1
|
Sheibani N, Song YS, Farnoodian M, Inampudi S, Hanna B, Wang S, Darjatmoko SR, Sorenson CM. Bim Expression Influences Choroidal Endothelial Cell Characteristics and Their Response to Therapeutic Intervention. Int J Mol Sci 2024; 25:10254. [PMID: 39408582 PMCID: PMC11476819 DOI: 10.3390/ijms251910254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
In the aging population, choroidal vessels grow through the Bruch's membrane, resulting in a loss of central vision due to choroidal neovascularization (CNV). During active neovascularization, CNV is associated with inappropriate levels of apoptosis in multiple cell types, including choroidal endothelial cells (ChECs). Bim is a pro-apoptotic member of the Bcl-2 family. It is essential for cell apoptosis due to exposure to drugs such as dexamethasone or decreased pro-survival factors, including vascular endothelial growth factor (VEGF). To better elucidate the cell autonomous contribution of Bim expression in the integrity and neovascularization of the choroidal vasculature, we isolated ChECs from wild-type and Bim-deficient (Bim-/-) mice. ChECs lacking Bim expression demonstrated increased expression of VEGF, osteopontin, and the inflammatory cytokines Rantes/Ccl5 and IL6. Bim-/- ChECs were more proliferative and demonstrated an increased capacity to undergo capillary morphogenesis. Anti-VEGF had a diminished capacity to disrupt capillary morphogenesis in Bim-/- ChECs. In vivo, utilizing the mouse laser photocoagulation model, anti-VEGF treatment mitigated CNV in wild-type but not Bim-/- mice. We also tested other modalities that are thought to not require the intrinsic death pathway for their function and showed that propranolol, anti-CTGF, and the TSP1-mimetic peptide ABT898 mitigated CNV in mice lacking Bim expression to varying degrees. Thus, in ChECs, Bim expression could impact the effectiveness of treatment modalities that require the intrinsic death pathway to mitigate CNV.
Collapse
Affiliation(s)
- Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (N.S.); (Y.-S.S.); (M.F.); (S.W.); (S.R.D.)
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (N.S.); (Y.-S.S.); (M.F.); (S.W.); (S.R.D.)
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mitra Farnoodian
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (N.S.); (Y.-S.S.); (M.F.); (S.W.); (S.R.D.)
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Samay Inampudi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.I.); (B.H.)
| | - Barbara Hanna
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.I.); (B.H.)
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (N.S.); (Y.-S.S.); (M.F.); (S.W.); (S.R.D.)
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Soesiawati R. Darjatmoko
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (N.S.); (Y.-S.S.); (M.F.); (S.W.); (S.R.D.)
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Christine M. Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (S.I.); (B.H.)
| |
Collapse
|
2
|
Sorenson CM, Gurel Z, Song YS, Peterson KD, Blodi BA, Sheibani N. Thrombospondin-1, BIM and CFH polymorphisms and response to anti-VEGF treatment in neovascular age- related macular degeneration patients. PLoS One 2024; 19:e0297135. [PMID: 38408093 PMCID: PMC10896504 DOI: 10.1371/journal.pone.0297135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/28/2023] [Indexed: 02/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is a vision threatening disease in older adults. Anti-VEGF treatment is effective for the majority of neovascular AMD (nAMD) patients, although approximately 30% of nAMD patients have an incomplete response for unknown reasons. Here we assessed the contribution of single nucleotide polymorphisms (SNPs) in key angioinflammatory regulatory genes in nAMD patients with an incomplete response compared to those responsive to anti-VEGF treatment. A total of 25 responsive and 30 nAMD patients with an incomplete response to anti-vascular endothelial growth factor (anti-VEGF) treatment were examined for known SNPs that impact the structure and function of thromobospondin-1 (TSP1), Bcl-2-interacting mediator of cell death (BIM) and complement factor H (CFH). Plasma levels of C-C motif chemokine ligand 2 (CCL2/MCP1), TSP1 and VEGF were assessed by ELISA. Patients responsive to anti-VEGF treatment showed a significant increase in the TSP1 rs2228262 AA allele and a trend for the BIM (rs724710) CT allele. Consistent with previous reports, 42% of the patients responsive to anti-VEGF expressed the CC allele for CFH rs1061170. Although the CFH TT allele had similarly low prevalence in both groups, the TC allele tended to be more prevalent in patients with an incomplete response. Patients with an incomplete response also had increased plasma CCL2/MCP1 levels, consistent with the role increased inflammation has in the pathogenesis of nAMD. Our studies point to new tools to assess the potential responsiveness of nAMD patients to anti-VEGF treatment and suggest the potential use of anti-CCL2 for treatment of nAMD patients with an incomplete response to anti-VEGF.
Collapse
Affiliation(s)
- Christine M. Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Zafer Gurel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Yong-Seok Song
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Kyle D. Peterson
- Department of Ophthalmology and Visual Sciences, Statistics Core, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Barbara A. Blodi
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Nader Sheibani
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| |
Collapse
|
3
|
Sheibani N, Song YS, Farnoodian M, Inampudi S, Wang S, Darjatmoko SR, Sorenson CM. Artesunate mitigates choroidal neovascularization and scar formation. Exp Eye Res 2023; 236:109666. [PMID: 37783334 DOI: 10.1016/j.exer.2023.109666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
Angiogenesis, although required during eye development, has a causative effect in many ocular diseases. Aberrant neovascularization contributes to the progression of neovascular age-related macular degeneration (nAMD), a vision-threaten disease in aging Americans. Since increased amounts of vascular endothelial growth factor (VEGF) drives neovascularization during the pathogenesis of nAMD the standard of care are anti-VEGF therapies attempt to disrupt this vicious cycle. These current anti-VEGF therapies try to maintain vascular homeostasis while abating aberrant neovascularization but regrettably don't prevent fibrosis or scar formation. In addition, some patients demonstrate an incomplete response to anti-VEGF therapy as demonstrated by progressive vision loss. Here, we show choroidal endothelial cells (ChEC) incubated with artesunate demonstrated decreased migration and inflammatory and fibrotic factor expression, which corresponded with decreased sprouting in a choroid/retinal pigment epithelium (RPE) explant sprouting angiogenesis assay. To assess the efficacy of artesunate to curtail neovascularization in vivo, we utilized laser photocoagulation-induced rupture of the Bruch's membrane to induce choroidal neovascularization (CNV). Artesunate significantly inhibited CNV and the accompanying fibrotic scar, perhaps due in part to its ability to inhibit mononuclear phagocyte (MP) recruitment. Thus, artesunate shows promise in inhibiting both CNV and fibrosis.
