether CSA stimulation led to activation of hypothalamic ENaCs, resulting in salt-induced sympathoexcitation. Three days after capsaicin treatment, an upregulation of hypothalamic α-ENaCs, without activation of mineralocorticoid receptors, was observed. We also examined expression levels of the known ENaC activator TNF-α. Hypothalamic TNF-α increased in capsaicin-treated mice, whereas intracerebroventricular infusion of the TNF-α blocker etanercept prevented capsaicin-induced upregulation of α-ENaCs. To examine brain arterial pressure (AP) sensitivity toward Na(+), we performed an intracerebroventricular infusion of high Na(+)-containing (0.2 M) artificial cerebrospinal fluid. AP and heart rate were significantly increased in capsaicin-treated mice compared with control mice. CSA stimulation also caused excitatory responses with high salt intake. Compared with a regular salt diet, the high-salt diet augmented AP, heart rate, and 24-h urinary norepinephrine excretion, which is an indirect marker of sympathetic activity with mineralocorticoid receptor activation, in capsaicin-treated mice but not in ethanol-treated mice. Treatment with etanercept or the ENaC blocker benzamil prevented these salt-induced excitatory responses. In summary, we show that CSA stimulation leads to an upregulation of hypothalamic α-ENaCs mediated via an increase in TNF-α and results in increased salt sensitivity.
Collapse
Affiliation(s)
- Koji Ito
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan; and
| |
Collapse
|
6
|
Barrabés JA, Figueras J, Candell-Riera J, Agulló L, Inserte J, Garcia-Dorado D. La distensión de la región isquémica predice una mayor inducibilidad de fibrilación ventricular tras la oclusión coronaria en el modelo porcino. Rev Esp Cardiol 2013. [DOI: 10.1016/j.recesp.2012.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Distension of the ischemic region predicts increased ventricular fibrillation inducibility following coronary occlusion in swine. ACTA ACUST UNITED AC 2012; 66:171-6. [PMID: 24775450 DOI: 10.1016/j.rec.2012.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/01/2012] [Indexed: 11/21/2022]
Abstract
INTRODUCTION AND OBJECTIVES Distension of the ischemic region has been related to an increased incidence of spontaneous ventricular arrhythmias following coronary occlusion. This study analyzed whether regional ischemic distension predicts increased ventricular fibrillation inducibility after coronary occlusion in swine. METHODS In 18 anesthetized, open-chest pigs, the left anterior descending coronary artery was ligated for 60 min. Myocardial segment length in the ischemic region was monitored by means of ultrasonic crystals. Programmed stimulation was applied at baseline and then continuously between 10 and 60 min after coronary occlusion. RESULTS Coronary occlusion induced a rapid increase in end-diastolic length in the ischemic region, which reached 109.4% (0.9%) of baseline values 10 min after occlusion (P<.001). On average, 6.6 (0.5) stimulation protocols were completed and 5.4 (0.6) ventricular fibrillation episodes induced between 10 and 60 min of coronary occlusion. Neither baseline serum potassium levels nor the size of the ischemic region were significantly related to ventricular fibrillation inducibility. In contrast, the increase in end-diastolic length 10 min after coronary occlusion was associated directly (r=0.67; P=.002) with the number of induced ventricular fibrillation episodes and inversely (r=-0.55; P=.018) with the number of extrastimuli needed for ventricular fibrillation induction. CONCLUSIONS Regional ischemic expansion predicts increased ventricular fibrillation inducibility following coronary occlusion. These results highlight the potential influence of mechanical factors, acting not only on the triggers but also on the substrate, in the genesis of malignant ventricular arrhythmias during acute ischemia.
Collapse
|
8
|
Abstract
The temporal relationship between the development of heart failure and activation of the neurohumoral systems involved in chronic heart failure (CHF) has not been precisely defined. When a compensatory mechanism switches to a deleterious contributing factor in the progression of the disease is unclear. This article addresses these issues through evaluating the contribution of various cardiovascular reflexes and cellular mechanisms to the sympathoexcitation in CHF. It also sheds light on some of the important central mechanisms that contribute to the increase in sympathetic nerve activity in CHF.
Collapse
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| | | | | |
Collapse
|
9
|
|
10
|
Barrabés JA, Garcia-Dorado D, Agulló L, Rodríguez-Sinovas A, Padilla F, Trobo L, Soler-Soler J. Intracoronary infusion of Gd3+ into ischemic region does not suppress phase Ib ventricular arrhythmias after coronary occlusion in swine. Am J Physiol Heart Circ Physiol 2005; 290:H2344-50. [PMID: 16387793 DOI: 10.1152/ajpheart.00917.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased mechanical tension in the ischemic region during acute coronary occlusion might favor the occurrence of phase Ib ventricular arrhythmias. We aimed to investigate whether intracoronary administration of Gd(3+), a stretch-activated channel blocker, into the ischemic zone reduces the incidence of these arrhythmias. In thiopental-anesthetized, open-chest pigs, the left anterior descending coronary artery (LAD) was ligated for 45 or 48 min. Phosphate-free, HEPES-buffered saline bubbled with 100% N(2) was infused into the ischemic region for 4 min, starting 5 min (series A; n = 16) or 20 min (series B; n = 16) after coronary occlusion, at a rate doubling the baseline blood flow. Animals were blindly allocated to receive 40 muM Gd(3+) or only the buffer during the final 2 min of the infusion. There were no differences between groups with respect to hemodynamic variables, plasma K(+) levels, or size of the ischemic region. In neither series was the number of phase Ib premature ventricular beats reduced by Gd(3+) (46 +/- 20 in untreated vs. 91 +/- 37 in Gd(3+)-treated animals in series A and 19 +/- 7 vs. 22 +/- 13, respectively, in series B; both P = not significant). The occurrence of ventricular tachycardia or fibrillation was significantly associated with the magnitude of early ischemic expansion of the LAD region, as measured by ultrasonic crystals, but was also not prevented by Gd(3+). These results argue against a major role of stretch-activated channels inside the area at risk in the genesis of phase Ib ischemic ventricular arrhythmias.
Collapse
Affiliation(s)
- José A Barrabés
- Servicio de Cardiología, Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, E-08035 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|