1
|
Zong HF, Guo G, Liu J, Yang CZ, Bao LL. Influence of Alveolar Fluid on Aquaporins and Na+/K+-ATPase and Its Possible Theoretical or Clinical Significance. Am J Perinatol 2022; 29:1586-1595. [PMID: 33611784 DOI: 10.1055/s-0041-1724001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Pulmonary edema is the most common pathophysiological change in pulmonary disease. Aquaporins (AQPs) and Na+/K+-ATPase play pivotal roles in alveolar fluid clearance. This study aimed to explore the influence of increased alveolar fluid on the absorption of lung fluid. STUDY DESIGN Eighty New Zealand rabbits were randomly divided into eight groups (n = 10 in each group), and models of different alveolar fluid contents were established by the infusion of different volumes of normal saline (NS) via the endotracheal tube. Five animals in each group were sacrificed immediately after infusion to determine the wet/dry ratio, while the remaining animals in each group were killed 4 hours later to determine the wet/dry ratio at 4 hours. Additionally, lung specimens were collected from each group, and quantitative real-time PCR (qRT-PCR), western blot, and immunohistochemical (IHC) analyses of AQPs and Na+/K+-ATPase were performed. RESULTS The qRT-PCR analysis and western blot studies showed markedly decreased mRNA and protein levels of AQP1 and Na+/K+-ATPase when the alveolar fluid volume was ≥6 mL/kg, and the mRNA level of AQP5 was significantly reduced when the alveolar fluid volume was ≥4 mL/kg. In addition, IHC analysis showed the same results. At 4 hours, the lung wet/dry ratio was significantly increased when the alveolar fluid volume was ≥6 mL/kg; however, compared with 0 hours after NS infusion, there was still a significant absorption of alveolar fluid for a period of 4 hours. CONCLUSION The results of this study suggest that increased alveolar fluid may induce the downregulation of the mRNA and protein expression of AQPs and Na+/K+-ATPase, which appear to affect alveolar fluid clearance in rabbit lungs. Early intervention is required to avoid excessive alveolar fluid accumulation. KEY POINTS · The expression levels of AQPs and Na+/K+--ATPase were significantly decreased as alveolar fluid increased.. · At 4 hours, wet/dry ratio was significantly increased when infusion volume was ≥ 6 mL/kg.. · Early intervention is required to avoid excessive alveolar fluid accumulation..
Collapse
Affiliation(s)
- Hai-Feng Zong
- Neonatal Intensive Care Unit, Southern Medical University, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, China
| | - Guo Guo
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, China
- Department of Pediatrics, Medical School of Chinese PLA, Beijing, China
- Department of Neonatology, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| | - Jing Liu
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, China
| | - Chuan-Zhong Yang
- Neonatal Intensive Care Unit, Southern Medical University, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Lin-Lin Bao
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
2
|
Ding Y, Cui Y, Hou Y, Nie H. Bone marrow mesenchymal stem cell-conditioned medium facilitates fluid resolution via miR-214-activating epithelial sodium channels. MedComm (Beijing) 2021; 1:376-385. [PMID: 34766129 PMCID: PMC8491198 DOI: 10.1002/mco2.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Acute lung injury (ALI) is featured with severe lung edema at the early exudative phase, resulting from the imbalance of alveolar fluid turnover and clearance. Mesenchymal stem cells (MSCs) belong to multipotent stem cells, which have shown potential therapeutic effects during ALI. Of note, MSC‐conditioned medium (MSC‐CM) improved alveolar fluid clearance (AFC) in vivo, whereas the involvement of miRNAs is seldom known. We thus aim to explore the roles of miR‐214 in facilitating MSC‐CM mediated fluid resolution of impaired AFC. In this study, AFC was increased significantly by intratracheally administrated MSC‐CM in lipopolysaccharide‐treated mice. MSC‐CM augmented amiloride‐sensitive currents in intact H441 monolayers, and increased α‐epithelial sodium channel (α‐ENaC) expression level in H441 and mouse alveolar type 2 epithelial cells. Meanwhile, MSC‐CM increased the expression of miR‐214, which may participate in regulating ENaC expression and function. Our results suggested that MSC‐CM enhanced AFC in ALI mice in vivo through a novel mechanism, involving miR‐214 regulation of ENaC.