Collapse
Affiliation(s)
- Nader Sheibani
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, USA
| | - Yong-Seok Song
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mitra Farnoodian
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Samay Inampudi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Soesiawati R Darjatmoko
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
4
|
Sweat Y, Ries RJ, Sweat M, Su D, Shao F, Eliason S, Amendt BA. miR-17 acts as a tumor suppressor by negatively regulating the miR-17-92 cluster. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1148-1158. [PMID: 34853714 PMCID: PMC8601969 DOI: 10.1016/j.omtn.2021.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023]
Abstract
Anaplastic thyroid cancer (ATC) is an aggressive, highly metastatic cancer that expresses high levels of the microRNA (miR)-17-92 cluster. We employ an miR inhibitor system to study the function of the different miRs within the miR-17-92 cluster based on seed sequence homology in the ATC SW579 cell line. While three of the four miR-17-92 families were oncogenic, we uncovered a novel role for miR-17 as a tumor suppressor in vitro and in vivo. Surprisingly, miR-17 inhibition increased expression of the miR-17-92 cluster and significantly increased the levels of the miR-18a and miR-19a mature miRs. miR-17 inhibition increased expression of the cell cycle activator CCND2, associated with increased cell proliferation and tumor growth in transplanted SW579 cells in xenograft mice. miR-17 regulates MYCN and c-MYC expression in SW579 cells, and the inhibition of miR-17 increased MYCN and c-MYC expression, which increased pri-miR-17-92 transcripts. Thus, inhibition of miR-17 activated the expression of the oncogenic miRs, miR-18a and miR-19a. While many cancers express high levels of miR-17, linking it with tumorigenesis, we demonstrate that miR-17 inhibition does not inhibit thyroid tumor growth in SW579 and MDA-T32 ATC cells but increases expression of the other miR-17-92 family members and genes to induce cancer progression.
Collapse
Affiliation(s)
- Yan Sweat
- Harvard University, Boston, MA 02115, USA
| | - Ryan J. Ries
- Weill-Cornell Medical College, Cornell University, New York, NY 10075, USA
| | | | - Dan Su
- The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Fan Shao
- The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Steven Eliason
- The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Brad A. Amendt
- The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA 52242, USA
- Corresponding author: Brad A. Amendt, PhD, Carver College of Medicine, Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
5
|
Sorenson CM, Song YS, Zaitoun IS, Wang S, Hanna BA, Darjatmoko SR, Gurel Z, Fisk DL, McDowell CM, McAdams RM, Sheibani N. Caffeine Inhibits Choroidal Neovascularization Through Mitigation of Inflammatory and Angiogenesis Activities. Front Cell Dev Biol 2021; 9:737426. [PMID: 34722519 PMCID: PMC8551619 DOI: 10.3389/fcell.2021.737426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Adenosine receptors (AR) are widely expressed in a variety of tissues including the retina and brain. They are involved in adenosine-mediated immune responses underlying the onset and progression of neurodegenerative diseases. The expression of AR has been previously demonstrated in some retinal cells including endothelial cells and retinal pigment epithelial cells, but their expression in the choroid and choroidal cells remains unknown. Caffeine is a widely consumed AR antagonist that can influence inflammation and vascular cell function. It has established roles in the treatment of neonatal sleep apnea, acute migraine, and post lumbar puncture headache as well as the neurodegenerative diseases such as Parkinson and Alzheimer. More recently, AR antagonism with caffeine has been shown to protect preterm infants from ischemic retinopathy and retinal neovascularization. However, whether caffeine impacts the development and progression of ocular age-related diseases including neovascular age-related macular degermation remains unknown. Here, we examined the expression of AR in retinal and choroidal tissues and cells. We showed that antagonism of AR with caffeine or istradefylline decreased sprouting of thoracic aorta and choroid/retinal pigment epithelium explants in ex vivo cultures, consistent with caffeine's ability to inhibit endothelial cell migration in culture. In vivo studies also demonstrated the efficacy of caffeine in inhibition of choroidal neovascularization and mononuclear phagocyte recruitment to the laser lesion sites. Istradefylline, a specific AR 2A antagonist, also decreased choroidal neovascularization. Collectively, our studies demonstrate an important role for expression of AR in the choroid whose antagonism mitigate choroidal inflammatory and angiogenesis activities.
Collapse
Affiliation(s)
- Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ismail S Zaitoun
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Barbara A Hanna
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Soesiawati R Darjatmoko
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Zafer Gurel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Debra L Fisk
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Colleen M McDowell
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ryan M McAdams
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nader Sheibani
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
6
|
Cardona AF, Ordóñez-Reyes C, Ruiz-Patiño A, Garcia-Robledo JE, Barron LZ, Recondo G, Rojas L, Corrales L, Martín C, Barrón F, Sotelo C, Rodríguez J, Ricaurte L, Rolfo C, Ávila J, Mayorga D, Archila P, Otero J, Mas L, Bermudez M, Gamez T, Carranza H, Vargas C, Rosell R, Arrieta O. EGFR Inhibitors Plus Bevacizumab are Superior Than EGFR Inhibitors Alone as First-Line Setting in Advanced NSCLC With EGFR Mutations and BIM Deletion Polymorphisms (BIM-CLICaP). JCO Precis Oncol 2021; 5:839-848. [DOI: 10.1200/po.20.00404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE BIM activation is essential for epidermal growth factor receptor ( EGFR)-tyrosine kinase inhibitor (TKI)–triggered apoptosis in EGFR-mutant non–small-cell lung cancer (NSCLC). A deletion in the intron two of the BIM gene results in generation of alternatively spliced isoforms that impairs their apoptotic response to TKIs, conferring the NSCLC cells intrinsic resistance to these medications. Patients with both alterations have poor clinical evolution. The current study aimed to investigate the clinical efficacy and tolerability of EGFR-TKIs plus bevacizumab (Bev) versus EGFR-TKIs alone as first-line treatment in advanced NSCLC patients with EGFR mutations and BIM deletions ( BIMdel). MATERIALS AND METHODS A retrospective analysis was conducted. BIMdel was detected using polymerase chain reaction analysis and direct sequencing of DNA. BIM protein expression was investigated by immunohistochemistry, and BIM mRNA levels by reverse transcriptase-polymerase chain reaction. Clinical characteristics, overall survival, progression-free survival (PFS), overall response rate (ORR), and treatment-related adverse events were compared between both groups. RESULTS Thirty-three patients were included; 15 received EGFR-TKIs, and 18 received EGFR-TKIs plus Bev. The median age was 63 years, with a majority of recruited female patients. All included individuals had an Eastern Cooperative Oncology Group performance score of 2 or less. The addition of Bev resulted in a significantly higher ORR (94.4% v 40%, P > .001). Median PFS was longer with the use of the combination therapy (11.12 v 7.87 months; P = .001). Median overall survival tended to be longer in the EGFR-TKIs plus Bev (30.9 v 25.4 months; P = .06) but failed to reach statistical significance. Response in terms of both partial and complete as well as overall favorably affected PFS. CONCLUSION EGFR-TKIs plus Bev conferred a significantly higher ORR and PFS in advanced NSCLC patients with EGFR mutation and BIMdel. Further prospective studies are needed to validate these findings.
