1
|
Lee N, Kim D, Cho H, Jeong G, Lee SJ, Lee H. Protocol to isolate and characterize pulmonary-specific extracellular vesicles in mice. STAR Protoc 2024; 5:103183. [PMID: 39093702 PMCID: PMC11345560 DOI: 10.1016/j.xpro.2024.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Extracellular vesicles (EVs) are membranous nanoparticles classified based on their size and surface markers, which can be specific to various cell origins. Here, we present a protocol for the isolation of pulmonary-specific EVs in mice. We describe steps for differential centrifugation, density gradient centrifugation, and commercially available polyethylene glycol(PEG)-based precipitation, employing pulmonary-specific EV-bound chemicals and antibodies. We then detail procedures for the characterization of these EVs through nanoparticle tracking analysis, flow cytometry, scanning electron microscopy, and transmission electron microscopy. For complete details on the use and execution of this protocol, please refer to Lee et al.1,2,3,4.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Dohyun Kim
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Huijae Cho
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Gyeongmin Jeong
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea.
| |
Collapse
|
2
|
Jokhio S, Peng I, Peng CA. Extracellular vesicles isolated from Arabidopsis thaliana leaves reveal characteristics of mammalian exosomes. PROTOPLASMA 2024; 261:1025-1033. [PMID: 38683390 DOI: 10.1007/s00709-024-01954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
Plant-derived extracellular vesicles (EVs), containing a myriad of bioactive proteins, microRNAs, lipids, and secondary metabolites, have recently become the focus of rising interest due to their important roles in various applications. The widely accepted method for isolating plant EVs is differential ultracentrifugation plus density gradient centrifugation. However, the combination of differential ultracentrifugation and density gradient centrifugation for the isolation of plant EVs is time-consuming and labor-intensive. Hence, there is a need for more efficient methods to perform the separation of plant EVs. In this study, EVs were separated from Arabidopsis thaliana leaves by a cost-effective polyethylene glycol (PEG)-based precipitation approach. The mean size of purified Arabidopsis thaliana EVs determined by dynamic light scattering was 266 nm, which is consistent with nanoparticle tracking analysis. The size was also confirmed via transmission electron microscopy with morphology of a cup-shaped appearance which is the typical mammalian exosome's morphology. Additionally, Western blotting of the purified Arabidopsis thaliana EVs, using commercially available mammalian exosomal kits, displayed surface marker tetraspanin proteins (CD9, CD63, and CD81), and endosomal sorting complexes required for transport (ESCRT)-associated proteins (TSG101 and ALIX). This demonstrates that the purified Arabidopsis thaliana EVs reveal the typical proteins reported in mammalian exosomes.
Collapse
Affiliation(s)
- Sharjeel Jokhio
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, 83844, USA
| | - Ian Peng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ching-An Peng
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
3
|
Wang P, Arntz OJ, Husch JFA, Kraan P M VD, Beucken JJJPVD, van de Loo FAJ. Polyethylene glycol precipitation is an efficient method to obtain extracellular vesicle-depleted fetal bovine serum. PLoS One 2023; 18:e0295076. [PMID: 38051739 DOI: 10.1371/journal.pone.0295076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Mesenchymal stromal/stem cell derived-extracellular vesicles (MSC-EVs) have gained interest as drug delivery nanoparticles, having immunoregulatory and potentiating tissue repair property. To maintain growth of MSCs and obtain pure MSC-derived EVs, the culture media should contain fetal bovine serum (FBS) devoid of EVs, as the presence of FBS EVs confounds the properties of MSC-EVs. Therefore, we tested three methods: 18h ultracentrifugation (UC) and ultrafiltration (UF), which are common FBS EV depletion methods in current MSC-EV research, and polyethylene glycol (PEG) precipitation to obtain three EV depleted FBS (EVdFBS) batches, and compared them to FBS and commercial (Com) EVdFBS on human adipose stem cell (hADSC) growth, differentiation, enrichment of EVs in hADSC supernatant and their biological function on collagen metabolism. Our comparative study showed UC and UF vary in terms of depletion efficiency and do not completely deplete EVs and affects the growth-promoting quality of FBS. Specifically, FBS EV depletion was comparable between PEG (95.6%) and UF (96.6%) but less by UC (82%), as compared to FBS. FBS protein loss was markedly different among PEG (47%), UF (87%), and UC (51%), implying the ratio of EV depletion over protein loss was PEG (2.03), UF (1.11), and UC (1.61). A significant decrease of TGFβ/Smad signaling, involving in MSC growth and physiology, was observed by UF. After 96 hours of exposure to 5% FBS or 5% four different EVdFBS cell growth media, the osteogenesis ability of hADSCs was not impaired but slightly lower mRNA expression level of Col2a observed in EVdFBS media during chondrogenesis. In consistent with low confluency of hADSCs observed by optical microscope, cell proliferation in response to 5% UF EVdFBS media was inhibited significantly. Importantly, more and purer ADSCs EVs were obtained from ADSCs cultured in 5% PEG EVdFBS media, and they retained bioactive as they upregulated the expression of Col1a1, TIMP1 of human knee synovial fibroblast. Taken together, this study showed that PEG precipitation is the most efficient method to obtain EV depleted FBS for growth of MSCs, and to obtain MSC EVs with minimal FBS EV contamination.
