1
|
Jabaudon M, Blondonnet R, Roszyk L, Bouvier D, Audard J, Clairefond G, Fournier M, Marceau G, Déchelotte P, Pereira B, Sapin V, Constantin JM. Soluble Receptor for Advanced Glycation End-Products Predicts Impaired Alveolar Fluid Clearance in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2015; 192:191-9. [PMID: 25932660 DOI: 10.1164/rccm.201501-0020oc] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Levels of the soluble form of the receptor for advanced glycation end-products (sRAGE) are elevated during acute respiratory distress syndrome (ARDS) and correlate with severity and prognosis. Alveolar fluid clearance (AFC) is necessary for the resolution of lung edema but is impaired in most patients with ARDS. No reliable marker of this process has been investigated to date. OBJECTIVES To verify whether sRAGE could predict AFC during ARDS. METHODS Anesthetized CD-1 mice underwent orotracheal instillation of hydrochloric acid. At specified time points, lung injury was assessed by analysis of blood gases, alveolar permeability, lung histology, AFC, and plasma/bronchoalveolar fluid measurements of proinflammatory cytokines and sRAGE. Plasma sRAGE and AFC rates were also prospectively assessed in 30 patients with ARDS. MEASUREMENTS AND MAIN RESULTS The rate of AFC was inversely correlated with sRAGE levels in the plasma and the bronchoalveolar fluid of acid-injured mice (Spearman's ρ = -0.73 and -0.69, respectively; P < 10(-3)), and plasma sRAGE correlated with AFC in patients with ARDS (Spearman's ρ = -0.59; P < 10(-3)). Similarly, sRAGE levels were significantly associated with lung injury severity, and decreased over time in mice, whereas AFC was restored and lung injury resolved. CONCLUSIONS Our results indicate that sRAGE levels could be a reliable predictor of impaired AFC during ARDS, and should stimulate further studies on the pathophysiologic implications of RAGE axis in the mechanisms leading to edema resolution. Clinical trial registered with www.clinicaltrials.gov (NCT 00811629).
Collapse
Affiliation(s)
- Matthieu Jabaudon
- 1 Intensive Care Unit, Department of Anesthesiology, Critical Care and Perioperative Medicine, Estaing University Hospital.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Raiko Blondonnet
- 1 Intensive Care Unit, Department of Anesthesiology, Critical Care and Perioperative Medicine, Estaing University Hospital.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Laurence Roszyk
- 3 Department of Medical Biochemistry and Molecular Biology.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Damien Bouvier
- 3 Department of Medical Biochemistry and Molecular Biology.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Jules Audard
- 1 Intensive Care Unit, Department of Anesthesiology, Critical Care and Perioperative Medicine, Estaing University Hospital
| | - Gael Clairefond
- 2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | - Geoffroy Marceau
- 3 Department of Medical Biochemistry and Molecular Biology.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | - Bruno Pereira
- 6 Department of Clinical Research and Innovation, CHU Clermont-Ferrand, Clermont-Ferrand, France; and
| | - Vincent Sapin
- 3 Department of Medical Biochemistry and Molecular Biology.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Jean-Michel Constantin
- 1 Intensive Care Unit, Department of Anesthesiology, Critical Care and Perioperative Medicine, Estaing University Hospital.,2 Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| |
Collapse
|
2
|
Aeffner F, Bolon B, Davis IC. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements. Toxicol Pathol 2015; 43:1074-92. [PMID: 26296628 DOI: 10.1177/0192623315598399] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models.
Collapse
Affiliation(s)
- Famke Aeffner
- Flagship Biosciences Inc., Westminster, Colorado, USA
| | - Brad Bolon
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Columbus, Ohio, USA GEMpath Inc., Longmont, Colorado, USA
| | | |
Collapse
|
3
|
Abstract
Mechanical ventilation (MV) is, by definition, the application of external forces to the lungs. Depending on their magnitude, these forces can cause a continuum of pathophysiological alterations ranging from the stimulation of inflammation to the disruption of cell-cell contacts and cell membranes. These side effects of MV are particularly relevant for patients with inhomogeneously injured lungs such as in acute lung injury (ALI). These patients require supraphysiological ventilation pressures to guarantee even the most modest gas exchange. In this situation, ventilation causes additional strain by overdistension of the yet non-injured region, and additional stress that forms because of the interdependence between intact and atelectatic areas. Cells are equipped with elaborate mechanotransduction machineries that respond to strain and stress by the activation of inflammation and repair mechanisms. Inflammation is the fundamental response of the host to external assaults, be they of mechanical or of microbial origin and can, if excessive, injure the parenchymal tissue leading to ALI. Here, we will discuss the forces generated by MV and how they may injure the lungs mechanically and through inflammation. We will give an overview of the mechanotransduction and how it leads to inflammation and review studies demonstrating that ventilator-induced lung injury can be prevented by blocking pathways of mechanotransduction or inflammation.