Collapse
Affiliation(s)
- Yan Ding
- Department of Stem Cells and Regenerative Medicine College of Basic Medical Science China Medical University Shenyang China
| | - Yong Cui
- Department of Anesthesiology the First Affiliated Hospital of China Medical University Shenyang China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine College of Basic Medical Science China Medical University Shenyang China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine College of Basic Medical Science China Medical University Shenyang China
| |
Collapse
|
3
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
4
|
Lipopolysaccharide Inhibits Alpha Epithelial Sodium Channel Expression via MiR-124-5p in Alveolar Type 2 Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8150780. [PMID: 32190682 PMCID: PMC7072113 DOI: 10.1155/2020/8150780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/19/2020] [Accepted: 01/30/2020] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSCs) have been a potential strategy in the pretreatment of pulmonary diseases, while the mechanisms of MSCs-conditioned medium (MSCs-CM) involved with microRNAs on the regulation of lung ion transport are seldom reported. We investigated the role of miR-124-5p in lipopolysaccharide-involved epithelial sodium channel (ENaC) dysfunction and explored the potential target of miR-124-5p. We observed the lower expression of miR-124-5p after the administration of MSCs-CM, and the overexpression or inhibition of miR-124-5p regulated epithelial sodium channel α-subunit (α-ENaC) expression at protein levels in mouse alveolar type 2 epithelial (AT2) cells. We confirmed that α-ENaC is one of the target genes of miR-124-5p through dual luciferase assay and Ussing chamber assay revealed that miR-124-5p inhibited amiloride-sensitive currents associated with ENaC activity in intact H441 monolayers. Our results demonstrate that miR-124-5p can decrease the expression and function of α-ENaC in alveolar epithelial cells by targeting the 3'-UTR. The involvement of MSCs-CM in lipopolysaccharide-induced acute lung injury cell model could be related to the downregulation of miR-124-5p on α-ENaC, which may provide a new target for the treatment of acute lung injury.
Collapse
|
5
|
Virreira M, Jin L, Djerbib S, De Deken X, Miot F, Massart C, Svoboda M, Van Sande J, Beauwens R, Dumont JE, Boom A. Expression, Localization, and Regulation of the Sodium Bicarbonate Cotransporter NBCe1 in the Thyroid. Thyroid 2019; 29:290-301. [PMID: 30526387 DOI: 10.1089/thy.2017.0576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The intrafollicular space of thyroid follicles is the storage compartment for thyroid hormones. Its pH has been established at around 7.6 at least after thyrotropin (TSH) stimulation. This alkaline intrafollicular pH is thought to be critical for iodide coupling to thyroglobulin and internalization of iodinated thyroglobulin. At least in mice, this alkalinization requires the expression of pendrin (Slc26a4) within the apical membrane, and a lack of pendrin results in acidic follicular lumen pH. Yet, the mechanism importing HCO3- into the cytoplasm is unknown. This study investigated whether the rather ubiquitous sodium bicarbonate cotransporter NBCe1 (SLC4A4) might play this role. It also examined which variant was expressed and where it was localized in both rat and human thyroid tissue. Lastly, the dependence of its expression on TSH was studied. METHODS Reverse transcription polymerase chain reaction, immunofluorescence, and Western blotting were used to test whether TSH stimulated NBCe1 protein expression in vivo. Subcellular localization of NBCe1 was performed using immunofluorescence in both rat and human thyroid. Cultured thyroid cells were also used to attempt to define how TSH affects NBCe1 expression. RESULTS Only transcripts of the NBCe1-B variant were detected in both rat and human thyroid. Of interest, NBCe1-C was not detected in human tissues, not even in the brain. On immunofluorescence microscopy, the immunostaining of NBCe1 mainly appeared in the basolateral membrane upon stimulation with TSH. This TSH induction of basolateral membrane expression of NBCe1 protein was confirmed in vivo in rat thyroid and in vitro on human thyroid slices. CONCLUSIONS This study demonstrates the expression of the sodium bicarbonate cotransporter NBCe1-B in rat and human thyroid. Additionally, the data suggest that TSH blocks the degradation of NBCe1 protein by trafficking it to the basolateral membrane. Hence, TSH increases NBCe1 half-life without increasing its synthesis.
