1
|
Barreca M, Renda M, Spanò V, Montalbano A, Raimondi MV, Giuffrida S, Bivacqua R, Bandiera T, Galietta LJV, Barraja P. Identification of 6,9-dihydro-5H-pyrrolo[3,2-h]quinazolines as a new class of F508del-CFTR correctors for the treatment of cystic fibrosis. Eur J Med Chem 2024; 276:116691. [PMID: 39089001 DOI: 10.1016/j.ejmech.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024]
Abstract
Although substantial advances have been obtained in the pharmacological treatment of cystic fibrosis (CF) with the approval of Kaftrio, a combination of two correctors (VX-661, VX-445) and one potentiator (VX-770), new modulators are still needed to rescue F508del and other CFTR mutants with trafficking defects. We have previously identified PP compounds based on a tricyclic core as correctors with high efficacy in the rescue of F508del-CFTR on native epithelial cells of CF patients, particularly in combination with class 1 correctors (VX-809, VX-661). Compound PP028 was found as a lead candidate for the high rescue of F508del-CFTR and used for mechanistic insight indicating that PP028 behaves as a class 3 corrector, similarly to VX-445. From the exploration of the chemical space around the hit structure, based on iterative cycles of chemical synthesis and functional testing, the class of 6,9-dihydro-5H-pyrrolo [3,2-h]quinazolines with corrector activity was discovered. Within a series of 38 analogues, two derivatives emerged as promising candidates and used for further insight to assess the mechanism of action. Both compounds, decorated with a benzensulfonylamino group at the pyrimidine moiety, were able to generate a dose-dependent increase in CFTR function, particularly in the presence of VX-809. Half-effective concentrations (EC50) were in the single digit micromolar range and decreased in the presence of VX-809 thus indicating a synergistic interaction with class 1 correctors. Synergy was also observed with corr-4a (class 2 corrector) but not with VX-445 and PP028 (class 3 correctors) indicating that the new compounds behave as class 3 correctors. These results suggest that tricyclic pyrrolo-quinazolines interact with CFTR at a site different from that of VX-809 and represent a novel class of CFTR correctors suitable for combinatorial pharmacological treatments for the basic defect in CF.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Mario Renda
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Virginia Spanò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Stefano Giuffrida
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Roberta Bivacqua
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; Department of Translational Medical Sciences (DISMET), University of Naples "Federico II", Via Sergio Pansini 5, 80131 Naples, Italy
| | - Paola Barraja
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
2
|
Vaccarin C, Gabbia D, Franceschinis E, De Martin S, Roverso M, Bogialli S, Sacchetti G, Tupini C, Lampronti I, Gambari R, Cabrini G, Dechecchi MC, Tamanini A, Marzaro G, Chilin A. Improved Trimethylangelicin Analogs for Cystic Fibrosis: Design, Synthesis and Preliminary Screening. Int J Mol Sci 2022; 23:ijms231911528. [PMID: 36232826 PMCID: PMC9570109 DOI: 10.3390/ijms231911528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
A small library of new angelicin derivatives was designed and synthesized with the aim of bypassing the side effects of trimethylangelicin (TMA), a promising agent for the treatment of cystic fibrosis. To prevent photoreactions with DNA, hindered substituents were inserted at the 4 and/or 6 positions. Unlike the parent TMA, none of the new derivatives exhibited significant cytotoxicity or mutagenic effects. Among the synthesized compounds, the 4-phenylderivative 12 and the 6-phenylderivative 25 exerted a promising F508del CFTR rescue ability. On these compounds, preliminary in vivo pharmacokinetic (PK) studies were carried out, evidencing a favorable PK profile per se or after incorporation into lipid formulations. Therefore, the selected compounds are good candidates for future extensive investigation to evaluate and develop novel CFTR correctors based on the angelicin structure.
Collapse
Affiliation(s)
- Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Chiara Tupini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Maria Cristina Dechecchi
- Department of Neurosciences, Biomedicine and Movement, Section of Clinical Biochemistry, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Anna Tamanini
- Department of Neurosciences, Biomedicine and Movement, Section of Clinical Biochemistry, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
- Center of Innovative Therapies for Cystic Fibrosis (InnThera4CF), University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
3
|
Franceschinis E, Roverso M, Gabbia D, De Martin S, Brusegan M, Vaccarin C, Bogialli S, Chilin A. Self-Emulsifying Formulations to Increase the Oral Bioavailability of 4,6,4′-Trimethylangelicin as a Possible Treatment for Cystic Fibrosis. Pharmaceutics 2022; 14:pharmaceutics14091806. [PMID: 36145554 PMCID: PMC9506254 DOI: 10.3390/pharmaceutics14091806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
4,6,4′-trimethylangelicin (TMA) is a promising pharmacological option for the treatment of cystic fibrosis (CF) due to its triple-acting behavior toward the function of the CF transmembrane conductance regulator. It is a poorly water-soluble drug, and thus it is a candidate for developing a self-emulsifying formulation (SEDDS). This study aimed to develop a SEDDS to improve the oral bioavailability of TMA. Excipients were selected on the basis of solubility studies. Polyoxyl-35 castor oil (Cremophor® EL) was proposed as surfactant, diethylene glycol-monoethyl ether (Transcutol® HP) as cosolvent, and a mixture of long-chainmono-,di-, and triglycerides (Maisine® CC) or medium-chain triglycerides (LabrafacTM lipophile) as oil phases. Different mixtures were prepared and characterized by measuring the emulsification time, drop size, and polydispersity index to identify the most promising formulation. Two formulations containing 50% surfactant (w/w), 40% cosolvent (w/w), and 10% oil (w/w) (Maisine® CC or LabrafacTM lipophile) were selected. The results showed that both formulations were able to self-emulsify, producing nanoemulsions with a drop size range of 20–25 nm, and in vivo pharmacokinetic studies demonstrated that they were able to significantly increase the oral bioavailability of TMA. In conclusion, SEEDS are useful tools to ameliorate the pharmacokinetic profile of TMA and could represent a strategy to improve the therapeutic management of CF.
Collapse
Affiliation(s)
- Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padua, Italy
- Correspondence:
| | - Marco Roverso
- Department of Chemical Sciences, Via Marzolo 1, 35131 Padua, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padua, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padua, Italy
| | - Matteo Brusegan
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padua, Italy
| | - Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padua, Italy
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Sara Bogialli
- Department of Chemical Sciences, Via Marzolo 1, 35131 Padua, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padua, Italy
| |
Collapse
|
4
|
Amaral MD. Precision medicine for rare diseases: The times they are A-Changin'. Curr Opin Pharmacol 2022; 63:102201. [DOI: 10.1016/j.coph.2022.102201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
|
5
|
Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm Pharmacol Ther 2021; 72:102098. [PMID: 34793977 DOI: 10.1016/j.pupt.2021.102098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
The cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six VI mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.e. the altered ion and fluid transport through the airway epithelium. These drugs, called CFTR modulators, have been advanced to the clinics to treat nearly 90% of CF patients, including the CFTR potentiator ivacaftor, approved for residual function mutations (Classes III and IV), and combinations of correctors (lumacaftor, tezacaftor, elexacaftor) and ivacaftor for patients bearing at least one the F508del mutation, the most frequent mutation belonging to class II. To cover the 10% of CF patients without etiological therapies, other novel small-molecule CFTR modulators are in evaluation of their effectiveness in all the CFTR mutation classes: read-through agents for Class I, correctors, potentiators and amplifiers from different companies for Class II-V, stabilizers for Class VI. In alternative, other solute carriers, such as SLC26A9 and SLC6A14, are the focus of intensive investigation. Finally, other molecular targets are being evaluated for patients with no approved CFTR modulator therapy or as means of enhancing CFTR modulatory therapy, including small molecules forming ion channels, inhibitors of the ENaC sodium channel and potentiators of the calcium-activated chloride channel TMEM16A. This paper aims to give an up-to-date overview of old and novel CFTR modulators as well as of novel strategies based on small-molecule drugs. Further investigations in in-vivo and cell-based models as well as carrying out large prospective studies will be required to determine if novel CFTR modulators, stabilizers, amplifiers, and the ENaC inhibitors or TMEM16A potentiators will further improve the clinical outcomes in CF management.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
6
|
Phenotyping Rare CFTR Mutations Reveal Functional Expression Defects Restored by TRIKAFTA TM. J Pers Med 2021; 11:jpm11040301. [PMID: 33920764 PMCID: PMC8071105 DOI: 10.3390/jpm11040301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
The rare Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mutations, c.1826A > G (H609R) and c.3067_3072delATAGTG (I1023_V1024del), are associated with severe lung disease. Despite the existence of four CFTR targeted therapies, none have been approved for individuals with these mutations because the associated molecular defects were not known. In this study we examined the consequences of these mutations on protein processing and channel function in HEK293 cells. We found that, similar to F508del, H609R and I1023_V1024del-CFTR exhibited reduced protein processing and altered channel function. Because the I1023_V1024del mutation can be linked with the mutation, I148T, we also examined the protein conferred by transfection of a plasmid bearing both mutations. Interestingly, together with I148T, there was no further reduction in channel function exhibited by I1023-V1024del. Both H609R and I1023_V1024del failed to exhibit significant correction of their functional expression with lumacaftor and ivacaftor. In contrast, the triple modulator combination found in TRIKAFTATM, i.e., tezacaftor, elexacaftor and ivacaftor rescued trafficking and function of both of these mutants. These in-vitro findings suggest that patients harbouring H609R or I1023_V1024del, alone or with I148T, may benefit clinically from treatment with TRIKAFTATM.
