1
|
Zhang Y, Liu J, Zhi Y, You X, Wei B. Association of GAB1 gene with asthma susceptibility and the efficacy of inhaled corticosteroids in children. BMC Pulm Med 2023; 23:493. [PMID: 38057792 DOI: 10.1186/s12890-023-02790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Asthma is a polygenic disease that may onset during childhood. Inhaled corticosteroids (ICS) are the main therapy in asthma, although their efficacy varies among individuals. Nuclear factor κB (NF-κB) is an important target of ICS treatment of asthma. Recent research has reported that GRB2 associated binding protein 1 (GAB1) gene may participate in the pathogenesis of asthma by regulating the NF-κB pathway. Therefore, we used the technique of an improved multiplex ligation detection reaction to sequence GAB1 gene and investigated the involvement of Single-nucleotide variants (SNVs) in GAB1 gene in asthma and ICS efficacy in asthmatic children. We found no differences between asthma cases and controls in allele or genotype frequencies of GAB1. Haplotype analysis showed an increased tendency for AGGAGC frequency in asthma patients compared with controls (OR = 2.69, p = 0.018). The percentage of EOS and genotype distribution of rs1397527 were associated (p = 0.007). The EOS percentage was higher in GT genotype when compared to the GG genotype (5.50 vs 3.00, Bonferroni adjusted p = 0.005). After 12-weeks ICS treatment, GAB1 rs1397527 TT and GT genotype carriers had a smaller change in forced expiratory volume in 1 second/forced vital capacity (FEV1/FVC) than GG carriers (p = 0.009), and rs3805236 GG and AG genotype carriers also had a smaller change in FEV1/FVC than AA carriers (p = 0.025). For ICS response, the frequency of GG genotype of rs1397527 was significantly higher in good responders (p = 0.038). The generalized multifactor dimensionality reduction (GMDR) analysis showed a best significant four-order model (rs1397527, allergen exposure, environmental tobacco smoke exposure, and pet exposure) involving gene-environment interactions (p = 0.001). In summary, we found that GAB1 SNVs were not associated with asthma susceptibility. Haplotype AGGAGC was a risk factor for asthma. GAB1 variants were associated with eosinophils and ICS response in asthmatics. Furthermore, gene-environment interaction was observed.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of neonatology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, People's Republic of China
- Post-graduate College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Jun Liu
- Department of neonatology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yanjie Zhi
- Department of neonatology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xuan You
- Department of neonatology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, People's Republic of China
| | - Bing Wei
- Department of neonatology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Xu J, Li S, Jin W, Zhou H, Zhong T, Cheng X, Fu Y, Xiao P, Cheng H, Wang D, Ke Y, Jiang Z, Zhang X. Epithelial Gab1 calibrates RIPK3-dependent necroptosis to prevent intestinal inflammation. JCI Insight 2023; 8:162701. [PMID: 36795486 PMCID: PMC10070107 DOI: 10.1172/jci.insight.162701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
As a hallmark of inflammatory bowel disease (IBD), elevated intestinal epithelial cell (IEC) death compromises the gut barrier, activating the inflammatory response and triggering more IEC death. However, the precise intracellular machinery that prevents IEC death and breaks this vicious feedback cycle remains largely unknown. Here, we report that Grb2-associated binder 1 (Gab1) expression is decreased in patients with IBD and inversely correlated with IBD severity. Gab1 deficiency in IECs accounted for the exacerbated colitis induced by dextran sodium sulfate owing to sensitizing IECs to receptor-interaction protein kinase 3-mediated (RIPK3-mediated) necroptosis, which irreversibly disrupted the homeostasis of the epithelial barrier and promoted intestinal inflammation. Mechanistically, Gab1 negatively regulated necroptosis signaling through inhibiting the formation of RIPK1/RIPK3 complex in response to TNF-α. Importantly, administration of RIPK3 inhibitor revealed a curative effect in epithelial Gab1-deficient mice. Further analysis indicated mice with Gab1 deletion were prone to inflammation-associated colorectal tumorigenesis. Collectively, our study defines a protective role for Gab1 in colitis and colitis-driven colorectal cancer by negatively regulating RIPK3-dependent necroptosis, which may serve as an important target to address necroptosis and intestinal inflammation-related disease.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Pathology, Sir Run Run Shaw Hospital
| | - Shihao Li
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine of Sir Run Run Shaw Hospital
| | - Wei Jin
- Department of General Surgery and
| | - Hui Zhou
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine of Sir Run Run Shaw Hospital
| | | | | | - Yujuan Fu
- Department of Pathology, Sir Run Run Shaw Hospital
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, and Department of Cardiology of Sir Run Run Shaw Hospital; and
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine of Sir Run Run Shaw Hospital
| | | | - Xue Zhang
- Department of Pathology and Pathophysiology, and Department of Respiratory Medicine of Sir Run Run Shaw Hospital
| |
Collapse
|
3
|
Jiang W, Ma C, Bai J, Du X. Macrophage SAMSN1 protects against sepsis-induced acute lung injury in mice. Redox Biol 2022; 56:102432. [PMID: 35981417 PMCID: PMC9418554 DOI: 10.1016/j.redox.2022.102432] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Inflammation and oxidative stress contribute to the progression of sepsis-induced acute lung injury (ALI). SAM domain, SH3 domain and nuclear localization signals 1 (SAMSN1) is a signaling adaptor protein, and mainly regulates inflammatory response of various immune cells. The present study generates macrophage-specific SAMSN1-knockout (Samsn1MKO) and SAMSN1-transgenic (Samsn1MTG) mice to investigate its role and mechanism in sepsis-induced ALI. METHODS Samsn1MKO and Samsn1MTG mice were exposed to lipopolysaccharide (LPS) instillation or cecal ligation and puncture (CLP) surgery to induce sepsis-induced ALI. Bone marrow transplantation, cellular depletion and non-invasive adoptive transfer of bone marrow-derived macrophages (BMDMs) were performed to validate the role of macrophage SAMSN1 in sepsis-induced ALI in vivo. Meanwhile, BMDMs were isolated from Samsn1MKO or Samsn1MTG mice to further clarify the role of SAMSN1 in vitro. RESULTS Macrophage SAMSN1 expression was increased in response to LPS stimulation, and negatively correlated with LPS-induced ALI in mice. Macrophage SAMSN1 deficiency exacerbated, while macrophage SAMSN1 overexpression ameliorated LPS-induced inflammation, oxidative stress and ALI in mice and in BMDMs. Mechanistically, we found that macrophage SAMSN1 overexpression prevented LPS-induced ALI though activating AMP-activated protein kinase α2 (AMPKα2) in vivo and in vitro. Further studies revealed that SAMSN1 directly bound to growth factor receptor bound protein 2-associated protein 1 (GAB1) to prevent its protein degradation, and subsequently enhanced protein kinase A (PKA)/AMPKα2 activation in a protein tyrosine phosphatase, non-receptor type 11 (PTPN11, also known as SHP2)-dependent manner. Moreover, we observed that macrophage SAMSN1 overexpression diminished CLP-induced ALI in mice. CONCLUSION Our study documents the protective role of macrophage SAMSN1 against sepsis-induced inflammation, oxidative stress and ALI through activating AMPKα2 in a GAB1/SHP2/PKA pathway, and defines it as a promising biomarker and therapeutic target to treat sepsis-induced ALI.
