1
|
Ahmad S, Nasser W, Ahmad A. Epigenetic mechanisms of alveolar macrophage activation in chemical-induced acute lung injury. Front Immunol 2024; 15:1488913. [PMID: 39582870 PMCID: PMC11581858 DOI: 10.3389/fimmu.2024.1488913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Airways, alveoli and the pulmonary tissues are the most vulnerable to the external environment including occasional deliberate or accidental exposure to highly toxic chemical gases. However, there are many effective protective mechanisms that maintain the integrity of the pulmonary tissues and preserve lung function. Alveolar macrophages form the first line of defense against any pathogen or chemical/reactant that crosses the airway mucociliary barrier and reaches the alveolar region. Resident alveolar macrophages are activated or circulating monocytes infiltrate the airspace to contribute towards inflammatory or reparative responses. Studies on response of alveolar macrophages to noxious stimuli are rapidly emerging and alveolar macrophage are also being sought as therapeutic target. Here such studies have been reviewed and put together for a better understanding of the role pulmonary macrophages in general and alveolar macrophage in particular play in the pathogenesis of disease caused by chemical induced acute lung injury.
Collapse
Affiliation(s)
- Shama Ahmad
- Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
2
|
Gallego-Durán R, Hadjihambi A, Ampuero J, Rose CF, Jalan R, Romero-Gómez M. Ammonia-induced stress response in liver disease progression and hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 2024; 21:774-791. [PMID: 39251708 DOI: 10.1038/s41575-024-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Ammonia levels are orchestrated by a series of complex interrelated pathways in which the urea cycle has a central role. Liver dysfunction leads to an accumulation of ammonia, which is toxic and is strongly associated with disruption of potassium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation, hypoxaemia and dysregulation of neurotransmission. Hyperammonaemia is a hallmark of hepatic encephalopathy and has been strongly associated with liver-related outcomes in patients with cirrhosis and liver failure. In addition to the established role of ammonia as a neurotoxin in the pathogenesis of hepatic encephalopathy, an increasing number of studies suggest that it can lead to hepatic fibrosis progression, sarcopenia, immune dysfunction and cancer. However, elevated systemic ammonia levels are uncommon in patients with metabolic dysfunction-associated steatotic liver disease. A clear causal relationship between ammonia-induced immune dysfunction and risk of infection has not yet been definitively proven. In this Review, we discuss the mechanisms by which ammonia produces its diverse deleterious effects and their clinical relevance in liver diseases, the importance of measuring ammonia levels for the diagnosis of hepatic encephalopathy, the prognosis of patients with cirrhosis and liver failure, and how our knowledge of inter-organ ammonia metabolism is leading to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rocío Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Javier Ampuero
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Manuel Romero-Gómez
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
3
|
Pan J, Zhan C, Yuan T, Gu W, Wang W, Sun Y, Chen L. Long noncoding RNA signatures in intrauterine infection/inflammation-induced lung injury: an integrative bioinformatics study. BMC Pulm Med 2023; 23:194. [PMID: 37280583 DOI: 10.1186/s12890-023-02505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Intrauterine infection/inflammation can result in fetal and neonatal lung injury. However, the biological mechanisms of intrauterine infection/inflammation on fetal and neonatal lung injury and development are poorly known. To date, there are no reliable biomarkers for improving intrauterine infection/inflammation-induced lung injury. METHODS An animal model of intrauterine infection/inflammation-induced lung injury was established with pregnant Sprague-Dawley rats inoculated with Escherichia coli suspension. The intrauterine inflammatory status was assessed through the histological examination of the placenta and uterus. A serial of histological examinations of the fetal and neonatal rats lung tissues were performed. The fetal and neonatal rat lung tissues were harvested for next generation sequencing at embryonic day 17 and postnatal day 3, respectively. Differentially expressed mRNAs and lncRNAs were identified by conducting high-throughput sequencing technique. The target genes of identified differentially expressed lncRNAs were analyzed. Homology analyses for important differentially expressed lncRNAs were performed. RESULTS The histopathological results showed inflammatory infiltration, impaired alveolar vesicular structure, less alveolar numbers, and thickened alveolar septa in fetal and neonatal rat lung tissues. Transmission electron micrographs revealed inflammatory cellular swelling associated with diffuse alveolar damage and less surfactant-storing lamellar bodies in alveolar epithelial type II cells. As compared with the control group, there were 432 differentially expressed lncRNAs at embryonic day 17 and 125 differentially expressed lncRNAs at postnatal day 3 in the intrauterine infection group. The distribution, expression level, and function of these lncRNAs were shown in the rat genome. LncRNA TCONS_00009865, lncRNA TCONS_00030049, lncRNA TCONS_00081686, lncRNA TCONS_00091647, lncRNA TCONS_00175309, lncRNA TCONS_00255085, lncRNA TCONS_00277162, and lncRNA TCONS_00157962 may play an important role in intrauterine infection/inflammation-induced lung injury. Fifty homologous sequences in Homo sapiens were also identified. CONCLUSIONS This study provides genome-wide identification of novel lncRNAs which may serve as potential diagnostic biomarkers and therapeutic targets for intrauterine infection/inflammation-induced lung injury.