Collapse
|
7
|
Dysfunctional Inflammation in Cystic Fibrosis Airways: From Mechanisms to Novel Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22041952. [PMID: 33669352 PMCID: PMC7920244 DOI: 10.3390/ijms22041952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients.
Collapse
|
8
|
Tamanini A, Fabbri E, Jakova T, Gasparello J, Manicardi A, Corradini R, Finotti A, Borgatti M, Lampronti I, Munari S, Dechecchi MC, Cabrini G, Gambari R. A Peptide-Nucleic Acid Targeting miR-335-5p Enhances Expression of Cystic Fibrosis Transmembrane Conductance Regulator ( CFTR) Gene with the Possible Involvement of the CFTR Scaffolding Protein NHERF1. Biomedicines 2021; 9:biomedicines9020117. [PMID: 33530577 PMCID: PMC7911309 DOI: 10.3390/biomedicines9020117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Background: Up-regulation of the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) might be of great relevance for the development of therapeutic protocols for cystic fibrosis (CF). MicroRNAs are deeply involved in the regulation of CFTR and scaffolding proteins (such as NHERF1, NHERF2 and Ezrin). (2) Methods: Content of miRNAs and mRNAs was analyzed by RT-qPCR, while the CFTR and NHERF1 production was analyzed by Western blotting. (3) Results: The results here described show that the CFTR scaffolding protein NHERF1 can be up-regulated in bronchial epithelial Calu-3 cells by a peptide-nucleic acid (PNA) targeting miR-335-5p, predicted to bind to the 3′-UTR sequence of the NHERF1 mRNA. Treatment of Calu-3 cells with this PNA (R8-PNA-a335) causes also up-regulation of CFTR. (4) Conclusions: We propose miR-335-5p targeting as a strategy to increase CFTR. While the efficiency of PNA-based targeting of miR-335-5p should be verified as a therapeutic strategy in CF caused by stop-codon mutation of the CFTR gene, this approach might give appreciable results in CF cells carrying other mutations impairing the processing or stability of CFTR protein, supporting its application in personalized therapy for precision medicine.
Collapse
Affiliation(s)
- Anna Tamanini
- Section of Molecular Pathology, Department of Pathology and Diagnostics, University-Hospital of Verona, 37126 Verona, Italy; (A.T.); (S.M.)
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
| | - Tiziana Jakova
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (T.J.); (A.M.); (R.C.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (T.J.); (A.M.); (R.C.)
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (T.J.); (A.M.); (R.C.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
| | - Silvia Munari
- Section of Molecular Pathology, Department of Pathology and Diagnostics, University-Hospital of Verona, 37126 Verona, Italy; (A.T.); (S.M.)
| | - Maria Cristina Dechecchi
- Department of Neurosciences, Biomedicine and Movement, University of Verona, 37100 Verona, Italy;
| | - Giulio Cabrini
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
- Department of Neurosciences, Biomedicine and Movement, University of Verona, 37100 Verona, Italy;
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (E.F.); (J.G.); (A.F.); (M.B.); (I.L.)
- Research Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy;
- Correspondence: ; Tel.: +39-0532-974443
| |
Collapse
|
9
|
Amaral MD. How to determine the mechanism of action of CFTR modulator compounds: A gateway to theranostics. Eur J Med Chem 2020; 210:112989. [PMID: 33190956 DOI: 10.1016/j.ejmech.2020.112989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
The greatest challenge of 21st century biology is to fully understand mechanisms of disease to drive new approaches and medical innovation. Parallel to this is the huge biomedical endeavour of treating people through personalized medicine. Until now all CFTR modulator drugs that have entered clinical trials have been genotype-dependent. An emerging alternative is personalized/precision medicine in CF, i.e., to determine whether rare CFTR mutations respond to existing (or novel) CFTR modulator drugs by pre-assessing them directly on patient's tissues ex vivo, an approach also now termed theranostics. To administer the right drug to the right person it is essential to understand how drugs work, i.e., to know their mechanism of action (MoA), so as to predict their applicability, not just in certain mutations but also possibly in other diseases that share the same defect/defective pathway. Moreover, an understanding the MoA of a drug before it is tested in clinical trials is the logical path to drug discovery and can increase its chance for success and hence also approval. In conclusion, the most powerful approach to determine the MoA of a compound is to understand the underlying biology. Novel large datasets of intervenients in most biological processes, namely those emerging from the post-genomic era tools, are available and should be used to help in this task.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Faculty of Sciences, University of Lisboa, Portugal.
| |
Collapse
|
10
|
Fabbri E, Tamanini A, Jakova T, Gasparello J, Manicardi A, Corradini R, Finotti A, Borgatti M, Lampronti I, Munari S, Dechecchi MC, Cabrini G, Gambari R. Treatment of human airway epithelial Calu-3 cells with a peptide-nucleic acid (PNA) targeting the microRNA miR-101-3p is associated with increased expression of the cystic fibrosis Transmembrane Conductance Regulator () gene. Eur J Med Chem 2020; 209:112876. [PMID: 33127171 DOI: 10.1016/j.ejmech.2020.112876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Since the identification of microRNAs (miRNAs) involved in the regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, miRNAs known to down-regulate the expression of the CFTR and associated proteins have been investigated as potential therapeutic targets. Here we show that miR-101-3p, targeting the 3'-UTR sequence of the CFTR mRNA, can be selectively inhibited by a peptide nucleic acid (PNA) carrying a full complementary sequence. With respect to clinical relevance of microRNA targeting, it is expected that reduction in concentration of miRNAs (the anti-miRNA approach) could be associated with increasing amounts of target mRNAs. Consistently to this hypothesis, we report that PNA-mediated inhibition of miR-101-3p was accompanied by CFTR up-regulation. Next Generation Sequencing (NGS) was performed in order to verify the effects of the anti-miR-101-3p PNA on the Calu-3 miRNome. Upon inhibition of miR-101-3p we observed a fold change (FC) expression <2 of the majority of miRNAs (403/479, 84.13%), whereas we identified a list of dysregulated miRNAs, suggesting that specific miRNA inhibition (in our case miR-101-3p) might be accompanied by alteration of expression of other miRNAs, some of them known to be involved in Cystic Fibrosis (CF), such as miR-155-5p and miR-125b-5p.