Collapse
Affiliation(s)
- Andrés F. Cardona
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Camila Ordóñez-Reyes
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | | | | | - Gonzalo Recondo
- Thoracic Oncology Section, Centro de Educación Médica e Investigaciones Clínicas—CEMIC, Buenos Aires, Argentina
| | - Leonardo Rojas
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
- Clinical Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | - Luis Corrales
- Oncology Unit, Hospital San Juan de Dios/Centro de Investigación y Manejo del Cáncer (CIMCA), San José, Costa Rica
| | - Claudio Martín
- Medical Oncology Department, Thoracic Oncology Section, Instituto Fleming, Buenos Aires, Argentina
| | - Feliciano Barrón
- Thoracic Oncology Unit, Instituto Nacional de Cancerología, México City, México
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - July Rodríguez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Luisa Ricaurte
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
- Pathology Department, Mayo Clinic, Rochester, MN
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jenny Ávila
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
| | - Diana Mayorga
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
| | - Pilar Archila
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Jorge Otero
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Luis Mas
- Thoracic Oncology Department, Instituto Nacional de Enfermedades Neoplásicas—INEN, Lima, Perú
| | - Maritza Bermudez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Tatiana Gamez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Hernán Carranza
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Carlos Vargas
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología, México City, México
| |
Collapse
|
7
|
Lv F, Sun L, Yang Q, Pan Z, Zhang Y. Prognostic Value of BIM Deletion in EGFR-Mutant NSCLC Patients Treated with EGFR-TKIs: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3621828. [PMID: 34722761 PMCID: PMC8551980 DOI: 10.1155/2021/3621828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is inevitable in EGFR-mutant non-small-cell lung cancer (NSCLC) patients. A germline 2903 bp deletion polymorphism of Bcl-2-like protein 11 (BIM) causes reduced expression of proapoptotic BH3-only BIM protein and blocks TKI-induced apoptosis of tumor cells. Yet the association between the deletion polymorphism and response to EGFR-TKI treatment remains inconsistent among clinical observations. Thus, we performed the present meta-analysis. METHODS Eligible studies were identified by searching PubMed, Embase, and ClinicalTrials.gov databases prior to March 31, 2021. Hazard ratios (HRs) and 95% confidence intervals (CIs) of progression-free survival (PFS) and overall survival (OS) and odds ratios (ORs) and 95% CIs of objective response rate (ORR) and disease control rate (DCR) were calculated by using a random effects model. Sensitivity, metaregression, and publication bias analyses were also performed. RESULTS A total of 20 datasets (3003 EGFR-mutant NSCLC patients receiving EGFR-TKIs from 18 studies) were included. There were 475 (15.8%) patients having the 2903-bp intron deletion of BIM and 2528 (84.2%) wild-type patients. BIM deletion predicted significantly shorter PFS (HR = 1.35, 95% CI: 1.10-1.64, P = 0.003) and a tendency toward an unfavorable OS (HR = 1.22, 95% CI: 0.99-1.50, P = 0.068). Patients with deletion polymorphism had lower ORR (OR = 0.60, 95% CI: 0.42-0.85, P = 0.004) and DCR (OR = 0.59, 95% CI: 0.38-0.90, P = 0.014) compared with those without deletion. CONCLUSION BIM deletion polymorphism may confer resistance to EGFR-TKIs and can be used as a biomarker to predict treatment response to EGFR-TKIs in EGFR-mutant NSCLC patients from Asian populations.
Collapse
Affiliation(s)
- Fangfang Lv
- Department of Respiratory, Characteristic Medical Center of People's Armed Police Force, Tianjin 300162, China
| | - Liang Sun
- Department of Immunology, Characteristic Medical Center of People's Armed Police Force, Tianjin 300162, China
| | - Qiuping Yang
- Department of Respiratory, Characteristic Medical Center of People's Armed Police Force, Tianjin 300162, China
| | - Zheng Pan
- Department of Respiratory, Characteristic Medical Center of People's Armed Police Force, Tianjin 300162, China
| | - Yuhua Zhang
- Department of Respiratory, Characteristic Medical Center of People's Armed Police Force, Tianjin 300162, China
| |
Collapse
|
8
|
Falero-Perez J, Sheibani N, Sorenson CM. Bim expression modulates the pro-inflammatory phenotype of retinal astroglial cells. PLoS One 2020; 15:e0232779. [PMID: 32365083 PMCID: PMC7197808 DOI: 10.1371/journal.pone.0232779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
Apoptosis of neurovascular cells, including astroglial cells, contributes to the pathogenesis of diseases in which neurovascular disruption plays a central role. Bim is a pro-apoptotic protein that modulates not only apoptosis but also various cellular functions such as migration and extracellular matrix protein expression. Astroglial cells act as an intermediary between neural and vascular cells facilitating retinal vascular development and remodeling while maintaining normal vascular function and neuronal integrity. We previously showed that Bim deficient (Bim -/-) mice were protected from hyperoxia mediated vessel obliteration and ischemia-mediated retinal neovascularization. However, the underlying mechanisms and more specifically the role Bim expression in astroglial cells play remains elusive. Here, using retinal astroglial cells prepared from wild-type and Bim -/- mice, we determined the impact of Bim expression in retinal astroglial cell function. We showed that astroglial cells lacking Bim expression demonstrate increased VEGF expression and altered matricellular protein production including increased expression of thrombospondin-2 (TSP2), osteopontin and SPARC. Bim deficient astroglial cells also exhibited altered proliferation, migration, adhesion to various extracellular matrix proteins and increased expression of inflammatory mediators. Thus, our data emphasizes the importance of Bim expression in retinal astroglia cell autonomous regulatory mechanisms, which could influence neurovascular function.
