1
|
Gu L, Zhao C, Wang Y, Wang C, Yin X, Ye Q, Liu Y, Zou X, Wang L, Zhuge Y, Wu J, Zhang F. Senescence of Hepatic Stellate Cells by Specific Delivery of Manganese for Limiting Liver Fibrosis. NANO LETTERS 2024; 24:1062-1073. [PMID: 38164915 PMCID: PMC10836362 DOI: 10.1021/acs.nanolett.3c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Senescence of activated hepatic stellate cells (HSCs) is crucial for the regression of liver fibrosis. However, impaired immune clearance can result in the accumulation of senescent HSCs, exacerbating liver fibrosis. The activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is essential for both senescence and the innate immune response. Additionally, the specific delivery to activated HSCs is hindered by their inaccessible anatomical location, capillarization of liver sinusoidal endothelial cells (LSECs), and loss of substance exchange. Herein, we propose an antifibrotic strategy that combines prosenescence with enhanced immune clearance through targeted delivery of manganese (a cGAS-STING stimulator) via albumin-mediated transcytosis, specifically aimed at inducing senescence and eliminating activated HSCs in liver fibrosis. Our findings demonstrate that only albumin efficiently transfers manganese to activated HSCs from LSECs via transcytosis compared to liposomes, resulting in significant antifibrotic effects in vivo while exhibiting negligible toxicity.
Collapse
Affiliation(s)
- Lihong Gu
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People’s
Republic of China
- State
Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine
Innovation Center, Medical School of Nanjing
University, Nanjing, Jiangsu 210093, People’s Republic of China
- Jiangsu
Key Laboratory for Nano Technology, Nanjing
University, Nanjing, Jiangsu 210093, People’s Republic of China
- Wuxi
No. 2 People’s Hospital, Wuxi, Jiangsu 214002, People’s Republic of China
| | - Chenxuan Zhao
- State
Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine
Innovation Center, Medical School of Nanjing
University, Nanjing, Jiangsu 210093, People’s Republic of China
- Jiangsu
Key Laboratory for Nano Technology, Nanjing
University, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Yixuan Wang
- State
Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine
Innovation Center, Medical School of Nanjing
University, Nanjing, Jiangsu 210093, People’s Republic of China
- Jiangsu
Key Laboratory for Nano Technology, Nanjing
University, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Chao Wang
- State
Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine
Innovation Center, Medical School of Nanjing
University, Nanjing, Jiangsu 210093, People’s Republic of China
- Jiangsu
Key Laboratory for Nano Technology, Nanjing
University, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Xiaochun Yin
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People’s
Republic of China
| | - Qingsong Ye
- State
Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine
Innovation Center, Medical School of Nanjing
University, Nanjing, Jiangsu 210093, People’s Republic of China
- Jiangsu
Key Laboratory for Nano Technology, Nanjing
University, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Yan Liu
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People’s
Republic of China
| | - Xiaoping Zou
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People’s
Republic of China
| | - Lei Wang
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People’s
Republic of China
| | - Yuzheng Zhuge
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People’s
Republic of China
| | - Jinhui Wu
- State
Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine
Innovation Center, Medical School of Nanjing
University, Nanjing, Jiangsu 210093, People’s Republic of China
- Jiangsu
Key Laboratory for Nano Technology, Nanjing
University, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Feng Zhang
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People’s
Republic of China
| |
Collapse
|
2
|
Kryvenko V, Alberro-Brage A, Fysikopoulos A, Wessendorf M, Tello K, Morty RE, Herold S, Seeger W, Samakovlis C, Vadász I. Clathrin-Mediated Albumin Clearance in Alveolar Epithelial Cells of Murine Precision-Cut Lung Slices. Int J Mol Sci 2023; 24:ijms24032644. [PMID: 36768968 PMCID: PMC9916738 DOI: 10.3390/ijms24032644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