Collapse
Affiliation(s)
- Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chengtai Ma
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiawei Bai
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xianjin Du
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Sun L, Zhu H, Zhang K. GAB1 alleviates septic lung injury by inhibiting the TLR4/ NF-κB pathway. Clin Exp Pharmacol Physiol 2021; 49:94-103. [PMID: 34498273 DOI: 10.1111/1440-1681.13589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 01/09/2023]
Abstract
Sepsis, with its high morbidity and mortality, is a difficult problem in critical care medicine. The purpose of this study is to investigate the involvement of GRB2-associated binding protein 1 (GAB1) in septic lung injury. Lipopolysaccharide (LPS)-induced mouse model and A549 cell model were used to simulate septic lung injury. Haematoxylin and eosin (H&E) staining was used to observe the pathological changes. The terminal-deoxynucleotidyl transferase/(TdT)-mediated dUTP-biotin nick end labelling (TUNEL) staining and flow cytometry were used to detect apoptosis. The levels of inflammatory factors in the bronchoalveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay (ELISA). In LPS-induced sepsis mice, GAB1 expression was markedly reduced, and GAB1 overexpression significantly attenuated cell apoptosis and decreased levels of macrophages, neutrophils, and inflammatory factors in the BALF. Our results also demonstrated that GAB1 overexpression significantly reduced LPS-induced apoptosis and inflammation of A549 cells. More importantly, GAB1 overexpression significantly inhibited the Toll-like receptor/ NFkappaB (TLR4/NF-κB) pathway, while silencing GAB1 significantly activated the TLR4/NF-κB pathway and induced apoptosis and increased expression of inflammatory factors. However, the TLR4 inhibitor TAK-242 eliminated the effect of GAB1 silencing on A549. In conclusion, GAB1 is a key regulator of sepsis by inhibiting TLR4/NF-κB mediated apoptosis and inflammation.
Collapse
Affiliation(s)
- Lihua Sun
- Emergency Department, Dongying People's Hospital, Dongying, China
| | - Hongchao Zhu
- Emergency Department, Dongying People's Hospital, Dongying, China
| | - Kui Zhang
- Emergency Department, Dongying People's Hospital, Dongying, China
| |
Collapse
|
5
|
Qiu N, Xu X, He Y. LncRNA TUG1 alleviates sepsis-induced acute lung injury by targeting miR-34b-5p/GAB1. BMC Pulm Med 2020; 20:49. [PMID: 32087725 PMCID: PMC7036216 DOI: 10.1186/s12890-020-1084-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background Sepsis-induced acute lung injury (ALI) is a clinical syndrome characterized by the injury of alveolar epithelium and pulmonary endothelial cells. This study aimed to investigate the regulation of long noncoding RNA (lncRNA) taurine up-regulated gene 1 (TUG1) in a murine ALI model and in primary murine pulmonary microvascular endothelial cells (PMVECs) stimulated with lipopolysaccharide (LPS). Methods Adult C57BL/6 mice were intravenously injected with or without TUG1-expressiong adenoviral vector or control vector 1 week before the establishment of ALI model. PMVECs were transfected with TUG1-expressiong or control vectors followed by LPS stimulation. MiR-34b-5p was confirmed as a target of TUG1 using dual-luciferase reporter assay. GRB2 associated binding protein 1 (GAB1) was confirmed as a downstream target of miR-34b-5p using the same method. In the rescue experiment, PMVECs were co-transfected with TUG1-expressing vector and miR-34b-5p mimics (or control mimics) 24 h before LPS treatment. Results ALI mice showed reduced levels of TUG1, pulmonary injury, and induced apoptosis and inflammation compared to the control group. The overexpression of TUG1 in ALI mice ameliorated sepsis-induced pulmonary injury, apoptosis and inflammation. TUG1 also showed protective effect in LPS-treated PMVECs. The expression of MiR-34b-5p was negatively correlated with the level of TUG1. TUG1-supressed apoptosis and inflammation in LPS-stimulated PMVECs were restored by miR-34b-5p overexpression. GAB1 was inversely regulated by miR-34b-5p but was positively correlated with TUG1 expression. Conclusion TUG1 alleviated sepsis-induced inflammation and apoptosis via targeting miR-34b-5p and GAB1. These findings suggested that TUG1 might be served as a therapeutic potential for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Nan Qiu
- Department of Emergency Internal Medicine, Guizhou Provincial People's Hospital, Guiyang City, No. 1 Baoshan South Road, Guiyang City, Guizhou Province, China.