Collapse
Affiliation(s)
- Juliana Falero-Perez
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States of America
| | - Christine M. Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| |
Collapse
|
9
|
Sebag J. Vitreous and Vision Degrading Myodesopsia. Prog Retin Eye Res 2020; 79:100847. [PMID: 32151758 DOI: 10.1016/j.preteyeres.2020.100847] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
Macromolecules comprise only 2% of vitreous, yet are responsible for its gel state, transparency, and physiologic function(s) within the eye. Myopia and aging alter collagen and hyaluronan association causing concurrent gel liquefaction and fibrous degeneration. The resulting vitreous opacities and collapse of the vitreous body during posterior vitreous detachment are the most common causes for the visual phenomenon of vitreous floaters. Previously considered innocuous, the vitreous opacities that cause floaters sometimes impact vision by profoundly degrading contrast sensitivity function and impairing quality-of-life. While many people adapt to vitreous floaters, clinically significant cases can be diagnosed with Vision Degrading Myodesopsia based upon echographic assessment of vitreous structure and by measuring contrast sensitivity function. Perhaps due to the ubiquity of floaters, the medical profession has to date largely ignored the plight of those with Vision Degrading Myodesopsia. Improved diagnostics will enable better disease staging and more accurate identification of severe cases that merit therapy. YAG laser treatments may occasionally be slightly effective, but vitrectomy is currently the definitive cure. Future developments will usher in more informative diagnostic approaches as well as safer and more effective therapeutic strategies. Improved laser treatments, new pharmacotherapies, and possibly non-invasive optical corrections are exciting new approaches to pursue. Ultimately, enhanced understanding of the underlying pathogenesis of Vision Degrading Myodesopsia should result in prevention, the ultimate goal of modern Medicine.
Collapse
Affiliation(s)
- J Sebag
- VMR Institute for Vitreous Macula Retina, Huntington Beach, CA, USA; Doheny Eye Institute, Pasadena, CA, USA; Department of Ophthalmology, Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
The expression of Bcl-2 in adenomyosis and its effect on proliferation, migration, and apoptosis of endometrial stromal cells. Pathol Res Pract 2019; 215:152477. [DOI: 10.1016/j.prp.2019.152477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/17/2019] [Accepted: 05/25/2019] [Indexed: 12/29/2022]
|
11
|
Zaitoun IS, Wintheiser CM, Jamali N, Wang S, Suscha A, Darjatmoko SR, Schleck K, Hanna BA, Lindner V, Sheibani N, Sorenson CM. Bcl-2 Expression in Pericytes and Astrocytes Impacts Vascular Development and Homeostasis. Sci Rep 2019; 9:9700. [PMID: 31273232 PMCID: PMC6609701 DOI: 10.1038/s41598-019-45915-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/18/2019] [Indexed: 11/08/2022] Open
Abstract
B-cell lymphoma 2 (Bcl-2) protein is the founding member of a group of proteins known to modulate apoptosis. Its discovery set the stage for identification of family members with either pro- or anti-apoptotic properties. Expression of Bcl-2 plays an important role during angiogenesis by influencing not only vascular cell survival, but also migration and adhesion. Although apoptosis and migration are postulated to have roles during vascular remodeling and regression, the contribution of Bcl-2 continues to emerge. We previously noted that the impaired retinal vascularization and an inability to undergo pathologic neovascularization observed in mice globally lacking Bcl-2 did not occur when mice lacked the expression of Bcl-2 only in endothelial cells. To further examine the effect of Bcl-2 expression during vascularization of the retina, we assessed its contribution in pericytes or astrocytes by generating mice with a conditional Bcl-2 allele (Bcl-2Flox/Flox) and Pdgfrb-cre (Bcl-2PC mice) or Gfap-cre (Bcl-2AC mice). Bcl-2PC and Bcl-2AC mice demonstrated increased retinal vascular cell apoptosis, reduced numbers of pericytes and endothelial cells and fewer arteries and veins in the retina. Bcl-2PC mice also demonstrated delayed advancement of the superficial retinal vascular layer and aberrant vascularization of the deep vascular plexus and central retina. Although pathologic neovascularization in oxygen-induced ischemic retinopathy (OIR) was not affected by lack of expression of Bcl-2 in either pericytes or astrocytes, laser-induced choroidal neovascularization (CNV) was significantly reduced in Bcl-2PC mice compared to littermate controls. Together these studies begin to reveal how cell autonomous modulation of apoptosis in vascular cells impacts development and homeostasis.
Collapse
Affiliation(s)
- Ismail S Zaitoun
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Catherine M Wintheiser
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nasim Jamali
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Andrew Suscha
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Soesiawati R Darjatmoko
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Katherine Schleck
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Barbara A Hanna
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Volkhard Lindner
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
12
|
Ghanian Z, Mehrvar S, Jamali N, Sheibani N, Ranji M. Time-lapse microscopy of oxidative stress demonstrates metabolic sensitivity of retinal pericytes under high glucose condition. JOURNAL OF BIOPHOTONICS 2018; 11:e201700289. [PMID: 29577636 PMCID: PMC6371775 DOI: 10.1002/jbio.201700289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/06/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Hyperglycemia affects retinal vascular cell function, promotes the development and progression of diabetic retinopathy and ultimately causes vision loss. Oxidative stress, reactive oxygen species (ROS) in excess, is a key biomarker for diabetic retinopathy. Using time-lapse fluorescence microscopy, ROS dynamics was monitored and the metabolic resistivity of retinal endothelial cells (REC) and pericytes (RPC) was compared under metabolic stress conditions including high glucose (HG). In the presence of a mitochondrial stressor, REC exhibited a significant increase in the rate of ROS production compared with RPC. Thus, under normal glucose (NG), REC may utilize oxidative metabolism as the bioenergetic source, while RPC metabolic activity is independent of mitochondrial respiration. In HG condition, the rate of ROS production in RPC was significantly higher, whereas this rate remained unchanged in REC. Thus, under HG condition RPC may preferentially utilize oxidative metabolism, which results in increased rate of ROS production. In contrast, REC use glycolysis as their major bioenergetic source for ATP production, and consequently HG minimally affects their ROS levels. These observations are consistent with our previous studies where we showed HG condition has minimal effect on apoptosis of REC, but results in increased rate of apoptosis in RPC. Collectively, our results suggest that REC and RPC exhibit different metabolic activity preferences under different glucose conditions. Thus, protection of RPC from oxidative stress may provide an early point of intervention in development and progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Zahra Ghanian
- Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, US
| | - Shima Mehrvar
- Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, US
| | - Nasim Jamali
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, US
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, US
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, US
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, US
| | - Mahsa Ranji
- Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, US
| |
Collapse
|
13
|
Watson EC, Grant ZL, Coultas L. Endothelial cell apoptosis in angiogenesis and vessel regression. Cell Mol Life Sci 2017; 74:4387-4403. [PMID: 28646366 PMCID: PMC11107683 DOI: 10.1007/s00018-017-2577-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022]
Abstract
Blood vessel regression is an essential process for ensuring blood vessel networks function at optimal efficiency and for matching blood supply to the metabolic needs of tissues as they change over time. Angiogenesis is the major mechanism by which new blood vessels are produced, but the vessel growth associated with angiogenesis must be complemented by remodeling and maturation events including the removal of redundant vessel segments and cells to fashion the newly forming vasculature into an efficient, hierarchical network. This review will summarize recent findings on the role that endothelial cell apoptosis plays in vascular remodeling during angiogenesis and in vessel regression more generally.