Collapse
Affiliation(s)
- Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Anna Tamanini
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Italy
| | - Tiziana Jakova
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Section of Clinical Biochemistry, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Section of Clinical Biochemistry, Italy; Department of Organic and Macromolecular Chemistry, University of Ghent, Belgium
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Section of Clinical Biochemistry, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Silvia Munari
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Italy
| | | | - Giulio Cabrini
- Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy; Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy
| | - Roberto Gambari
- Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy.
| |
Collapse
|
11
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
GM1 as Adjuvant of Innovative Therapies for Cystic Fibrosis Disease. Int J Mol Sci 2020; 21:ijms21124486. [PMID: 32599772 PMCID: PMC7350007 DOI: 10.3390/ijms21124486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/26/2023] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein is expressed at the apical plasma membrane (PM) of different epithelial cells. The most common mutation responsible for the onset of cystic fibrosis (CF), F508del, inhibits the biosynthesis and transport of the protein at PM, and also presents gating and stability defects of the membrane anion channel upon its rescue by the use of correctors and potentiators. This prompted a multiple drug strategy for F508delCFTR aimed simultaneously at its rescue, functional potentiation and PM stabilization. Since ganglioside GM1 is involved in the functional stabilization of transmembrane proteins, we investigated its role as an adjuvant to increase the effectiveness of CFTR modulators. According to our results, we found that GM1 resides in the same PM microenvironment as CFTR. In CF cells, the expression of the mutated channel is accompanied by a decrease in the PM GM1 content. Interestingly, by the exogenous administration of GM1, it becomes a component of the PM, reducing the destabilizing effect of the potentiator VX-770 on rescued CFTR protein expression/function and improving its stabilization. This evidence could represent a starting point for developing innovative therapeutic strategies based on the co-administration of GM1, correctors and potentiators, with the aim of improving F508del CFTR function.
Collapse
|
13
|
Laselva O, Stone TA, Bear CE, Deber CM. Anti-Infectives Restore ORKAMBI ® Rescue of F508del-CFTR Function in Human Bronchial Epithelial Cells Infected with Clinical Strains of P. aeruginosa. Biomolecules 2020; 10:biom10020334. [PMID: 32092967 PMCID: PMC7072183 DOI: 10.3390/biom10020334] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic infection and inflammation are the primary causes of declining lung function in Cystic Fibrosis (CF) patients. ORKAMBI® (Lumacaftor-Ivacaftor) is an approved combination therapy for Cystic Fibrosis (CF) patients bearing the most common mutation, F508del, in the cystic fibrosis conductance regulator (CFTR) protein. It has been previously shown that ORKAMBI®-mediated rescue of CFTR is reduced by a pre-existing Pseudomonas aeruginosa infection. Here, we show that the infection of F508del-CFTR human bronchial epithelial (HBE) cells with lab strain and four different clinical strains of P. aeruginosa, isolated from the lung sputum of CF patients, decreases CFTR function in a strain-specific manner by 48 to 88%. The treatment of infected cells with antibiotic tobramycin or cationic antimicrobial peptide 6K-F17 was found to decrease clinical strain bacterial growth on HBE cells and restore ORKAMBI®-mediated rescue of F508del-CFTR function. Further, 6K-F17 was found to downregulate the expression of pro-inflammatory cytokines, interleukin (IL)-8, IL-6, and tumor necrosis factor-α in infected HBE cells. The results provide strong evidence for a combination therapy approach involving CFTR modulators and anti-infectives (i.e., tobramycin and/or 6K-F17) to improve their overall efficacy in CF patients.
Collapse
Affiliation(s)
- Onofrio Laselva
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (O.L.); (T.A.S.); (C.E.B.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tracy A. Stone
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (O.L.); (T.A.S.); (C.E.B.)
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christine E. Bear
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (O.L.); (T.A.S.); (C.E.B.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Charles M. Deber
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (O.L.); (T.A.S.); (C.E.B.)
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-813-5924
| |
Collapse
|
14
|
Finotti A, Gasparello J, Fabbri E, Tamanini A, Corradini R, Dechecchi MC, Cabrini G, Gambari R. Enhancing the Expression of CFTR Using Antisense Molecules against MicroRNA miR-145-5p. Am J Respir Crit Care Med 2020; 199:1443-1444. [PMID: 30811944 PMCID: PMC6543725 DOI: 10.1164/rccm.201901-0019le] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Giulio Cabrini
- 1 University of Ferrara Ferrara, Italy.,2 University Hospital of Verona Verona, Italy and
| | | |
Collapse
|
15
|
Favia M, de Bari L, Bobba A, Atlante A. An Intriguing Involvement of Mitochondria in Cystic Fibrosis. J Clin Med 2019; 8:jcm8111890. [PMID: 31698802 PMCID: PMC6912654 DOI: 10.3390/jcm8111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) occurs when the cystic fibrosis transmembrane conductance regulator (CFTR) protein is not synthetized and folded correctly. The CFTR protein helps to maintain the balance of salt and water on many body surfaces, such as the lung surface. When the protein is not working correctly, chloride becomes trapped in cells, then water cannot hydrate the cellular surface and the mucus covering the cells becomes thick and sticky. Furthermore, a defective CFTR appears to produce a redox imbalance in epithelial cells and extracellular fluids and to cause an abnormal generation of reactive oxygen species: as a consequence, oxidative stress has been implicated as a causative factor in the aetiology of the process. Moreover, massive evidences show that defective CFTR gives rise to extracellular GSH level decrease and elevated glucose concentrations in airway surface liquid (ASL), thus encouraging lung infection by pathogens in the CF advancement. Recent research in progress aims to rediscover a possible role of mitochondria in CF. Here the latest new and recent studies on mitochondrial bioenergetics are collected. Surprisingly, they have enabled us to ascertain that mitochondria have a leading role in opposing the high ASL glucose level as well as oxidative stress in CF.
Collapse
Affiliation(s)
- Maria Favia
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari—CNR, Via G. Amendola 122/O, 70126 Bari, Italy; (L.d.B.); (A.B.)
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via E. Orabona 4, 70126 Bari, Italy
- Correspondence: (M.F.); (A.A.)
| | - Lidia de Bari
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari—CNR, Via G. Amendola 122/O, 70126 Bari, Italy; (L.d.B.); (A.B.)
| | - Antonella Bobba
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari—CNR, Via G. Amendola 122/O, 70126 Bari, Italy; (L.d.B.); (A.B.)
| | - Anna Atlante
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari—CNR, Via G. Amendola 122/O, 70126 Bari, Italy; (L.d.B.); (A.B.)
- Correspondence: (M.F.); (A.A.)
| |
Collapse
|
16
|
Amico G, Brandas C, Moran O, Baroni D. Unravelling the Regions of Mutant F508del-CFTR More Susceptible to the Action of Four Cystic Fibrosis Correctors. Int J Mol Sci 2019; 20:ijms20215463. [PMID: 31683989 PMCID: PMC6862496 DOI: 10.3390/ijms20215463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease associated with the defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that causes obstructive disease and chronic bacterial infections in airway epithelia. The most prevalent CF-causing mutation, the deletion of phenylalanine at position 508 (F508del), leads to CFTR misfolding, trafficking defects and premature degradation. A number of correctors that are able to partially rescue F508del-CFTR processing defects have been identified. Clinical trials have demonstrated that, unfortunately, mono-therapy with the best correctors identified to date does not ameliorate lung function or sweat chloride concentration in homozygous F508del patients. Understanding the mechanisms exerted by currently available correctors to increase mutant F508del-CFTR expression is essential for the development of new CF-therapeutics. We investigated the activity of correctors on the mutant F508del and wild type (WT) CFTR to identify the protein domains whose expression is mostly affected by the action of correctors, and we investigated their mechanisms of action. We found that the four correctors under study, lumacaftor (VX809), the quinazoline derivative VX325, the bithiazole compound corr4a, and the new molecule tezacaftor (VX661), do not influence either the total expression or the maturation of the WT-CFTR transiently expressed in human embryonic kidney 293 (HEK293) cells. Contrarily, they significantly enhance the expression and the maturation of the full length F508del molecule. Three out of four correctors, VX809, VX661 and VX325, seem to specifically improve the expression and the maturation of the mutant CFTR N-half (M1N1, residues 1–633). By contrast, the CFTR C-half (M2N2, residues 837–1480) appears to be the region mainly affected by corr4a. VX809 was shown to stabilize both the WT- and F508del-CFTR N-half isoforms, while VX661 and VX325 demonstrated the ability to enhance the stability only of the mutant F508del polypeptide.