Collapse
Affiliation(s)
- Myrna Virreira
- 1 Laboratoire de Physiologie Cellulaire et Moléculaire; de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Ling Jin
- 2 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM); de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Sami Djerbib
- 1 Laboratoire de Physiologie Cellulaire et Moléculaire; de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Xavier De Deken
- 2 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM); de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Françoise Miot
- 2 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM); de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Claude Massart
- 2 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM); de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Michal Svoboda
- 3 Laboratoire Chimie Biologique et de la Nutrition; de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Jacqueline Van Sande
- 2 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM); de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Renaud Beauwens
- 1 Laboratoire de Physiologie Cellulaire et Moléculaire; de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Jacques-Emile Dumont
- 2 Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM); de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| | - Alain Boom
- 4 Laboratoire d'Histologie, de Neuroanatomie et de Neuropahologie, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Hou Y, Cui Y, Zhou Z, Liu H, Zhang H, Ding Y, Nie H, Ji HL. Upregulation of the WNK4 Signaling Pathway Inhibits Epithelial Sodium Channels of Mouse Tracheal Epithelial Cells After Influenza A Infection. Front Pharmacol 2019; 10:12. [PMID: 30723408 PMCID: PMC6349759 DOI: 10.3389/fphar.2019.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/07/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza virus has a significant impact on the respiratory system. The mechanism of how influenza virus impairs the fluid transport in airway is not fully understood. We examined its effects on epithelial sodium channels (ENaC), which are very important for water and salt transport in the respiratory system. We focused on the impacts of influenza virus on ENaC activity in mouse tracheal epithelial cells (MTECs) and applied Ussing chamber apparatus for recording the short-circuit currents in primary cultured MTECs. Expressions of α and γ-ENaC were measured at the protein and mRNA levels by western blot and quantitative real-time polymerase chain reaction, respectively. Roles of the with-no-lysine-kinase-4 (WNK4) pathway were considered in participating influenza virus-involved ENaC regulation by using siRNA to knockdown WNK4 and the physical properties of airway surface liquid (ASL) were detected by confocal microscopy. Our results showed that influenza virus reduced ENaC activity, and the expressions of α and γ-ENaC were decreased at the protein and mRNA levels, respectively. WNK4 expression increased time-dependently at the protein level after influenza virus infection, while knockdown of WNK4 rescued the impact of influenza virus on ENaC and ASL height increased obviously after MTECs were treated with influenza virus. Taken together, these results suggest that influenza virus causes the changes of biophysical profile in the airway by altering the ENaC activity at least partly via facilitating the expression of WNK4.
Collapse
Affiliation(s)
- Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Hongfei Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Honglei Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States.,Texas Lung Injury Institute, The University of Texas Health Northeast, Tyler, TX, United States
| |
Collapse
|
7
|
Wang Q, Yan SF, Hao Y, Jin SW. Specialized Pro-resolving Mediators Regulate Alveolar Fluid Clearance during Acute Respiratory Distress Syndrome. Chin Med J (Engl) 2018; 131:982-989. [PMID: 29664060 PMCID: PMC5912066 DOI: 10.4103/0366-6999.229890] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective Acute respiratory distress syndrome (ARDS) is an acute and lethal clinical syndrome that is characterized by the injury of alveolar epithelium, which impairs active fluid transport in the lung, and impedes the reabsorption of edema fluid from the alveolar space. This review aimed to discuss the role of pro-resolving mediators on the regulation of alveolar fluid clearance (AFC) in ARDS. Data Sources Articles published up to September 2017 were selected from the PubMed, with the keywords of "alveolar fluid clearance" or "lung edema" or "acute lung injury" or "acute respiratory distress syndrome", and "specialized pro-resolving mediators" or "lipoxin" or "resolvin" or "protectin" or "maresin" or "alveolar epithelial cells" or "aspirin-triggered lipid mediators" or "carbon monoxide and heme oxygenase" or "annexin A1". Study Selection We included all relevant articles published up to September 2017, with no limitation of study design. Results Specialized pro-resolving mediators (SPMs), as the proinflammatory mediators, not only upregulated epithelial sodium channel, Na,K-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporins levels, but also improved Na,K-ATPase activity to promote AFC in ARDS. In addition to the direct effects on ion channels and pumps of the alveolar epithelium, the SPMs also inhibited the inflammatory cytokine expression and improved the alveolar epithelial cell repair to enhance the AFC in ARDS. Conclusions The present review discusses a novel mechanism for pulmonary edema fluid reabsorption. SPMs might provide new opportunities to design "reabsorption-targeted" therapies with high degrees of precision in controlling ALI/ARDS.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Song-Fan Yan