A hallmark of acute respiratory distress syndrome (ARDS) is an accumulation of protein-rich alveolar edema that impairs gas exchange and leads to worse outcomes. Thus, understanding the mechanisms of alveolar albumin clearance is of high clinical relevance. Here, we investigated the mechanisms of the cellular albumin uptake in a three-dimensional culture of precision-cut lung slices (PCLS). We found that up to 60% of PCLS cells incorporated labeled albumin in a time- and concentration-dependent manner, whereas virtually no uptake of labeled dextran was observed. Of note, at a low temperature (4 °C), saturating albumin receptors with unlabeled albumin and an inhibition of clathrin-mediated endocytosis markedly decreased the endocytic uptake of the labeled protein, implicating a receptor-driven internalization process. Importantly, uptake rates of albumin were comparable in alveolar epithelial type I (ATI) and type II (ATII) cells, as assessed in PCLS from a SftpcCreERT2/+: tdTomatoflox/flox mouse strain (defined as EpCAM+CD31-CD45-tdTomatoSPC-T1α+ for ATI and EpCAM+CD31-CD45-tdTomatoSPC+T1α- for ATII cells). Once internalized, albumin was found in the early and recycling endosomes of the alveolar epithelium as well as in endothelial, mesenchymal, and hematopoietic cell populations, which might indicate transcytosis of the protein. In summary, we characterize albumin uptake in alveolar epithelial cells in the complex setting of PCLS. These findings may open new possibilities for pulmonary drug delivery that may improve the outcomes for patients with respiratory failure.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Andrés Alberro-Brage
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| | - Athanasios Fysikopoulos
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
| | - Miriam Wessendorf
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Khodr Tello
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Rory E. Morty
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Translational Pulmonology, and Translational Lung Research Center (TLRC), 69120 Heidelberg, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Christos Samakovlis
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-641-985-42354; Fax: +49-641-985-42359
| |
Collapse
|
3
|
Liu GW, Guzman EB, Menon N, Langer RS. Lipid Nanoparticles for Nucleic Acid Delivery to Endothelial Cells. Pharm Res 2023; 40:3-25. [PMID: 36735106 PMCID: PMC9897626 DOI: 10.1007/s11095-023-03471-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Endothelial cells play critical roles in circulatory homeostasis and are also the gateway to the major organs of the body. Dysfunction, injury, and gene expression profiles of these cells can cause, or are caused by, prevalent chronic diseases such as diabetes, cardiovascular disease, and cancer. Modulation of gene expression within endothelial cells could therefore be therapeutically strategic in treating longstanding disease challenges. Lipid nanoparticles (LNP) have emerged as potent, scalable, and tunable carrier systems for delivering nucleic acids, making them attractive vehicles for gene delivery to endothelial cells. Here, we discuss the functions of endothelial cells and highlight some receptors that are upregulated during health and disease. Examples and applications of DNA, mRNA, circRNA, saRNA, siRNA, shRNA, miRNA, and ASO delivery to endothelial cells and their targets are reviewed, as well as LNP composition and morphology, formulation strategies, target proteins, and biomechanical factors that modulate endothelial cell targeting. Finally, we discuss FDA-approved LNPs as well as LNPs that have been tested in clinical trials and their challenges, and provide some perspectives as to how to surmount those challenges.
Collapse
Affiliation(s)
- Gary W Liu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Edward B Guzman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Nandita Menon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Strand Therapeutics, MA, 02215, Boston, USA
| | - Robert S Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Abstract
Diabetes mellitus is a disease of dysregulated blood glucose homeostasis. The current pandemic of diabetes is a significant driver of patient morbidity and mortality, as well as a major challenge to healthcare systems worldwide. The global increase in the incidence of diabetes has prompted researchers to focus on the different pathogenic processes responsible for type 1 and type 2 diabetes. Similarly, increased morbidity due to diabetic complications has accelerated research to uncover pathological changes causing these secondary complications. Albuminuria, or protein in the urine, is a well-recognised biomarker and risk factor for renal and cardiovascular disease. Albuminuria is a mediator of pathological abnormalities in diabetes-associated conditions such as nephropathy and atherosclerosis. Clinical screening and diagnosis of diabetic nephropathy is chiefly based on the presence of albuminuria. Given the ease in measuring albuminuria, the potential of using albuminuria as a biomarker of cardiovascular diseases is gaining widespread interest. To assess the benefits of albuminuria as a biomarker, it is important to understand the association between albuminuria and cardiovascular disease. This review examines our current understanding of the pathophysiological mechanisms involved in both forms of diabetes, with specific focus on the link between albuminuria and specific vascular complications of diabetes.
Collapse
Affiliation(s)
- Pappitha Raja
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Alexander P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Northern Ireland Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|