Collapse
Affiliation(s)
- Giulia Amico
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Chiara Brandas
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| |
Collapse
|
17
|
Cabrini G. Innovative Therapies for Cystic Fibrosis: The Road from Treatment to Cure. Mol Diagn Ther 2019; 23:263-279. [PMID: 30478715 DOI: 10.1007/s40291-018-0372-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF), a life-threatening multiorgan genetic disease, is facing a new era of research and development using innovative gene-directed personalized therapies. The priority organ to cure is the lung, which suffers recurrent and chronic bacterial infection and inflammation since infancy, representing the main cause of morbidity and precocious mortality of these individuals. After the disappointing failure of gene-replacement approaches using gene therapy vectors, no single drug is presently available to repair all the CF gene defects. The impressive number of different CF gene mutations is now tackled with different chemical and biotechnological tools tailored to the specific molecular derangements, thanks to the extensive knowledge acquired over many years on the mechanisms of CF cell and organ pathology. This review provides an overview and recalls both the successes and limitations of the different experimental approaches, such as high-throughput screening on chemical libraries to discover CF gene correctors and potentiators, dual-acting compounds, read-through molecules, splicing defect repairing tools, cystic fibrosis transmembrane conductance regulator (CFTR) "amplifiers," CFTR interactome modulators and the first gene editing attempts.
Collapse
Affiliation(s)
- Giulio Cabrini
- Laboratory of Molecular Pathology, University Hospital, Verona, Italy. .,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
18
|
Carbone A, Montalbano A, Spanò V, Musante I, Galietta LJV, Barraja P. Furocoumarins as multi-target agents in the treatment of cystic fibrosis. Eur J Med Chem 2019; 180:283-290. [PMID: 31319264 DOI: 10.1016/j.ejmech.2019.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023]
Abstract
Multi-target molecular entities, offer a path to progress both in understanding causes of disease and in defining effective small molecule treatments. Coumarin and its derivatives belong to an important group of natural compounds with diverse biological properties. They are found in vegetables and plants for which literature reports thousands of publications for the great variety of biological applications among which the photoprotective effects, thus being considered multi-targeting agents. Their furan condensed analogues constitute the family of furocoumarins, less represented in the literature, endowed with photosensitizing properties and often used for the treatment of skin diseases such as vitiligo and psoriasis. Despite the study of biological properties of linear and angular furocumarins dates back to ancient times, mainly as photosensitizers, these small molecules still represent an attractive scaffold for further development and applications in several therapeutic fields. The aim of the present review is to summarize the most promising chemical entities belonging to the class of furocumarins and coumarins, emerged in the last decades, and the methods used for their synthesis with a particular focus on main targets involved in the cystic fibrosis treatment.
Collapse
Affiliation(s)
- Anna Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Ilaria Musante
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Campi Flegrei 34, 80078, Pozzuoli, NA, Italy; Department of Translational Medical Sciences (DISMET), University of Naples, "Federico II", 80131, Naples, Italy
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
19
|
Merkert S, Schubert M, Olmer R, Engels L, Radetzki S, Veltman M, Scholte BJ, Zöllner J, Pedemonte N, Galietta LJV, von Kries JP, Martin U. High-Throughput Screening for Modulators of CFTR Activity Based on Genetically Engineered Cystic Fibrosis Disease-Specific iPSCs. Stem Cell Reports 2019; 12:1389-1403. [PMID: 31080112 PMCID: PMC6565754 DOI: 10.1016/j.stemcr.2019.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 11/24/2022] Open
Abstract
Organotypic culture systems from disease-specific induced pluripotent stem cells (iPSCs) exhibit obvious advantages compared with immortalized cell lines and primary cell cultures, but implementation of iPSC-based high-throughput (HT) assays is still technically challenging. Here, we demonstrate the development and conduction of an organotypic HT Cl-/I- exchange assay using cystic fibrosis (CF) disease-specific iPSCs. The introduction of a halide-sensitive YFP variant enabled automated quantitative measurement of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in iPSC-derived intestinal epithelia. CFTR function was partially rescued by treatment with VX-770 and VX-809, and seamless gene correction of the p.Phe508del mutation resulted in full restoration of CFTR function. The identification of a series of validated primary hits that improve the function of p.Phe508del CFTR from a library of ∼42,500 chemical compounds demonstrates that the advantages of complex iPSC-derived culture systems for disease modeling can also be utilized for drug screening in a true HT format.
Collapse
Affiliation(s)
- Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Madline Schubert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Lena Engels
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Silke Radetzki
- Leibniz-Forschnungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Mieke Veltman
- ErasmusMC, Sophia Children's Hospital, Pediatric Pulmonology, 3015 AA Rotterdam, The Netherlands; Cell Biology Department Rotterdam, 3015 AA Rotterdam, The Netherlands
| | - Bob J Scholte
- ErasmusMC, Sophia Children's Hospital, Pediatric Pulmonology, 3015 AA Rotterdam, The Netherlands; Cell Biology Department Rotterdam, 3015 AA Rotterdam, The Netherlands
| | - Janina Zöllner
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | | | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Jens P von Kries
- Leibniz-Forschnungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
20
|
Modulation of glucose-related metabolic pathways controls glucose level in airway surface liquid and fight oxidative stress in cystic fibrosis cells. J Bioenerg Biomembr 2019; 51:203-218. [PMID: 31030390 DOI: 10.1007/s10863-019-09797-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
Direct and indirect evidences show that elevated glucose concentrations in airway surface liquid (ASL) promote lung infection by pathogens, playing a role in the progression of the Cystic Fibrosis (CF) disease. The joint action of transporter/s for glucose and of the cellular enzymes is essential in order to try to lower ASL glucose level. Inside the cell, the glycolysis and the pentose phosphate pathway (PPP) compete for the utilization of glucose-6-phosphate (G6P), the product in which glucose, after entry within the cell and phosphorylation, is trapped. The study aims to clarify whether, modulating the activity of enzymatic proteins and/or the level of metabolites/cofactors, involved in intracellular glucose utilization, a lowering of the extracellular glucose level in CF occurs. Biochemical approaches have enabled us to understand i) how G6P is shunted between glycolysis and PPP and ii) that mitochondria, more than enzymes/cofactors participating to the two cell glucose utilization pathways, are protagonists of the scene in counteracting the high ASL glucose level as well as oxidative stress in CF.
Collapse
|
21
|
Bezzerri V, Piacenza F, Caporelli N, Malavolta M, Provinciali M, Cipolli M. Is cellular senescence involved in cystic fibrosis? Respir Res 2019; 20:32. [PMID: 30764828 PMCID: PMC6376730 DOI: 10.1186/s12931-019-0993-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary disease is the main cause of the morbidity and mortality of patients affected by cystic fibrosis (CF). The lung pathology is dominated by excessive recruitment of neutrophils followed by an exaggerated inflammatory process that has also been reported to occur in the absence of apparent pathogenic infections. Airway surface dehydration and mucus accumulation are the driving forces of this process. The continuous release of reactive oxygen species and proteases by neutrophils contributes to tissue damage, which eventually leads to respiratory insufficiency. CF has been considered a paediatric problem for several decades. Nevertheless, during the last 40 years, therapeutic options for CF have been greatly improved, turning CF into a chronic disease and extending the life expectancy of patients. Unfortunately, chronic inflammatory processes, which are characterized by a substantial release of cytokines and chemokines, along with ROS and proteases, can accelerate cellular senescence, leading to further complications in adulthood. The alterations and mechanisms downstream of CFTR functional defects that can stimulate cellular senescence remain unclear. However, while there are correlative data suggesting that cellular senescence may be implicated in CF, a causal or consequential relationship between cellular senescence and CF is still far from being established. Senescence can be both beneficial and detrimental. Senescence may suppress bacterial infections and cooperate with tissue repair. Additionally, it may act as an effective anticancer mechanism. However, it may also promote a pro-inflammatory environment, thereby damaging tissues and leading to chronic age-related diseases. In this review, we present the most current knowledge on cellular senescence and contextualize its possible involvement in CF.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Nicole Caporelli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy.
| |
Collapse
|
22
|
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019; 99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - Paola Vergani
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - David C Gadsby
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| |
Collapse
|
23
|
Dechecchi MC, Tamanini A, Cabrini G. Molecular basis of cystic fibrosis: from bench to bedside. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:334. [PMID: 30306073 PMCID: PMC6174194 DOI: 10.21037/atm.2018.06.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF), is an autosomal recessive disease affecting different organs. The lung disease, characterized by recurrent and chronic bacterial infection and inflammation since infancy, is the main cause of morbidity and precocious mortality of these individuals. The innovative therapies directed to repair the defective CF gene should account for the presence of more than 200 disease-causing mutations of the CF transmembrane conductance regulator (CFTR) gene. The review will recall the different experimental approaches in discovering CFTR protein targeted molecules, such as the high throughput screening on chemical libraries to discover correctors and potentiators of CFTR protein, dual-acting compounds, read-through molecules, splicing defects repairing tools, CFTR "amplifiers".