Collapse
Affiliation(s)
- Jiarong Pan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Canyang Zhan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Tianming Yuan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China.
| | - Weizhong Gu
- Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Weiyan Wang
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Yi Sun
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Lihua Chen
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| |
Collapse
|
4
|
Clark GC, Elfsmark L, Armstrong S, Essex-Lopresti A, Gustafsson Å, Ryan Y, Moore K, Paszkiewicz K, Green AC, Hiscox JA, David J, Jonasson S. From "crisis to recovery": A complete insight into the mechanisms of chlorine injury in the lung. Life Sci 2022; 312:121252. [PMID: 36460096 DOI: 10.1016/j.lfs.2022.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Chlorine (Cl2) gas is a toxic industrial chemical (TIC) that poses a hazard to human health following accidental and/or intentional (e.g. terrorist) release. By using a murine model of sub-lethal Cl2 exposure we have examined the airway hyper responsiveness, cellular infiltrates, transcriptomic and proteomic responses of the lung. In the "crisis" phase at 2 h and 6 h there is a significant decreases in leukocytes within bronchoalveolar lavage fluid accompanied by an upregulation within the proteome of immune pathways ultimately resulting in neutrophil influx at 24 h. A flip towards "repair" in the transcriptome and proteome occurs at 24 h, neutrophil influx and an associated drop in the lung function persisting until 14 d post-exposure and subsequent "recovery" after 28 days. Collectively, this research provides new insights into the mechanisms of damage, early global responses and processes of repair induced in the lung following the inhalation of Cl2.
Collapse
Affiliation(s)
- Graeme C Clark
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK; Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK.
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Stuart Armstrong
- Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK
| | - Angela Essex-Lopresti
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK
| | - Åsa Gustafsson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Yan Ryan
- Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK
| | - Karen Moore
- University of Exeter, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Konrad Paszkiewicz
- University of Exeter, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - A Christopher Green
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK
| | - Julian A Hiscox
- Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK
| | - Jonathan David
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK
| | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
5
|
Su L, Qiao Y, Luo J, Huang R, Xiao Y. Exome and Sputum Microbiota as Predictive Markers of Frequent Exacerbations in Chronic Obstructive Pulmonary Disease. Biomolecules 2022; 12:biom12101481. [PMID: 36291689 PMCID: PMC9599557 DOI: 10.3390/biom12101481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Frequent acute exacerbations are the leading cause of high rates of hospitalization and mortality in chronic obstructive pulmonary disease (COPD). Despite the enormous worldwide medical burden, reliable molecular markers for effective early diagnosis and prognosis of acute exacerbations are still lacking. Both the host genetics and airway microbiome are known to play potential roles in the pathogenesis of frequent exacerbations. Here, we performed whole exome sequencing (WES) and 16S rRNA gene sequencing to explore the interaction between these two factors and their implications in the pathogenesis of frequent exacerbations. We collected peripheral blood (n = 82), sputum samples (n = 59) and clinical data from 50 frequent-exacerbation phenotype (FE) COPD patients and 32 infrequent-exacerbation phenotype (IE) as controls. Based on filtering the deleterious sites, candidate mutated genes shared only in FE patients and did not occur in the IE group were identified. Microbiota analysis revealed significant differences in bacterial diversity and composition between FE and IE groups. We report the underlying pathogenic gene including, AATF, HTT, CEP350, ADAMTS9, TLL2 genes, etc., and explore their possible genotypic-phenotypic correlations with microbiota dysbiosis. Importantly, we observed that AATF gene mutations were significantly negatively correlated with microbial richness and diversity. Our study indicated several deleterious mutations in candidate genes that might be associated with microbial dysbiosis and the increased risk of frequent acute exacerbations in COPD patients. These results provide novel evidence that exomes and related microbiomes may potentially serve as biomarkers for predicting frequent acute exacerbations in COPD patients.