Collapse
Affiliation(s)
- Emma C Watson
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Faculty of Medicine, University of Münster, 48149, Münster, Germany
| | - Zoe L Grant
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Leigh Coultas
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
14
|
Duplomb L, Droin N, Bouchot O, Thauvin-Robinet C, Bruel AL, Thevenon J, Callier P, Meurice G, Pata-Merci N, Loffroy R, Vandroux D, Costa RDA, Carmignac V, Solary E, Faivre L. A constitutive BCL2 down-regulation aggravates the phenotype of PKD1-mutant-induced polycystic kidney disease. Hum Mol Genet 2017; 26:4680-4688. [DOI: 10.1093/hmg/ddx349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023] Open
|
15
|
Wang S, Zaitoun IS, Johnson RP, Jamali N, Gurel Z, Wintheiser CM, Strasser A, Lindner V, Sheibani N, Sorenson CM. Bim expression in endothelial cells and pericytes is essential for regression of the fetal ocular vasculature. PLoS One 2017; 12:e0178198. [PMID: 28552963 PMCID: PMC5446173 DOI: 10.1371/journal.pone.0178198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/08/2017] [Indexed: 12/03/2022] Open
Abstract
Apoptosis plays a central role in developmental and pathological angiogenesis and vessel regression. Bim is a pro-apoptotic Bcl-2 family member that plays a prominent role in both developmental and pathological ocular vessel regression, and neovascularization. Endothelial cells (EC) and pericytes (PC) each play unique roles during vascular development, maintenance and regression. We recently showed that germline deletion of Bim results in persistent hyaloid vasculature, increased retinal vascular density and prevents retinal vessel regression in response to hyperoxia. To determine whether retinal vascular regression is attributable to Bim expression in EC or PC we generated mice carrying a conditional Bim allele (BimFlox/Flox) and VE-cadherin-cre (BimEC mice) or Pdgfrb-cre (BimPC mice). BimEC and BimPC mice demonstrated attenuated hyaloid vessel regression and postnatal retinal vascular remodeling. We also observed decreased retinal vascular apoptosis and proliferation. Unlike global Bim -/- mice, mice conditionally lacking Bim in EC or PC underwent hyperoxia-mediated vessel obliteration and subsequent retinal neovascularization during oxygen-induced ischemic retinopathy similar to control littermates. Thus, understanding the cell autonomous role Bim plays in the retinal vascular homeostasis will give us new insight into how to modulate pathological retinal neovascularization and vessel regression to preserve vision.
Collapse
Affiliation(s)
- Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ismail S. Zaitoun
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ryan P. Johnson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nasim Jamali
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Zafer Gurel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Catherine M. Wintheiser
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Volkhard Lindner
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Christine M. Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zaitoun IS, Johnson RP, Jamali N, Almomani R, Wang S, Sheibani N, Sorenson CM. Endothelium Expression of Bcl-2 Is Essential for Normal and Pathological Ocular Vascularization. PLoS One 2015; 10:e0139994. [PMID: 26444547 PMCID: PMC4622043 DOI: 10.1371/journal.pone.0139994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/21/2015] [Indexed: 12/15/2022] Open
Abstract
Bcl-2 is an anti-apoptotic protein with important roles in vascular homeostasis and angiogenesis. Mice globally lacking Bcl-2 (Bcl-2 -/-) are small in stature and succumb to renal failure shortly after weaning as a result of renal hypoplasia/cystic dysplasia. We have shown that Bcl-2 -/- mice displayed attenuated retinal vascular development and neovascularization. In vitro studies indicated that in addition to modulating apoptosis, Bcl-2 expression also impacts endothelial and epithelial cell adhesion, migration and extracellular matrix production. However, studies delineating the cell autonomous role Bcl-2 expression plays in the endothelium during vascular development, pruning and remodeling, and neovascularization are lacking. Here we generated mice carrying a conditional Bcl-2 allele (Bcl-2Flox/Flox) and VE-cadherin-cre (Bcl-2EC mice). Bcl-2EC mice were of normal stature and lifespan and displayed some but not all of the retinal vascular defects previously observed in global Bcl-2 deficient mice. Bcl-2EC mice had decreased numbers of endothelial cells, decreased retinal arteries and premature primary branching of the retinal vasculature, but unlike the global knockout mice, spreading of the retinal superficial vascular layer proceeded normally. Choroidal neovascularization was attenuated in Bcl-2EC mice, although retinal neovascularization accompanying oxygen-induced ischemic retinopathy was not. Thus, Bcl-2 expression in the endothelium plays a significant role during postnatal retinal vascularization, and pathological choroidal but not retinal neovascularization, suggesting vascular bed specific Bcl-2 function in the endothelium.