Collapse
Affiliation(s)
- Maria Cristina Dechecchi
- Laboratory of Analysis, Section of Molecular Pathology, University Hospital of Verona, Verona, Italy
| | - Anna Tamanini
- Laboratory of Analysis, Section of Molecular Pathology, University Hospital of Verona, Verona, Italy
| | - Giulio Cabrini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
24
|
Laselva O, Marzaro G, Vaccarin C, Lampronti I, Tamanini A, Lippi G, Gambari R, Cabrini G, Bear CE, Chilin A, Dechecchi MC. Molecular Mechanism of Action of Trimethylangelicin Derivatives as CFTR Modulators. Front Pharmacol 2018; 9:719. [PMID: 30022950 PMCID: PMC6039571 DOI: 10.3389/fphar.2018.00719] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
The psoralen-related compound, 4,6,4′-trimethylangelicin (TMA) potentiates the cAMP/PKA-dependent activation of WT-CFTR and rescues F508del-CFTR-dependent chloride secretion in both primary and secondary airway cells homozygous for the F508del mutation. We recently demonstrated that TMA, like lumacaftor (VX-809), stabilizes the first membrane-spanning domain (MSD1) and enhances the interface between NBD1 and ICL4 (MSD2). TMA also demonstrated anti-inflammatory properties, via reduction of IL-8 expression, thus making TMA a promising agent for treatment of cystic fibrosis. Unfortunately, TMA was also found to display potential phototoxicity and mutagenicity, despite the fact that photo-reactivity is absent when the compound is not directly irradiated with UVA light. Due to concerns about these toxic effects, new TMA analogs, characterized by identical or better activity profiles and minimized or reduced side effects, were synthesized by modifying specific structural features on the TMA scaffold, thus generating compounds with no mutagenicity and phototoxicity. Among these compounds, we found TMA analogs which maintained the potentiation activity of CFTR in FRT-YFP-G551D cells. Nanomolar concentrations of these analogs significantly rescued F508del CFTR-dependent chloride efflux in FRT-YFP-F508del, HEK-293 and CF bronchial epithelial cells. We then investigated the ability of TMA analogs to enhance the stable expression of varying CFTR truncation mutants in HEK-293 cells, with the aim of studying the mechanism of their corrector activity. Not surprisingly, MSD1 was the smallest domain stabilized by TMA analogs, as previously observed for TMA. Moreover, we found that TMA analogs were not effective on F508del-CFTR protein which was already stabilized by a second-site mutation at the NBD1-ICL4 interface. Altogether, our findings demonstrate that these TMA analogs mediate correction by modifying MSD1 and indirectly stabilizing the interface between NBD1 and CL4.
Collapse
Affiliation(s)
- Onofrio Laselva
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Anna Tamanini
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Giuseppe Lippi
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulio Cabrini
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Christine E Bear
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maria C Dechecchi
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| |
Collapse
|
25
|
Design, synthesis and biological evaluation of novel trimethylangelicin analogues targeting nuclear factor kB (NF-kB). Eur J Med Chem 2018; 151:285-293. [DOI: 10.1016/j.ejmech.2018.03.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 12/25/2022]
|
26
|
Laselva O, Molinski S, Casavola V, Bear CE. Correctors of the Major Cystic Fibrosis Mutant Interact through Membrane-Spanning Domains. Mol Pharmacol 2018; 93:612-618. [DOI: 10.1124/mol.118.111799] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 01/13/2023] Open
|
27
|
Aberrant GSH reductase and NOX activities concur with defective CFTR to pro-oxidative imbalance in cystic fibrosis airways. J Bioenerg Biomembr 2018. [PMID: 29524019 DOI: 10.1007/s10863-018-9748-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cystic fibrosis (CF) is associated to impaired Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel also causing decreased glutathione (GSH) secretion, defective airway bacterial clearance and inflammation. Here we checked the main ROS-producing and ROS-scavenging enzymes as potential additional factors involved in CF pathogenesis. We found that CFBE41o-cells, expressing F508del CFTR, have increased NADPH oxidase (NOX) activity and expression level, mainly responsible of the increased ROS production, and decreased glutathione reductase (GR) activity, not dependent on GR protein level decrease. Furthermore, defective CFTR proved to cause both extracellular and intracellular GSH level decrease, probably by reducing the amount of extracellular GSH-derived cysteine required for cytosolic GSH synthesis. Importantly, we provide evidence that defective CFTR and NOX/GR activity imbalance both contribute to NADPH and GSH level decrease and ROS overproduction in CF cells.
Collapse
|
28
|
Muzzachi S, Guerra L, Martino NA, Favia M, Punzi G, Silvestre F, Guaricci AC, Roscino MT, Pierri CL, Dell'Aquila ME, Casavola V, Lacalandra GM, Ciani E. Effect of cariporide on ram sperm pH regulation and motility: possible role of NHE1. Reproduction 2018; 155:433-445. [PMID: 29491124 DOI: 10.1530/rep-17-0456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/27/2018] [Indexed: 01/05/2023]
Abstract
Sperm motility, a feature essential for in vivo fertilization, is influenced by intracellular pH (pHi) homeostasis. Several mechanisms are involved in pHi regulation, among which sodium-hydrogen exchangers (NHEs), a family of integral transmembrane proteins that catalyze the exchange of Na+ for H+ across lipid bilayers. A preliminary characterization of NHE activity and kinetic parameters, followed by analysis of the expression and localization of the protein in ram spermatozoa was performed. NHE activity showed an apparent Km for external Na+ of 17.61 mM. Immunoblotting revealed a molecular mass of 85 kDa. Immunolocalization pattern showed some species-specific aspects, such as positive labeling at the equatorial region of the sperm head. Cariporide, a selective NHE1 inhibitor, significantly reduced pHi recovery (85%). Similarly, exposure to cariporide significantly inhibited different motility parameters, including those related to sperm capacitation. In vitro fertilization (IVF) was not affected by cariporide, possibly due to the non-dramatic, although significant, drop in motility and velocity parameters or due to prolonged exposure during IVF, which may have caused progressive loss of its inhibitory effect. In conclusion, this is the first study documenting, in a large animal model (sheep) of well-known translational relevance, a direct functional role of NHE on sperm pHi and motility. The postulated specificity of cariporide toward isoform 1 of the Na+/H+ exchanger seems to suggest that NHE1 may contribute to the observed effects on sperm cell functionality.