Collapse
Affiliation(s)
- Ulrike Uhlig
- Department of Pharmacology & Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
4
|
Aeffner F, Traylor ZP, Yu ENZ, Davis IC. Double-stranded RNA induces similar pulmonary dysfunction to respiratory syncytial virus in BALB/c mice. Am J Physiol Lung Cell Mol Physiol 2011; 301:L99-L109. [DOI: 10.1152/ajplung.00398.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Both respiratory syncytial virus (RSV) and influenza A virus induce nucleotide/P2Y purinergic receptor-mediated impairment of alveolar fluid clearance (AFC), which contributes to formation of lung edema. Although genetically dissimilar, both viruses generate double-stranded RNA replication intermediates, which act as Toll-like receptor (TLR)-3 ligands. We hypothesized that double-stranded RNA/TLR-3 signaling underlies nucleotide-mediated inhibition of amiloride-sensitive AFC in both infections. We found that addition of the synthetic double-stranded RNA analog poly-inosinic-cytidylic acid [poly(I:C)] (500 ng/ml) to the AFC instillate resulted in nucleotide/P2Y purinergic receptor-mediated inhibition of amiloride-sensitive AFC in BALB/c mice but had no effect on cystic fibrosis transmembrane regulator (CFTR)-mediated Cl− transport. Poly(I:C) also induced acute keratinocyte cytokine-mediated AFC insensitivity to stimulation by the β-adrenergic agonist terbutaline. Inhibitory effects of poly(I:C) on AFC were absent in TLR-3−/− mice and were not replicated by addition to the AFC instillate of ligands for other TLRs except TLR-2. Intranasal poly(I:C) administration (250 μg/mouse) similarly induced nucleotide-dependent AFC inhibition 2–3 days later, together with increased lung water content and neutrophilic inflammation. Intranasal treatment of BALB/c mice with poly(I:C) did not induce airway hyperresponsiveness at day 2 but did result in insensitivity to airway bronchodilation by β-adrenergic agonists. These findings suggest that viral double-stranded RNA replication intermediates induce nucleotide-mediated impairment of amiloride-sensitive AFC in both infections, together with β-adrenergic agonist insensitivity. Both of these effects also occur in RSV infection. However, double-stranded RNA replication intermediates do not appear to be sufficient to induce either adenosine-mediated, CFTR-dependent Cl− secretion in the lung or severe, lethal hypoxemia, both of which are features of influenza infection.