| | - Xinmei Xu
- Department of Emergency Internal Medicine, Guizhou Provincial People's Hospital, Guiyang City, No. 1 Baoshan South Road, Guiyang City, Guizhou Province, China
| | - Yingying He
- Department of Emergency Internal Medicine, Guizhou Provincial People's Hospital, Guiyang City, No. 1 Baoshan South Road, Guiyang City, Guizhou Province, China
| |
Collapse
|
6
|
Zhou L, Shao CY, Xie YJ, Wang N, Xu SM, Luo BY, Wu ZY, Ke YH, Qiu M, Shen Y. Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination. eLife 2020; 9:52056. [PMID: 31944179 PMCID: PMC6984811 DOI: 10.7554/elife.52056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Oligodendrocytes (OLs) myelinate axons and provide electrical insulation and trophic support for neurons in the central nervous system (CNS). Platelet-derived growth factor (PDGF) is critical for steady-state number and differentiation of oligodendrocyte precursor cells (OPCs), but its downstream targets are unclear. Here, we show for the first time that Gab1, an adaptor protein of receptor tyrosine kinase, is specifically expressed in OL lineage cells and is an essential effector of PDGF signaling in OPCs in mice. Gab1 is downregulated by PDGF stimulation and upregulated during OPC differentiation. Conditional deletions of Gab1 in OLs cause CNS hypomyelination by affecting OPC differentiation. Moreover, Gab1 binds to downstream GSK3β and regulated its activity, and thereby affects the nuclear accumulation of β-catenin and the expression of a number of transcription factors critical to myelination. Our work uncovers a novel downstream target of PDGF signaling, which is essential to OPC differentiation and CNS myelination.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Physiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Brain Science, Guizhou Institution of Higher Education, Zunyi Medical University, Zunyi, China
| | - Chong-Yu Shao
- Department of Physiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya-Jun Xie
- Department of Physiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Wang
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Si-Min Xu
- Department of Physiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ben-Yan Luo
- Department of Physiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Hai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ying Shen
- Department of Physiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Hu Y, Xie L, Yu J, Fu H, Zhou D, Liu H. Inhibition of microRNA-29a alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice via upregulation of GAB1. Mol Med 2019; 26:3. [PMID: 31892308 PMCID: PMC6938623 DOI: 10.1186/s10020-019-0127-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background The main features of bronchopulmonary dysplasia (BPD) are alveolar simplification, pulmonary growth arrest, and abnormal lung function. Multiple studies have highlighted microRNA-29 (miR-29) as a potential biomarker for lung diseases and cancers. Upregulation of miR-29a has been known to downregulate GRB2-associated-binding protein 1 (GAB1), which is often highly expressed in the lung. The current study was designed to investigate the potential role of miR-29a in hyperoxia-induced BPD by targeting GAB1 in a neonatal mouse model. Methods The expression of miR-29a and GAB1 in lung tissues of neonatal mice with hyperoxia-induced BPD and mouse alveolar epithelial cells (MLE-12) was determined using RT-qPCR and western blot analysis. Subsequently, the relationship between miR-29a and GAB1 was verified using in silico analysis. In order to assess the effects of miR-29a or GAB1 on BPD, the pathological characteristics of alveoli, as well as proliferation and apoptosis of cells were measured through gain- and loss-of-function studies. Results Upregulation of miR-29a and downregulation of GAB1 were evident in both lung tissues and MLE-12 cells following BPD modeling. GAB1 was a direct target gene of miR-29a. Inhibition of miR-29a and overexpression of GAB1 were shown to alleviate lung injury, promote cell proliferation and inhibit apoptosis but reduce chord length in lung tissues of neonatal mice following hyperoxia-induced BPD modeling. Conclusion Altogether, down-regulation of miR-29a can potentially elevate GAB1 expression, reducing cell apoptosis and stimulating proliferation, ultimately retarding the development of BPD in mice. This study highlights the potential of a promising new target for preventing BPD.