Collapse
Affiliation(s)
- Stefania Muzzachi
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Lorenzo Guerra
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Nicola Antonio Martino
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy.,Istituto Zooprofilattico Sperimentale della Puglia e della BasilicataFoggia, Italy
| | - Maria Favia
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Giuseppe Punzi
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Fabio Silvestre
- Section of Veterinary Clinics and Animal ProductionsDepartment of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Antonio Ciro Guaricci
- Section of Veterinary Clinics and Animal ProductionsDepartment of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Maria Teresa Roscino
- Section of Veterinary Clinics and Animal ProductionsDepartment of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Ciro Leonardo Pierri
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Maria Elena Dell'Aquila
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Valeria Casavola
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Giovanni Michele Lacalandra
- Section of Veterinary Clinics and Animal ProductionsDepartment of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Elena Ciani
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
29
|
Liu J, Bihler H, Farinha CM, Awatade NT, Romão AM, Mercadante D, Cheng Y, Musisi I, Jantarajit W, Wang Y, Cai Z, Amaral MD, Mense M, Sheppard DN. Partial rescue of F508del-cystic fibrosis transmembrane conductance regulator channel gating with modest improvement of protein processing, but not stability, by a dual-acting small molecule. Br J Pharmacol 2018; 175:1017-1038. [PMID: 29318594 DOI: 10.1111/bph.14141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Rescue of F508del-cystic fibrosis (CF) transmembrane conductance regulator (CFTR), the most common CF mutation, requires small molecules that overcome protein processing, stability and channel gating defects. Here, we investigate F508del-CFTR rescue by CFFT-004, a small molecule designed to independently correct protein processing and channel gating defects. EXPERIMENTAL APPROACH Using CFTR-expressing recombinant cells and CF patient-derived bronchial epithelial cells, we studied CFTR expression by Western blotting and channel gating and stability with the patch-clamp and Ussing chamber techniques. KEY RESULTS Chronic treatment with CFFT-004 improved modestly F508del-CFTR processing, but not its plasma membrane stability. By contrast, CFFT-004 rescued F508del-CFTR channel gating better than C18, an analogue of the clinically used CFTR corrector lumacaftor. Subsequent acute addition of CFFT-004, but not C18, potentiated F508del-CFTR channel gating. However, CFFT-004 was without effect on A561E-CFTR, a CF mutation with a comparable mechanism of CFTR dysfunction as F508del-CFTR. To investigate the mechanism of action of CFFT-004, we used F508del-CFTR revertant mutations. Potentiation by CFFT-004 was unaffected by revertant mutations, but correction was abolished by the revertant mutation G550E. These data suggest that correction, but not potentiation, by CFFT-004 might involve nucleotide-binding domain 1 of CFTR. CONCLUSIONS AND IMPLICATIONS CFFT-004 is a dual-acting small molecule with independent corrector and potentiator activities that partially rescues F508del-CFTR in recombinant cells and native airway epithelia. The limited efficacy and potency of CFFT-004 suggests that combinations of small molecules targeting different defects in F508del-CFTR might be a more effective therapeutic strategy than a single agent.
Collapse
Affiliation(s)
- Jia Liu
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hermann Bihler
- Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| | - Carlos M Farinha
- Faculty of Sciences, BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | - Nikhil T Awatade
- Faculty of Sciences, BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | - Ana M Romão
- Faculty of Sciences, BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | | | - Yi Cheng
- Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| | - Isaac Musisi
- Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| | - Walailak Jantarajit
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.,Center of Calcium and Bone Research and Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yiting Wang
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Zhiwei Cai
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Margarida D Amaral
- Faculty of Sciences, BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | - Martin Mense
- Cystic Fibrosis Foundation Therapeutics, Lexington, MA, USA
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
30
|
Miolo G, Sturaro G, Cigolini G, Menilli L, Tasso A, Zago I, Conconi MT. 4,6,4'-trimethylangelicin shows high anti-proliferative activity on DU145 cells under both UVA and blue light. Cell Prolif 2018; 51:e12430. [PMID: 29318693 DOI: 10.1111/cpr.12430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Furocoumarins (psoralens and angelicins) have been already used under ultraviolet A light (UVA) for the treatment of skin diseases and cutaneous T-cell lymphoma. Besides their high anti-proliferative activity, some severe long-term side effects have been observed, for example genotoxicity and mutagenicity, likely strictly related to the formation of crosslinks. It has been demonstrated that blue light (BL) activation of 8-methoxypsoralen, an FDA-approved drug, leads to less mutagenic monoadducts in the DNA. So far, in this work the less toxic and more penetrating BL is proposed to activate 4,6,4'-trimethylangelicin (TMA), an already known UVA photoactivatable compound. MATERIALS AND METHODS Photocleavage, crosslink formation and oxidative damage were detected in pBR322 plasmid DNA treated with 300.0 μmol/L TMA activated with various exposures of BL. Anti-proliferative activity, reactive oxygen species (ROS) formation and activation status of some signalling pathways involved in cell growth and apoptosis were verified on DU145 cells treated with 5.0 μmol/L TMA plus 2.0 J/cm2 of BL. RESULTS Under BL-TMA, no mutagenic crosslinks, no photocleavage and neither photooxidative lesions were detected on isolated plasmid DNA. TMA showed high anti-proliferative activity on DU145 cells through induction of apoptosis. Besides ROS generation, the proapoptotic effect seemed to be related to activation of p38 and inhibition of p44/42 phosphorylation. Interestingly, the decrease in nuclear β-catenin was coupled with a significant dropping of CD44-positive cells. CONCLUSION Overall, our results indicate that TMA can be activated by BL and may be considered for targeted phototherapy of prostate cancer lesions.
Collapse
Affiliation(s)
- G Miolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - G Sturaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - G Cigolini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - L Menilli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - A Tasso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - I Zago
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - M T Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
31
|
Correcting CFTR folding defects by small-molecule correctors to cure cystic fibrosis. Curr Opin Pharmacol 2017; 34:83-90. [PMID: 29055231 DOI: 10.1016/j.coph.2017.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022]
Abstract
Pharmacological intervention to treat the lethal genetic disease cystic fibrosis has become reality, even for the severe, most common folding mutant F508del CFTR. CFTR defects range from absence of the protein, misfolding that leads to degradation rather than cell-surface localization (such as F508del), to functional chloride-channel defects on the cell surface. Corrector and potentiator drugs improve cell-surface location and channel activity, respectively, and combination therapy of two correctors and a potentiator have shown synergy. Several combinations are in the drug-development pipeline and although the primary defect is not repaired, rescue levels are reaching those resembling a cure for CF. Combination therapy with correctors may also improve functional CFTR mutants and benefit patients on potentiator therapy.
Collapse
|
32
|
Differential Effects of Angelicin Analogues on NF- κB Activity and IL-8 Gene Expression in Cystic Fibrosis IB3-1 Cells. Mediators Inflamm 2017; 2017:2389487. [PMID: 29089668 PMCID: PMC5635289 DOI: 10.1155/2017/2389487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/14/2017] [Accepted: 08/06/2017] [Indexed: 02/06/2023] Open
Abstract
The angelicin analogue 4,6,4′-trimethylangelicin (TMA) was recently reported as a strong inhibitor of nuclear factor-κB (NF-κB) activity and of the expression of the interleukin-8 (IL-8) gene in bronchial epithelial cells in which the inflammatory response has been challenged with P. aeruginosa, the most common bacterium found in the airways of patients affected by cystic fibrosis (CF). These findings encouraged us to analyze new synthetic analogues of TMA in order to evaluate their biological activities on human bronchial epithelial CF IB3-1 cells and to find more potent anti-NF-κB agents exhibiting only minor antiproliferative effects. Analogues able to inhibit NF-κB/DNA interaction at lower concentration than TMA were found and selected to investigate their biological activity on IB3-1 cells induced with TNF-α. In this biological system, NF-κB-mediated IL-8 gene expression was investigated. Some analogues showed similar activity to the lead compound TMA. Other analogues displayed higher activities; in particular, the most interesting compounds showing relevant anti-inflammatory effects were found to cause 56–83% reduction of IL-8 mRNA expression at low concentrations (1–10 μM), without changes in cell proliferation pattern, demonstrating their potential interest for a possible development of anti-inflammatory therapy of cystic fibrosis.