Collapse
Affiliation(s)
- Ismail S. Zaitoun
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, 53705, United States of America
| | - Ryan P. Johnson
- Department of Pediatrics, University of Wisconsin, Madison, WI, 53705, United States of America
| | - Nasim Jamali
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, 53705, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53705, United States of America
| | - Reem Almomani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, 53705, United States of America
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, 53705, United States of America
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, 53705, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53705, United States of America
| | - Christine M. Sorenson
- Department of Pediatrics, University of Wisconsin, Madison, WI, 53705, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53705, United States of America
| |
Collapse
|
17
|
The role of BH3-mimetic drugs in the treatment of pediatric hepatoblastoma. Int J Mol Sci 2015; 16:4190-208. [PMID: 25690034 PMCID: PMC4346952 DOI: 10.3390/ijms16024190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 12/20/2022] Open
Abstract
Pediatric hepatoblastoma (HB) is commonly treated by neoadjuvant chemotherapy and surgical tumor resection according to international multicenter trial protocols. Complete tumor resection is essential and survival rates up to 95% have now been achieved in those tumors classified as standard-risk HB. Drug resistance and occurrence of metastases remain the major challenges in the treatment of HB, especially in high-risk tumors. These conditions urgently require the development of alternative therapeutic strategies. One of those alternatives is the modulation of apoptosis in HB cells. HBs regularly overexpress anti-apoptotic proteins of the Bcl-family in comparison to healthy liver tissue. This fact may contribute to the development of chemoresistance of HB cells. Synthetic small inhibitory molecules with BH3-mimetic effects, such as ABT-737 and obatoclax, enhance the susceptibility of tumor cells to different cytotoxic drugs and thereby affect initiator proteins of the apoptosis cascade via the intrinsic pathway. Besides additive effects on HB cell viability when used in combination with cytotoxic drugs, BH3-mimetics also play a role in preventing metastasation by reducing adhesion and inhibiting cell migration abilities. Presumably, including additive BH3-mimetic drugs into existing therapeutic regimens in HB patients might allow dose reduction of established cytotoxic drugs and thereby associated immanent side effects, while maintaining the antitumor activity. Furthermore, reduction of tumor growth and inhibition of tumor cell dissemination may facilitate complete surgical tumor resection, which is mandatory in this tumor type resulting in improved survival rates in high-risk HB. Currently, there are phase I and phase II clinical trials in several cancer entities using this potential target. This paper reviews the available literature regarding the use of BH3-mimetic drugs as single agents or in combination with chemotherapy in various malignancies and focuses on results in HB cells.
Collapse
|
18
|
Miyake T, Ihara S, Miyake T, Tsukada Y, Watanabe H, Matsuda H, Kiguchi H, Tsujimoto H, Nakagami H, Morishita R. Prevention of neointimal formation after angioplasty using nuclear factor-κB decoy oligodeoxynucleotide-coated balloon catheter in rabbit model. Circ Cardiovasc Interv 2014; 7:787-96. [PMID: 25406205 DOI: 10.1161/circinterventions.114.001522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Despite the advent of drug-eluting stents, restenosis after endovascular intervention is still a major limitation in the treatment of cardiovascular disease. To regulate the multiple biological mechanisms underlying restenosis, we focused on inhibition of an important transcription factor, nuclear factor-kappaB (NFκB), using a decoy strategy. METHODS AND RESULTS For site-specific application of NFκB decoy oligodeoxynucleotides into target vessels during angioplasty, we developed a balloon catheter-based delivery system combined with biocompatible nanoparticles as oligodeoxynucleotides carriers. To clarify the therapeutic effect at the site of neointima, balloon angioplasty of the rabbit carotid arteries was performed at 4 weeks after initial endothelial denudation. This delivery system exhibited successful transfer of fluorescence-labeled nanospheres into the neointima in short-term contact with target vessels, and fluorescence could be detected ≥1 week after angioplasty. Consistently, local application of NFκB decoy oligodeoxynucleotides -loaded nanospheres resulted in significant inhibition of neointimal formation, associated with inhibition of NFκB binding activity in the injured arteries. The therapeutic effects were caused by inhibition of macrophage recruitment through the suppression of monocyte chemoattractant protein-1, vascular cell adhesion molecule-1, and CC chemokine ligand 4 expression and inhibition of vascular smooth muscle cell growth via a decrease in the expression of cyclin A and proliferating cell nuclear antigen. Importantly, application of NFκB nanospheres accelerated restoration of the endothelial cell monolayer, associated with enhanced expression of phosphorylated Bcl-2 in endothelial cells. CONCLUSIONS A drug-coated balloon catheter using NFκB decoy oligodeoxynucleotides significantly inhibited the development of neointimal hyperplasia in rabbits. The present study indicates the possibility of a novel therapeutic option to prevent restenosis after angioplasty.
Collapse
Affiliation(s)
- Takashi Miyake
- From the Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan (T.M., T.M., R.M.); Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Osaka, Japan (T.M., H.N.); AnGes MG, Inc, Osaka, Japan (S.I., H.W.); Pharmaceutical and Beauty Science Research Center, Hosokawa Micron Corporation, Osaka, Japan (Y.T., H.T.); and Togo Medikit Co, Ltd, Miyazaki, Japan (H.M., H.K.)
| | - Shinya Ihara
- From the Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan (T.M., T.M., R.M.); Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Osaka, Japan (T.M., H.N.); AnGes MG, Inc, Osaka, Japan (S.I., H.W.); Pharmaceutical and Beauty Science Research Center, Hosokawa Micron Corporation, Osaka, Japan (Y.T., H.T.); and Togo Medikit Co, Ltd, Miyazaki, Japan (H.M., H.K.)
| | - Tetsuo Miyake
- From the Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan (T.M., T.M., R.M.); Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Osaka, Japan (T.M., H.N.); AnGes MG, Inc, Osaka, Japan (S.I., H.W.); Pharmaceutical and Beauty Science Research Center, Hosokawa Micron Corporation, Osaka, Japan (Y.T., H.T.); and Togo Medikit Co, Ltd, Miyazaki, Japan (H.M., H.K.)
| | - Yusuke Tsukada
- From the Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan (T.M., T.M., R.M.); Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Osaka, Japan (T.M., H.N.); AnGes MG, Inc, Osaka, Japan (S.I., H.W.); Pharmaceutical and Beauty Science Research Center, Hosokawa Micron Corporation, Osaka, Japan (Y.T., H.T.); and Togo Medikit Co, Ltd, Miyazaki, Japan (H.M., H.K.)
| | - Hajime Watanabe
- From the Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan (T.M., T.M., R.M.); Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Osaka, Japan (T.M., H.N.); AnGes MG, Inc, Osaka, Japan (S.I., H.W.); Pharmaceutical and Beauty Science Research Center, Hosokawa Micron Corporation, Osaka, Japan (Y.T., H.T.); and Togo Medikit Co, Ltd, Miyazaki, Japan (H.M., H.K.)