Collapse
|
6
|
Elfsmark L, Ågren L, Akfur C, Jonasson S. Ammonia exposure by intratracheal instillation causes severe and deteriorating lung injury and vascular effects in mice. Inhal Toxicol 2022; 34:145-158. [PMID: 35452355 DOI: 10.1080/08958378.2022.2064566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Ammonia (NH3) is a corrosive alkaline gas that can cause life-threatening injuries by inhalation. The aim was to establish a disease model for NH3-induced injuries similar to acute lung injury (ALI) described in exposed humans and investigate the progression of lung damage, respiratory dysfunction and evaluate biomarkers for ALI and inflammation over time. METHODS Female BALB/c mice were exposed to an NH3 dose of 91.0 mg/kg·bw using intratracheal instillation and the pathological changes were followed for up to 7 days. RESULTS NH3 instillation resulted in the loss of body weight along with a significant increase in pro-inflammatory mediators in both bronchoalveolar lavage fluid (e.g. IL-1β, IL-6, KC, MMP-9, SP-D) and blood (e.g. IL-6, Fibrinogen, PAI-1, PF4/CXCL4, SP-D), neutrophilic lung inflammation, alveolar damage, increased peripheral airway resistance and methacholine-induced airway hyperresponsiveness compared to controls at 20 h. On day 7 after exposure, deteriorating pathological changes such as increased macrophage lung infiltration, heart weights, lung hemorrhages and coagulation abnormalities (elevated plasma levels of PAI-1, fibrinogen, endothelin and thrombomodulin) were observed but no increase in lung collagen. Some of the analyzed blood biomarkers (e.g. RAGE, IL-1β) were unaffected despite severe ALI and may not be significant for NH3-induced damages. CONCLUSIONS NH3 induces severe acute lung injuries that deteriorate over time and biomarkers in lungs and blood that are similar to those found in humans. Therefore, this model has potential use for developing diagnostic tools for NH3-induced ALI and for finding new therapeutic treatments, since no specific antidote has been identified yet.
Collapse
Affiliation(s)
- Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Lina Ågren
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Christine Akfur
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| |
Collapse
|
7
|
Amatya B, Lee H, Asico LD, Konkalmatt P, Armando I, Felder RA, Jose PA. SNX-PXA-RGS-PXC Subfamily of SNXs in the Regulation of Receptor-Mediated Signaling and Membrane Trafficking. Int J Mol Sci 2021; 22:ijms22052319. [PMID: 33652569 PMCID: PMC7956473 DOI: 10.3390/ijms22052319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
The SNX-PXA-RGS-PXC subfamily of sorting nexins (SNXs) belongs to the superfamily of SNX proteins. SNXs are characterized by the presence of a common phox-homology (PX) domain, along with other functional domains that play versatile roles in cellular signaling and membrane trafficking. In addition to the PX domain, the SNX-PXA-RGS-PXC subfamily, except for SNX19, contains a unique RGS (regulators of G protein signaling) domain that serves as GTPase activating proteins (GAPs), which accelerates GTP hydrolysis on the G protein α subunit, resulting in termination of G protein-coupled receptor (GPCR) signaling. Moreover, the PX domain selectively interacts with phosphatidylinositol-3-phosphate and other phosphoinositides found in endosomal membranes, while also associating with various intracellular proteins. Although SNX19 lacks an RGS domain, all members of the SNX-PXA-RGS-PXC subfamily serve as dual regulators of receptor cargo signaling and endosomal trafficking. This review discusses the known and proposed functions of the SNX-PXA-RGS-PXC subfamily and how it participates in receptor signaling (both GPCR and non-GPCR) and endosomal-based membrane trafficking. Furthermore, we discuss the difference of this subfamily of SNXs from other subfamilies, such as SNX-BAR nexins (Bin-Amphiphysin-Rvs) that are associated with retromer or other retrieval complexes for the regulation of receptor signaling and membrane trafficking. Emerging evidence has shown that the dysregulation and malfunction of this subfamily of sorting nexins lead to various pathophysiological processes and disorders, including hypertension.
Collapse
Affiliation(s)
- Bibhas Amatya
- The George Washington University, Washington, DC 20052, USA;
| | - Hewang Lee
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Laureano D. Asico
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Prasad Konkalmatt
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Ines Armando
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA;
| | - Pedro A. Jose
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA;
- Department of Pharmacology/Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
- Correspondence:
| |
Collapse
|