Collapse
|
33
|
Loo TW, Clarke DM. Corrector VX-809 promotes interactions between cytoplasmic loop one and the first nucleotide-binding domain of CFTR. Biochem Pharmacol 2017; 136:24-31. [PMID: 28366727 DOI: 10.1016/j.bcp.2017.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
A large number of correctors have been identified that can partially repair defects in folding, stability and trafficking of CFTR processing mutants that cause cystic fibrosis (CF). The best corrector, VX-809 (Lumacaftor), has shown some promise when used in combination with a potentiator (Ivacaftor). Understanding the mechanism of VX-809 is essential for development of better correctors. Here, we tested our prediction that VX-809 repairs folding and processing defects of CFTR by promoting interactions between the first cytoplasmic loop (CL1) of transmembrane domain 1 (TMD1) and the first nucleotide-binding domain (NBD1). To investigate whether VX-809 promoted CL1/NBD1 interactions, we performed cysteine mutagenesis and disulfide cross-linking analysis of Cys-less TMD1 (residues 1-436) and ΔTMD1 (residues 437-1480; NBD1-R-TMD2-NBD2) truncation mutants. It was found that VX-809, but not bithiazole correctors, promoted maturation (exited endoplasmic reticulum for addition of complex carbohydrate in the Golgi) of the ΔTMD1 truncation mutant only when it was co-expressed in the presence of TMD1. Expression in the presence of VX-809 also promoted cross-linking between R170C (in CL1 of TMD1 protein) and L475C (in NBD1 of the ΔTMD1 truncation protein). Expression of the ΔTMD1 truncation mutant in the presence of TMD1 and VX-809 also increased the half-life of the mature protein in cells. The results suggest that the mechanism by which VX-809 promotes maturation and stability of CFTR is by promoting CL1/NBD1 interactions.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David M Clarke
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
34
|
Laselva O, Molinski S, Casavola V, Bear CE. The investigational Cystic Fibrosis drug Trimethylangelicin directly modulates CFTR by stabilizing the first membrane-spanning domain. Biochem Pharmacol 2016; 119:85-92. [PMID: 27614011 DOI: 10.1016/j.bcp.2016.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022]
Abstract
Cystic Fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. The most common mutation, deletion of phenylalanine 508 (F508del), disrupts tertiary assembly, causing protein misprocessing and loss of CFTR function in epithelial tissues. Lumacaftor (VX-809) is a Class 1 corrector molecule shown to partially rescue misprocessing of F508del and together with the potentiator of channel activity: ivacaftor (VX-770) has been approved for treatment of CF patients homozygous for the F508del mutation. The specificity of these modulators for CFTR is thought to be conferred through direct binding. Trimethylangelicin (TMA) is a distinct small molecule modulator, previously shown to exhibit both corrector and potentiator activities. We were prompted to determine if TMA also mediates these activities by direct binding. Interestingly, we found that like VX-770, TMA was effective in enhancing anion efflux mediated by purified WT-CFTR reconstituted in phospholipid liposomes. Furthermore, like VX-809, TMA was effective in stabilizing the functional expression of CFTR lacking the regulatory "R" domain or second nucleotide-binding domain (NBD2). The smallest domain that was stabilized by TMA binding was the first membrane-spanning domain (MSD1) as previously observed for VX-809. Together, our findings support the claim that TMA binds directly to CFTR, and despite its distinct chemical structure, shares similar mechanisms as VX-770 and VX-809 to potentiate and stabilize CFTR, respectively.
Collapse
Affiliation(s)
- Onofrio Laselva
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy; Programme in Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
| | - Steven Molinski
- Programme in Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Canada
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy
| | - Christine E Bear
- Programme in Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada.
| |
Collapse
|
35
|
Faure G, Bakouh N, Lourdel S, Odolczyk N, Premchandar A, Servel N, Hatton A, Ostrowski MK, Xu H, Saul FA, Moquereau C, Bitam S, Pranke I, Planelles G, Teulon J, Herrmann H, Roldan A, Zielenkiewicz P, Dadlez M, Lukacs GL, Sermet-Gaudelus I, Ollero M, Corringer PJ, Edelman A. Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects ∆F508CFTR Dysfunction: Impact in Cystic Fibrosis. J Mol Biol 2016; 428:2898-915. [PMID: 27241308 DOI: 10.1016/j.jmb.2016.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/26/2023]
Abstract
Deletion of Phe508 in the nucleotide binding domain (∆F508-NBD1) of the cystic fibrosis transmembrane regulator (CFTR; a cyclic AMP-regulated chloride channel) is the most frequent mutation associated with cystic fibrosis. This mutation affects the maturation and gating of CFTR protein. The search for new high-affinity ligands of CFTR acting as dual modulators (correctors/activators) presents a major challenge in the pharmacology of cystic fibrosis. Snake venoms are a rich source of natural multifunctional proteins, potential binders of ion channels. In this study, we identified the CB subunit of crotoxin from Crotalus durissus terrificus as a new ligand and allosteric modulator of CFTR. We showed that CB interacts with NBD1 of both wild type and ∆F508CFTR and increases their chloride channel currents. The potentiating effect of CB on CFTR activity was demonstrated using electrophysiological techniques in Xenopus laevis oocytes, in CFTR-HeLa cells, and ex vivo in mouse colon tissue. The correcting effect of CB was shown by functional rescue of CFTR activity after 24-h ΔF508CFTR treatments with CB. Moreover, the presence of fully glycosylated CFTR was observed. Molecular docking allowed us to propose a model of the complex involving of the ABCβ and F1-like ATP-binding subdomains of ΔF508-NBD1. Hydrogen-deuterium exchange analysis confirmed stabilization in these regions, also showing allosteric stabilization in two other distal regions. Surface plasmon resonance competition studies showed that CB disrupts the ∆F508CFTR-cytokeratin 8 complex, allowing for the escape of ∆F508CFTR from degradation. Therefore CB, as a dual modulator of ΔF508CFTR, constitutes a template for the development of new anti-CF agents.
Collapse
Affiliation(s)
- Grazyna Faure
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS,UMR 3571, 25, rue du Dr. Roux, F-75015, Paris, France.
| | - Naziha Bakouh
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Stéphane Lourdel
- UPMC Université Paris 06, UMRS 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Norbert Odolczyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Aiswarya Premchandar
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Nathalie Servel
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Aurélie Hatton
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Maciej K Ostrowski
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS,UMR 3571, 25, rue du Dr. Roux, F-75015, Paris, France
| | - Haijin Xu
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS,UMR 3571, 25, rue du Dr. Roux, F-75015, Paris, France
| | - Frederick A Saul
- Institut Pasteur, Plate-forme de Cristallographie, CNRS-UMR 3528, Paris, France
| | - Christelle Moquereau
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Sara Bitam
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Iwona Pranke
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Gabrielle Planelles
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Jacques Teulon
- UPMC Université Paris 06, UMRS 872, Laboratoire de génomique, physiologie et physiopathologie rénales, Paris, France
| | - Harald Herrmann
- Department of Molecular Genetics, German Cancer Research Center, D-69120 Heidelberg, Germany; Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Ariel Roldan
- Department of Physiology, McGill University, Montreal, Canada
| | - Piotr Zielenkiewicz
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Michal Dadlez
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | | | - Isabelle Sermet-Gaudelus
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Mario Ollero
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS,UMR 3571, 25, rue du Dr. Roux, F-75015, Paris, France
| | - Aleksander Edelman
- INSERM U1151, team Canalopathies épithéliales: la mucoviscidose et autres maladies, Université Paris Descartes, Paris, France
| |
Collapse
|
36
|
Atlante A, Favia M, Bobba A, Guerra L, Casavola V, Reshkin SJ. Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. J Bioenerg Biomembr 2016; 48:197-210. [PMID: 27146408 DOI: 10.1007/s10863-016-9663-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/25/2016] [Indexed: 01/19/2023]
Abstract
Evidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase. Importantly, treatment of CF cells with the small molecules VX-809 and 4,6,4'-trimethylangelicin, which act as "correctors" for F508del CFTR by rescuing the F508del CFTR-dependent chloride secretion, while having no effect per sè on mitochondrial function in wt-CFTR cells, significantly improved all the above mitochondrial parameters towards values found in the airway cells expressing wt-CFTR. This novel study on mitochondrial bioenergetics provides a springboard for future research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the proteins primarily responsible for the F508del-CFTR-dependent mitochondrial impairment and thus reveal potential novel targets for CF therapy.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembrane and Bioenergetics - CNR, Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Maria Favia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70126, Bari, Italy
| | - Antonella Bobba
- Institute of Biomembrane and Bioenergetics - CNR, Via G. Amendola 165/A, 70126, Bari, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70126, Bari, Italy
| | - Valeria Casavola
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70126, Bari, Italy
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70126, Bari, Italy
| |
Collapse
|
37
|
Colemeadow J, Joyce H, Turcanu V. Precise treatment of cystic fibrosis – current treatments and perspectives for using CRISPR. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1146077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Park J, Khloya P, Seo Y, Kumar S, Lee HK, Jeon DK, Jo S, Sharma PK, Namkung W. Potentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines. PLoS One 2016; 11:e0149131. [PMID: 26863533 PMCID: PMC4749168 DOI: 10.1371/journal.pone.0149131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/27/2016] [Indexed: 12/29/2022] Open
Abstract
The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 μM. Among the compounds, 7q (a novel CFTR potentiator, CP7q) showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis.