Collapse
Affiliation(s)
- Yu Hu
- West China School of Medicine, Sichuan University, Chengdu, 610041, People's Republic of China.,Mianyang Central Hospital, Department of Pediatrics, Mianyang, People's Republic of China
| | - Liang Xie
- , Mianyang, 621000, People's Republic of China
| | - Jing Yu
- Mianyang Central Hospital, Department of Pediatrics, Mianyang, People's Republic of China
| | - Hongling Fu
- West China School of Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Dan Zhou
- West China School of Medicine, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hanmin Liu
- , Mianyang, 621000, People's Republic of China. .,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
8
|
Steffen L, Ruppert C, Hoymann HG, Funke M, Ebener S, Kloth C, Mühlfeld C, Ochs M, Knudsen L, Lopez-Rodriguez E. Surfactant replacement therapy reduces acute lung injury and collapse induration-related lung remodeling in the bleomycin model. Am J Physiol Lung Cell Mol Physiol 2017; 313:L313-L327. [PMID: 28450283 DOI: 10.1152/ajplung.00033.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 12/13/2022] Open
Abstract
Bleomycin-induced lung injury leads to surfactant dysfunction and permanent loss of alveoli due to a remodeling process called collapse induration. Collapse induration also occurs in acute interstitial lung disease and idiopathic pulmonary fibrosis in humans. We hypothesized that surfactant dysfunction aggravates lung injury and early remodeling resulting in collapse induration within 7 days after lung injury. Rats received bleomycin to induce lung injury and either repetitive surfactant replacement therapy (SRT: 100 mg Curosurf/kg BW = surf group) or saline (0.9% NaCl = saline group). After 3 (D3) or 7 (D7) days, invasive pulmonary function tests were performed to determine tissue elastance (H) and static compliance (Cst). Bronchoalveolar lavage (BAL) was taken for surfactant function, inflammatory markers, and protein measurements. Lungs were fixed by vascular perfusion for design-based stereology and electron microscopic analyses. SRT significantly improved minimum surface tension of alveolar surfactant as well as H and Cst at D3 and D7. At D3 decreased inflammatory markers including neutrophilic granulocytes, IL-1β, and IL-6 correlated with reduced BAL-protein levels after SRT. Numbers of open alveoli were significantly increased at D3 and D7 in SRT groups whereas at D7 there was also a significant reduction in septal wall thickness and parenchymal tissue volume. Septal wall thickness and numbers of open alveoli highly correlated with improved lung mechanics after SRT. In conclusion, reduction in surface tension was effective to stabilize alveoli linked with an attenuation of parameters of acute lung injury at D3 and collapse induration at D7. Hence, SRT modifies disease progression to collapse induration.
Collapse
Affiliation(s)
- Lilian Steffen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Germany, and Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Heinz-Gerd Hoymann
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Manuela Funke
- Department of Pulmonary Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland; and
| | - Simone Ebener
- Department of Pulmonary Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland; and
| | - Christina Kloth
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany.,Cluster of Excellence Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany.,Cluster of Excellence Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany; .,Cluster of Excellence Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany.,Cluster of Excellence Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| |
Collapse
|
9
|
Do DC, Agrawal A, Luo X, Gao P. Gab1, a therapeutic target for allergic asthma? ACTA ACUST UNITED AC 2017; 2. [PMID: 30148256 DOI: 10.21037/jxym.2017.03.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Danh C Do
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Arshi Agrawal
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, USA.,Maulana Azad Medical College, New Delhi, India
| | - Xiaoyan Luo
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|