Collapse
Affiliation(s)
- Peng Wang
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Onno J Arntz
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johanna F A Husch
- Department of Dentistry Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, Netherlands
| | - Van der Kraan P M
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Park S, Kim M, Park M, Jin Y, Lee SJ, Lee H. Specific upregulation of extracellular miR-6238 in particulate matter-induced acute lung injury and its immunomodulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130466. [PMID: 36455323 DOI: 10.1016/j.jhazmat.2022.130466] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases characterized by a severe inflammatory response and the destruction of alveolar epithelium and endothelium. ALI/ARDS is caused by pathogens and toxic environmental stimuli, such as particulate matter (PM). However, the general symptoms of ALI/ARDS are similar, and determining the cause of lung injury is often challenging. In this study, we investigated whether there is a critical miRNA that characterizes PM-induced ALI. We found that the expression of miR-6238 is specifically upregulated in lung tissue and lung-derived extracellular vesicles (EVs) in response to PM exposure. Notably, bacterial endotoxin (Lipopolysaccharide; LPS or peptidoglycan; PTG) does not induce the expression of miR-6238 in the lung. Instead, the expression of miR-155 is dramatically increased in LPS-induced ALI. We further demonstrated that human lung epithelial cells and macrophages predominantly produce miR-6238 and miR-155, respectively. Mechanistically, EV-miR-6238 is effectively internalized into alveolar macrophages (AMs) and regulates inflammatory responses in vivo. CXCL3 is a main target of miR-6238 in AMs and modulates neutrophil infiltration into the lung alveoli. Collectively, our findings suggest that miR-6238 is a novel regulator of pulmonary inflammation and a putative biomarker that distinguishes PM-induced ALI from endotoxin (LPS/PTG)-mediated ALI.
Collapse
Affiliation(s)
- Sujeong Park
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Miji Kim
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Minkyung Park
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, South Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Seon-Jin Lee
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, South Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea.
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea.
| |
Collapse
|
5
|
Cong M, Tan S, Li S, Gao L, Huang L, Zhang HG, Qiao H. Technology insight: Plant-derived vesicles-How far from the clinical biotherapeutics and therapeutic drug carriers? Adv Drug Deliv Rev 2022; 182:114108. [PMID: 34990792 DOI: 10.1016/j.addr.2021.114108] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/19/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Within the past decades, extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. Besides EVs, exosome-like nanoparticles (ELNs) derived from plants were also emerging. Comparing to EVs, ELNs are source-widespread, cost-effective and easy to obtain. Their definite activities can be utilized for potential prevention/treatment of an abundance of diseases, including metabolic syndrome, cancer, colitis, alcoholic hepatitis and infectious diseases, which highlights ELNs as promising biotherapeutics. In addition, the potential of ELNs as natural or engineered drug carriers is also attractive. In this review, we tease out the timeline of plant EVs and ELNs, introduce the arising separation, purification and characterization techniques, state the stability and transport manner, discuss the therapeutic opportunities as well as the potential as novel drug carriers. Finally, the challenges and the direction of efforts to realize the clinical transformation of ELNs are also discussed.
Collapse
|