| | - Hiroaki Matsuda
- From the Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan (T.M., T.M., R.M.); Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Osaka, Japan (T.M., H.N.); AnGes MG, Inc, Osaka, Japan (S.I., H.W.); Pharmaceutical and Beauty Science Research Center, Hosokawa Micron Corporation, Osaka, Japan (Y.T., H.T.); and Togo Medikit Co, Ltd, Miyazaki, Japan (H.M., H.K.)
| | - Hideki Kiguchi
- From the Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan (T.M., T.M., R.M.); Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Osaka, Japan (T.M., H.N.); AnGes MG, Inc, Osaka, Japan (S.I., H.W.); Pharmaceutical and Beauty Science Research Center, Hosokawa Micron Corporation, Osaka, Japan (Y.T., H.T.); and Togo Medikit Co, Ltd, Miyazaki, Japan (H.M., H.K.)
| | - Hiroyuki Tsujimoto
- From the Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan (T.M., T.M., R.M.); Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Osaka, Japan (T.M., H.N.); AnGes MG, Inc, Osaka, Japan (S.I., H.W.); Pharmaceutical and Beauty Science Research Center, Hosokawa Micron Corporation, Osaka, Japan (Y.T., H.T.); and Togo Medikit Co, Ltd, Miyazaki, Japan (H.M., H.K.)
| | - Hironori Nakagami
- From the Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan (T.M., T.M., R.M.); Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Osaka, Japan (T.M., H.N.); AnGes MG, Inc, Osaka, Japan (S.I., H.W.); Pharmaceutical and Beauty Science Research Center, Hosokawa Micron Corporation, Osaka, Japan (Y.T., H.T.); and Togo Medikit Co, Ltd, Miyazaki, Japan (H.M., H.K.)
| | - Ryuichi Morishita
- From the Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan (T.M., T.M., R.M.); Division of Vascular Medicine and Epigenetics, Osaka University United Graduate School of Child Development, Osaka, Japan (T.M., H.N.); AnGes MG, Inc, Osaka, Japan (S.I., H.W.); Pharmaceutical and Beauty Science Research Center, Hosokawa Micron Corporation, Osaka, Japan (Y.T., H.T.); and Togo Medikit Co, Ltd, Miyazaki, Japan (H.M., H.K.).
| |
Collapse
|
19
|
Debruin EJ, Hughes MR, Sina C, Liu A, Cait J, Jian Z, Lopez M, Lo B, Abraham T, McNagny KM. Podocalyxin regulates murine lung vascular permeability by altering endothelial cell adhesion. PLoS One 2014; 9:e108881. [PMID: 25303643 PMCID: PMC4193771 DOI: 10.1371/journal.pone.0108881] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022] Open
Abstract
Despite the widespread use of CD34-family sialomucins (CD34, podocalyxin and endoglycan) as vascular endothelial cell markers, there is remarkably little known of their vascular function. Podocalyxin (gene name Podxl), in particular, has been difficult to study in adult vasculature as germ-line deletion of podocalyxin in mice leads to kidney malformations and perinatal death. We generated mice that conditionally delete podocalyxin in vascular endothelial cells (Podxl(ΔEC) mice) to study the homeostatic role of podocalyxin in adult mouse vessels. Although Podxl(ΔEC) adult mice are viable, their lungs display increased lung volume and changes to the matrix composition. Intriguingly, this was associated with increased basal and inflammation-induced pulmonary vascular permeability. To further investigate the etiology of these defects, we isolated mouse pulmonary endothelial cells. Podxl(ΔEC) endothelial cells display mildly enhanced static adhesion to fibronectin but spread normally when plated on fibronectin-coated transwells. In contrast, Podxl(ΔEC) endothelial cells exhibit a severely impaired ability to spread on laminin and, to a lesser extent, collagen I coated transwells. The data suggest that, in endothelial cells, podocalyxin plays a previously unrecognized role in maintaining vascular integrity, likely through orchestrating interactions with extracellular matrix components and basement membranes, and that this influences downstream epithelial architecture.
Collapse
Affiliation(s)
- Erin J. Debruin
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Michael R. Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Christina Sina
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Alex Liu
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jessica Cait
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhiqi Jian
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin Lopez
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Bernard Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Abraham
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Vancouver, BC, Canada
- Penn State College of Medicine, Penn State University, Hershey, Pennsylvania, United States of America
| | - Kelly M. McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
20
|
Ghanian Z, Maleki S, Park S, Sorenson CM, Sheibani N, Ranji M. Organ specific optical imaging of mitochondrial redox state in a rodent model of hereditary hemorrhagic telangiectasia-1. JOURNAL OF BIOPHOTONICS 2014; 7:799-809. [PMID: 23740865 PMCID: PMC4324470 DOI: 10.1002/jbio.201300033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/24/2013] [Accepted: 05/13/2013] [Indexed: 05/09/2023]
Abstract
Hereditary Hemorrhagic Telangiectasia-1 (HHT-1) is a vascular disease caused by mutations in the endoglin (Eng)/CD105 gene. The objective of this study was to quantify the oxidative state of a rodent model of HHT-1 using an optical imaging technique. We used a cryofluorescence imaging instrument to quantitatively assess tissue metabolism in this model. Mitochondrial redox ratio (FAD/NADH), FAD RR, was used as a quantitative marker of the metabolic status and was examined in the kidneys, and eyes of wild-type and Eng +/- mice. Kidneys and eyes from wild-type P21, 6W, and 10M old mice showed, respectively, a 9% (±2), 24% (±0.4), 15% (±1), and 23% (±4), 33% (±0.6), and 30% (±2) change in the mean FAD RR compared to Eng +/- mice at the same age. Thus, endoglin haploinsufficiency is associated with less oxidative stress in various organs and mitigation of angiogenesis.
Collapse
Affiliation(s)
- Zahra Ghanian
- Department of Electrical Engineering, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Sepideh Maleki
- Department of Electrical Engineering, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - SunYoung Park
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christine M. Sorenson
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mahsa Ranji
- Department of Electrical Engineering, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
21
|
Modulation of vascular cell function by bim expression. Int J Cell Biol 2013; 2013:297537. [PMID: 24288535 PMCID: PMC3833316 DOI: 10.1155/2013/297537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/04/2013] [Indexed: 11/30/2022] Open
Abstract
Apoptosis of vascular cells, including pericytes and endothelial cells, contributes to disease pathogenesis in which vascular rarefaction plays a central role. Bim is a proapoptotic protein that modulates not only apoptosis but also cellular functions such as migration and extracellular matrix (ECM) protein expression. Endothelial cells and pericytes each make a unique contribution to vascular formation and function although the details require further delineation. Here we set out to determine the cell autonomous impact of Bim expression on retinal endothelial cell and pericyte function using cells prepared from Bim deficient (Bim−/−) mice. Bim−/− endothelial cells displayed an increased production of ECM proteins, proliferation, migration, adhesion, and VEGF expression but, a decreased eNOS expression and nitric oxide production. In contrast, pericyte proliferation decreased in the absence of Bim while migration, adhesion, and VEGF expression were increased. In addition, we demonstrated that the coculturing of either wild-type or Bim−/− endothelial cells with Bim−/− pericytes diminished their capillary morphogenesis. Thus, our data further emphasizes the importance of vascular cell autonomous regulatory mechanisms in modulation of vascular function.