Collapse
Affiliation(s)
- Famke Aeffner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Zachary P. Traylor
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Erin N. Z. Yu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Ian C. Davis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
Yuan JXJ, Garcia JG, West JB, Hales CA, Rich S, Archer SL. High-Altitude Pulmonary Edema. TEXTBOOK OF PULMONARY VASCULAR DISEASE 2011. [PMCID: PMC7122766 DOI: 10.1007/978-0-387-87429-6_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
High-altitude pulmonary edema (HAPE) is an uncommon form of pulmonary edema that occurs in healthy individuals within a few days of arrival at altitudes above 2,500–3,000 m. The crucial pathophysiology is an excessive hypoxia-mediated rise in pulmonary vascular resistance (PVR) or hypoxic pulmonary vasoconstriction (HPV) leading to increased microvascular hydrostatic pressures despite normal left atrial pressure. The resultant hydrostatic stress can cause both dynamic changes in the permeability of the alveolar capillary barrier and mechanical damage leading to leakage of large proteins and erythrocytes into the alveolar space in the absence of inflammation. Bronchoalveolar lavage (BAL) and pulmonary artery (PA) and microvascular pressure measurements in humans confirm that high capillary pressure induces a high-permeability non-inflammatory-type lung edema; a concept termed “capillary stress failure.” Measurements of endothelin and nitric oxide (NO) in exhaled air, NO metabolites in BAL fluid, and NO-dependent endothelial function in the systemic circulation all point to reduced NO availability and increased endothelin in hypoxia as a major cause of the excessive hypoxic PA pressure rise in HAPE-susceptible individuals. Other hypoxia-dependent differences in ventilatory control, sympathetic nervous system activation, endothelial function, and alveolar epithelial sodium and water reabsorption likely contribute additionally to the phenotype of HAPE susceptibility. Recent studies using magnetic resonance imaging in humans strongly suggest nonuniform regional hypoxic arteriolar vasoconstriction as an explanation for how HPV occurring predominantly at the arteriolar level can cause leakage. This compelling but not yet fully proven mechanism predicts that in areas of high blood flow due to lesser vasoconstriction edema will develop owing to pressures that exceed the structural and dynamic capacity of the alveolar capillary barrier to maintain normal alveolar fluid balance. Numerous strategies aimed at lowering HPV and possibly enhancing active alveolar fluid reabsorption are effective in preventing and treating HAPE. Much has been learned about HAPE in the past four decades such that what was once a mysterious alpine malady is now a well-characterized and preventable lung disease. This chapter will relate the history, pathophysiology, and treatment of HAPE, using it not only to illuminate the condition, but also for the broader lessons it offers in understanding pulmonary vascular regulation and lung fluid balance.
Collapse
Affiliation(s)
- Jason X. -J. Yuan
- Departments of Medicine, COMRB Rm. 3131 (MC 719), University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, 60612 Illinois USA
| | - Joe G.N. Garcia
- 310 Admin.Office Building (MC 672), University of Illinois at Chicago, 1737 W. Polk Street, Suite 310, Chicago, 60612 Illinois USA
| | - John B. West
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0623 California USA
| | - Charles A. Hales
- Dept. Pulmonary & Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, 02114 Massachusetts USA
| | - Stuart Rich
- Department of Medicine, University of Chicago Medical Center, 5841 S. Maryland Ave., Chicago, 60637 Illinois USA
| | - Stephen L. Archer
- Department of Medicine, University of Chicago School of Medicine, 5841 S. Maryland Ave., Chicago, 60637 Illinois USA
| |
Collapse
|
6
|
Koshy S, Beard LL, Kuzenko SR, Li T, Folkesson HG. Lung fluid absorption is induced in preterm guinea pigs ventilated with low tidal volumes. Exp Lung Res 2010; 37:44-56. [DOI: 10.3109/01902148.2010.514024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Bastarache JA, Ong T, Matthay MA, Ware LB. Alveolar fluid clearance is faster in women with acute lung injury compared to men. J Crit Care 2010; 26:249-56. [PMID: 20688464 DOI: 10.1016/j.jcrc.2010.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/28/2010] [Accepted: 06/14/2010] [Indexed: 01/11/2023]
Abstract
PURPOSE Studies suggest that there is a sex difference in the development and outcomes of acute lung injury (ALI). Few studies have directly addressed the association of sex and alveolar fluid clearance (AFC), a process that is critical to ALI resolution. MATERIALS AND METHODS To test the hypothesis that female sex is associated with an increased AFC rate, we measured AFC rates in 150 mechanically ventilated patients with acute pulmonary edema and a pulmonary edema fluid-to-plasma protein ratio (EF/PL) diagnostic of low permeability (EF/PL <0.65, n = 69) or high permeability (EF/PL ≥0.65, n = 81) edema. We measured protein concentration in serial samples of undiluted EF collected within 6 hours of intubation and calculated net rate of AFC. In addition, plasma levels of receptor for advanced glycation end products were measured as a surrogate marker for alveolar epithelial injury. RESULTS In patients with ALI, women had higher rates of net AFC at 4 hours compared to men (11.9% per hour vs 4.3% per hour, P = .017) and more women had maximal rates of AFC. There were no differences in circulating levels of receptor for advanced glycation end products between men and women. CONCLUSIONS These findings may have significant implications for future ALI studies and potential therapies.
Collapse
Affiliation(s)
- Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA.
| | | | | | | |
Collapse
|