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yu Hao
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
8
|
Wang Q, Lian QQ, Li R, Ying BY, He Q, Chen F, Zheng X, Yang Y, Wu DR, Zheng SX, Huang CJ, Smith FG, Jin SW. Lipoxin A(4) activates alveolar epithelial sodium channel, Na,K-ATPase, and increases alveolar fluid clearance. Am J Respir Cell Mol Biol 2013; 48:610-8. [PMID: 23470626 DOI: 10.1165/rcmb.2012-0274oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Edema fluid resorption is critical for gas exchange, and both alveolar epithelial sodium channel (ENaC) and Na,K-ATPase are accredited with key roles in the resolution of pulmonary edema. Alveolar fluid clearance (AFC) was measured in in situ ventilated lungs by instilling isosmolar 5% BSA solution with Evans Blue-labeled albumin tracer (5 ml/kg) and measuring the change in Evans Blue-labeled albumin concentration over time. Treatment with lipoxin A4 and lipoxin receptor agonist (5(S), 6(R)-7-trihydroxymethyl 17 heptanoate) significantly stimulated AFC in oleic acid (OA)-induced lung injury, with the outcome of decreased pulmonary edema. Lipoxin A4 and 5(S), 6(R)-7-trihydroxymethyl 17 heptanoate not only up-regulated the ENaC α and ENaC γ subunits protein expression, but also increased Na,K-ATPase α1 subunit protein expression and Na,K-ATPase activity in lung tissues. There was no significant difference of intracellular cAMP level between the lipoxin A4 treatment and OA group. However, the intracellular cGMP level was significantly decreased after lipoxin A4 treatment. The beneficial effects of lipoxin A4 were abrogated by butoxycarbonyl-Phe-Leu-Phe-Leu-Ph (lipoxin A4 receptor antagonist) in OA-induced lung injury. In primary rat alveolar type II epithelial cells stimulated with LPS, lipoxin A4 increased ENaC α and ENaC γ subunits protein expression and Na,K-ATPase activity. Lipoxin A4 stimulated AFC through activation of alveolar epithelial ENaC and Na,K-ATPase.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical College, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Effect of phenylephrine on alveolar fluid clearance in ventilator-induced lung injury. ACTA ACUST UNITED AC 2013; 28:1-6. [PMID: 23527799 DOI: 10.1016/s1001-9294(13)60011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the effect of phenylephrine (an α-adrenergic agonist) on alveolar fluid clearance (AFC) in ventilator-induced lung injury and the possible mechanism involved. METHODS A total of 170 male Wistar rats were randomly allocated into 17 groups (n=10) using random number tables. Short-term (40 minutes) mechanical ventilation with high tidal volume (HVT) was performed to induce lung injury, impair active Na+ transport and lung liquid clearance in the rats. Unventilated rats served as controls. To demonstrate the effect of phenylephrine on AFC, phenylephrine at different concentrations (1×10(-5), 1×10(-6), 1×10(-7), 1×10(-8), and 1×10(-9) mol/L) was injected into the alveolar space of the HVT ventilated rats. To identify the influence of adrenergic antagonists, Na(+) channel, and microtubular system on the effect of phenylephrine, phenylephrine at 1×10(-5) mol/L combined with prazosin (an α1-adrenergic antagonist, 1×10(-4) mol/L), yohimbine (an α2-adrenergic antagonist, 1×10(-4) mol/L), atenolol (a β1- adrenergic antagonist, 1×10(-5) mol/L), ICI-118551 (an β2-adrenergic antagonist, 1×10(-5) mol/L), amiloride (a Na+ channel blocker, 5×10(-4) mol/L), ouabain (a Na(+)/K(+)-ATPase blocker, 5×10(-4) mol/L), colchicine (a microtubular disrupting agent, 0.25 mg/100 g body weight), or β-lumicolchicine (an isomer of colchicine, 0.25 mg/100 g body weight) were perfused into the alveolar space of the rats ventilated with HVT for 40 minutes. AFC and total lung water content were measured. RESULTS Basal AFC in control rats was (17.47±2.56)%/hour, which decreased to (9.64± 1.32)%/hour in HVT ventilated rats (P=0.003). The perfusion of phenylephrine at 1×10(-8), 1×10(-7), 1×10(-6), and 1×10(-5) mol/L significantly increased the AFC in HVT ventilated rats (all P<0.05). This effect of phenylephrine on AFC was suppressed by prazosin, atenolol, and ICI-118551 in HVT ventilated rats by 53%, 31%, and 37%, respectively (all P<0.05). The AFC-stimulating effect of phenylephrine was lowered by 33% and 42% with amiloride and ouabain, respectively (both P<0.05). Colchicine significantly inhibited the effect of phenylephrine (P=0.031). CONCLUSION Phenylephrine could increase the AFC in HVT-ventilated rats and accelerate the absorption of pulmonary edema.