Collapse
|
22
|
BH3 mimetics reduce adhesion and migration of hepatoblastoma and hepatocellular carcinoma cells. Exp Cell Res 2013; 319:1443-50. [DOI: 10.1016/j.yexcr.2013.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/24/2013] [Accepted: 01/26/2013] [Indexed: 12/30/2022]
|
23
|
Grutzmacher C, Park S, Zhao Y, Morrison ME, Sheibani N, Sorenson CM. Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes. Am J Physiol Renal Physiol 2012; 304:F19-30. [PMID: 23077100 DOI: 10.1152/ajprenal.00036.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Diabetic nephropathy is the most common cause of end-stage renal disease and is a major risk factor for cardiovascular disease. In the United States, microvascular complications during diabetic nephropathy contribute to high morbidity and mortality rates. However, the cell-autonomous impact of diabetes on kidney endothelial cell function requires further investigation. Male Akita/+ [autosomal dominant mutation in the insulin II gene (Ins2)] mice reproducibly develop diabetes by 4 wk of age. Here, we examined the impact a short duration of diabetes had on kidney endothelial cell function. Kidney endothelial cells were prepared from nondiabetic and diabetic mice (4 wk of diabetes) to delineate the early changes in endothelial cell function. Kidney endothelial cells from Akita/+ mice following 4 wk of diabetes demonstrated aberrant expression of extracellular matrix proteins including decreased osteopontin and increased fibronectin expression which correlated with increased α5-integrin expression. These changes were associated with the attenuation of migration and capillary morphogenesis. Kidney endothelial cells from Akita/+ mice had decreased VEGF levels but increased levels of endothelial nitric oxide synthase(eNOS) and NO, suggesting uncoupling of VEGF-mediated NO production. Knocking down eNOS expression in Akita/+ kidney endothelial cells increased VEGF expression, endothelial cell migration, and capillary morphogenesis. Furthermore, attenuation of sprouting angiogenesis of aortas from Akita/+ mice with 8 wk of diabetes was restored in the presence of the antioxidant N-acetylcysteine. These studies demonstrate that aberrant endothelial cell function with a short duration of diabetes may set the stage for vascular dysfunction and rarefaction at later stages of diabetes.
Collapse
Affiliation(s)
- Cathy Grutzmacher
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792-4108, USA
| | | | | | | | | | | |
Collapse
|
24
|
Sheibani N, Morrison ME, Gurel Z, Park S, Sorenson CM. BIM deficiency differentially impacts the function of kidney endothelial and epithelial cells through modulation of their local microenvironment. Am J Physiol Renal Physiol 2011; 302:F809-19. [PMID: 22169007 DOI: 10.1152/ajprenal.00498.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The extracellular matrix (ECM) acts as a scaffold for kidney cellular organization. Local secretion of the ECM allows kidney cells to readily adapt to changes occurring within the kidney. In addition to providing structural support for cells, the ECM also modulates cell survival, migration, proliferation, and differentiation. Although aberrant regulation of ECM proteins can play a causative role in many diseases, it is not known whether ECM production, cell adhesion, and migration are regulated in a similar manner in kidney epithelial and endothelial cells. Here, we demonstrate that lack of BIM expression differentially impacts kidney endothelial and epithelial cell ECM production, migration, and adhesion, further emphasizing the specialized role of these cell types in kidney function. Bim -/- kidney epithelial cells demonstrated decreased migration, increased adhesion, and sustained expression of osteopontin and thrombospondin-1 (TSP1). In contrast, bim -/- kidney endothelial cells demonstrated increased cell migration, and decreased expression of osteopontin and TSP1. We also observed a fivefold increase in VEGF expression in bim -/- kidney endothelial cells consistent with their increased migration and capillary morphogenesis. These cells also had decreased endothelial nitric oxide synthase activity and nitric oxide bioavailability. Thus kidney endothelial and epithelial cells make unique contributions to the regulation of their ECM composition, with specific impact on adhesive and migratory properties that are essential for their proper function.
Collapse
Affiliation(s)
- Nader Sheibani
- Dept. of Pediatrics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI 53792-4108, USA
| | | | | | | | | |
Collapse
|
25
|
Bim is responsible for the inherent sensitivity of the developing retinal vasculature to hyperoxia. Dev Biol 2010; 349:296-309. [PMID: 21047504 DOI: 10.1016/j.ydbio.2010.10.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/07/2010] [Accepted: 10/26/2010] [Indexed: 11/21/2022]
Abstract
Apoptosis plays an important role in development and remodeling of vasculature during organogenesis. Coordinated branching and remodeling of the retinal vascular tree is essential for normal retinal function. Bcl-2 family members, such as bim not only influence apoptosis, but also cell adhesive and migratory properties essential during vascular development. Here we examined the impact of bim deficiency on postnatal retinal vascularization, as well as retinal neovascularization during oxygen-induced ischemic retinopathy (OIR) and laser-induced choroidal neovascularization. Loss of bim expression was associated with increased retinal vascular density in mature animals. This was mainly attributed to increased numbers of pericytes and endothelial cells. However, the initial spread of the superficial layer of retinal vasculature and, the appearance and density of the tip cells were similar in bim+/+ and bim-/- mice. In addition, hyaloid vessel regression was attenuated in the absence of bim. Furthermore, in the absence of bim retinal vessel obliteration and neovascularization did not occur during OIR. Instead, normal inner retinal vascularization proceeded independent of changes in oxygen levels. In contrast, choroidal neovascularization occurred equally well in bim+/+ and bim-/- mice. Together our data suggest bim expression may be responsible for the inherent sensitivity of the developing retinal vasculature to changes in oxygen levels, and promotes vessel obliteration in response to hyperoxia.
Collapse
|