Collapse
Affiliation(s)
- Jinhong Park
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
| | - Poonam Khloya
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Yohan Seo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
| | - Satish Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ho K. Lee
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
| | - Dong-Kyu Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
| | - Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
| | - Pawan K. Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
- * E-mail: (WN); (PKS)
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 406–840, Korea
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul 120–749, Korea
- * E-mail: (WN); (PKS)
| |
Collapse
|
39
|
Abbattiscianni AC, Favia M, Mancini MT, Cardone RA, Guerra L, Monterisi S, Castellani S, Laselva O, Di Sole F, Conese M, Zaccolo M, Casavola V. Correctors of mutant CFTR enhance subcortical cAMP-PKA signaling through modulating ezrin phosphorylation and cytoskeleton organization. J Cell Sci 2016; 129:1128-40. [PMID: 26823603 DOI: 10.1242/jcs.177907] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/21/2016] [Indexed: 12/28/2022] Open
Abstract
The most common mutation of the cystic fibrosis transmembrane regulator (CFTR) gene, F508del, produces a misfolded protein resulting in its defective trafficking to the cell surface and an impaired chloride secretion. Pharmacological treatments partially rescue F508del CFTR activity either directly by interacting with the mutant protein and/or indirectly by altering the cellular protein homeostasis. Here, we show that the phosphorylation of ezrin together with its binding to phosphatidylinositol-4,5-bisphosphate (PIP2) tethers the F508del CFTR to the actin cytoskeleton, stabilizing it on the apical membrane and rescuing the sub-membrane compartmentalization of cAMP and activated PKA. Both the small molecules trimethylangelicin (TMA) and VX-809, which act as 'correctors' for F508del CFTR by rescuing F508del-CFTR-dependent chloride secretion, also restore the apical expression of phosphorylated ezrin and actin organization and increase cAMP and activated PKA submembrane compartmentalization in both primary and secondary cystic fibrosis airway cells. Latrunculin B treatment or expression of the inactive ezrin mutant T567A reverse the TMA and VX-809-induced effects highlighting the role of corrector-dependent ezrin activation and actin re-organization in creating the conditions to generate a sub-cortical cAMP pool of adequate amplitude to activate the F508del-CFTR-dependent chloride secretion.
Collapse
Affiliation(s)
- Anna C Abbattiscianni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Maria T Mancini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Rosa A Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Stefania Monterisi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Onofrio Laselva
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Francesca Di Sole
- Physiology and Pharmacology Department, Des Moines University, Des Moines, IA 50312, USA
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| |
Collapse
|
40
|
Farinha CM, Matos P. Repairing the basic defect in cystic fibrosis - one approach is not enough. FEBS J 2015; 283:246-64. [PMID: 26416076 DOI: 10.1111/febs.13531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis has attracted much attention in recent years due to significant advances in the pharmacological targeting of the basic defect underlying this recessive disorder: the deficient functional expression of mutant cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels at the apical membrane of epithelial cells. However, increasing evidence points to the reduced efficacy of single treatments, thus reinforcing the need to combine several therapeutic strategies to effectively target the multiple basic defect(s). Protein-repair therapies that use potentiators (activating membrane-located CFTR) or correctors (promoting the relocation of intracellular-retained trafficking mutants of CFTR) in frequent mutations such as F508del and G551D have been put forward and made their way to the clinic with moderate to good efficiency. However, alternative (or additional) approaches targeting the membrane stability of mutant proteins, or correcting the cellular phenotype through a direct effect upon other ion channels (affecting the overall electrolyte transport or simply promoting alternative chloride transport) or targeting less frequent mutations (splicing variants, for example), have been proposed and tested in the field of cystic fibrosis (CF). Here, we cover the different strategies that rely on novel findings concerning the CFTR interactome and signalosome through which it might be possible to further influence the cellular trafficking and post-translational modification machinery (to increase rescued CFTR abundance and membrane stability). We also highlight the new data on strategies aiming at the regulation of sodium absorption or to increase chloride transport through alternative channels. The development and implementation of these complementary approaches will pave the way to combinatorial therapeutic strategies with increased benefit to CF patients.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Paulo Matos
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal.,Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisboa, Portugal
| |
Collapse
|
41
|
Yang H, Ma T. F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review. Expert Opin Ther Pat 2015; 25:991-1002. [PMID: 25971311 DOI: 10.1517/13543776.2015.1045878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by malfunction of CF transmembrane regulator (CFTR). The deletion of a phenylalanine at residue 508 (F508del) is the most common mutation that causes cellular processing, chloride channel gating and protein stability defects in CFTR. Pharmacological modulators of F508del-CFTR, aimed at correcting the cellular processing defect (correctors) and the gating defect (potentiators) in CFTR protein, are regarded as promising therapeutic agents for CF disease. Endeavors in searching F508del-CFTR modulators have shown encouraging results, with several small-molecule compounds having entered clinical trials or even represented clinical options. AREAS COVERED This review covers the discovery of F508del-CFTR correctors described in both patents (2005 - present) and scientific literatures. EXPERT OPINION Cyclopropane carboxamide derivatives of CFTR correctors continue to dominate in this area, among which lumacaftor (a NBD1-MSD1/2 interface stabilizer) is the most promising compound and is now under the priority review by US FDA. However, the abrogation effect of ivacaftor (potentiator) on lumacaftor suggests the requirement of discovering new correctors and potentiators that can cooperate well. Integration screening for simultaneously identifying combinations of correctors (particularly NBD1 stabilizer) and potentiators should provide an alternative strategy. A recently reported natural product fraction library may be useful for the integration screening.
Collapse
Affiliation(s)
- Hong Yang
- a 1 School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University , Dalian 116029, P.R. China +86 411 85827085 ; +86 411 85827068 ;
| | | |
Collapse
|
42
|
Abstract
CFTR is a cAMP-activated chloride and bicarbonate channel that is critical for lung homeostasis. Decreases in CFTR expression have dire consequences in cystic fibrosis (CF) and have been suggested to be a component of the lung pathology in chronic obstructive pulmonary disease. Decreases or loss of channel function often lead to mucus stasis, chronic bacterial infections, and the accompanying chronic inflammatory responses that promote progressive lung destruction, and, eventually in CF, lung failure. Here we discuss CFTR's functional role airway surface liquid hydration and pH, in regulation of other channels such as the epithelial sodium channel, and in regulating inflammatory responses in the lung.
Collapse
Affiliation(s)
- James F Collawn
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
43
|
Collawn JF, Fu L, Bartoszewski R, Matalon S. Rescuing ΔF508 CFTR with trimethylangelicin, a dual-acting corrector and potentiator. Am J Physiol Lung Cell Mol Physiol 2014; 307:L431-4. [PMID: 25063802 DOI: 10.1152/ajplung.00177.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Since the discovery of the cystic fibrosis (CF) gene that encodes the CF transmembrane conductance regulator (CFTR) in 1989, there has been considerable progress in understanding the molecular defects associated with different mutations in the CFTR protein. Small molecule "potentiators" have led the way as a drug therapeutic approach for correcting channel gating mutations such as the G551D mutation. Therapies for correcting the most common folding mutation in CFTR, ΔF508, however, have proven to be much more challenging. The protein-folding problem appears to be associated with both nucleotide binding domain (NBD) instability and domain interface interactions that are caused by the loss of the phenylalanine residue in NBD 1. Given the inherent complexity in the sequential folding pathway for this very large multidomain protein, it has been suggested that correcting the proper folding, anion channel function, and cell surface stability of the ΔF508 CFTR protein will require a multidrug approach to fix each of these compounding problems. Here we discuss a recent publication (Favia M, Mancini MT, Bezzerri V, Guerra L, Laselva O, Abbattiscianni AC, Debellis L, Reshkin SJ, Gambari R, Cabrini G, Casavola V. Am J Physiol Lung Cell Mol Physiol 307: L48-L61, 2014), however, that offers hope that single drug therapies are still possible.
Collapse
Affiliation(s)
- James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, University of Alabama at Birmingham, Birmingham, Alabama; Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lianwu Fu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sadis Matalon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, University of Alabama at Birmingham, Birmingham, Alabama; Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|