Collapse
|
10
|
Urner M, Herrmann IK, Booy C, Roth-Z' Graggen B, Maggiorini M, Beck-Schimmer B. Effect of hypoxia and dexamethasone on inflammation and ion transporter function in pulmonary cells. Clin Exp Immunol 2012; 169:119-28. [PMID: 22774986 DOI: 10.1111/j.1365-2249.2012.04595.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dexamethasone has been found to reduce the incidence of high-altitude pulmonary oedema. Mechanisms explaining this effect still remain unclear. We assessed the effect of dexamethasone using established cell lines, including rat alveolar epithelial cells (AEC), pulmonary artery endothelial cells (RPAEC) and alveolar macrophages (MAC), in an environment of low oxygen, simulating a condition of alveolar hypoxia as found at high altitude. Inflammatory mediators and ion transporter expression were quantified. Based on earlier results, we hypothesized that hypoxic conditions trigger inflammation. AEC, RPAEC and MAC, pre-incubated for 1 h with or without dexamethasone (10(-7) mol/l), were subsequently exposed to mild hypoxia (5% O(2), or normoxia as control) for 24 h. mRNA and protein levels of cytokine-induced neutrophil chemoattractant-1, monocyte chemoattractant protein-1 and interleukin-6 were analysed. mRNA expression and functional activity of the apical epithelial sodium channel and basolateral Na(+)/K(+)-ATPase were determined using radioactive marker ions. In all three types of pulmonary cells hypoxic conditions led to an attenuated secretion of inflammatory mediators, which was even more pronounced in dexamethasone pretreated samples. Function of Na(+)/K(+)-ATPase was not significantly influenced by hypoxia or dexamethasone, while activity of epithelial sodium channels was decreased under hypoxic conditions. When pre-incubated with dexamethasone, however, transporter activity was partially maintained. These findings illustrate that long-term hypoxia does not trigger an inflammatory response. The ion transport across apical epithelial sodium channels under hypoxic conditions is ameliorated in cells treated with dexamethasone.
Collapse
Affiliation(s)
- M Urner
- Institute of Anesthesiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
11
|
Ji HL, Zhao RZ, Chen ZX, Shetty S, Idell S, Matalon S. δ ENaC: a novel divergent amiloride-inhibitable sodium channel. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1013-26. [PMID: 22983350 DOI: 10.1152/ajplung.00206.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The fourth subunit of the epithelial sodium channel, termed delta subunit (δ ENaC), was cloned in human and monkey. Increasing evidence shows that this unique subunit and its splice variants exhibit biophysical and pharmacological properties that are divergent from those of α ENaC channels. The widespread distribution of epithelial sodium channels in both epithelial and nonepithelial tissues implies a range of physiological functions. The altered expression of SCNN1D is associated with numerous pathological conditions. Genetic studies link SCNN1D deficiency with rare genetic diseases with developmental and functional disorders in the brain, heart, and respiratory systems. Here, we review the progress of research on δ ENaC in genomics, biophysics, proteomics, physiology, pharmacology, and clinical medicine.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA.
| | | | | | | | | | | |
Collapse
|