1
|
Chiba Y, Yamane Y, Sato T, Suto W, Hanazaki M, Sakai H. Extracellular acidification attenuates bronchial contraction via an autocrine activation of EP 2 receptor: Its diminishment in murine experimental asthma. Respir Physiol Neurobiol 2024; 324:104251. [PMID: 38492830 DOI: 10.1016/j.resp.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Extracellular acidification is a major component of tissue inflammation, including airway inflammation in asthmatics. However, its physiological/pathophysiological significance in bronchial function is not fully understood. Currently, the functional role of extracellular acidification on bronchial contraction was explored. METHODS Left main bronchi were isolated from male BALB/c mice. Epithelium-removed tissues were exposed to acidic pH under submaximal contraction induced by 10-5 M acetylcholine in the presence or absence of a COX inhibitor indomethacin (10-6 M). Effects of AH6809 (10-6 M, an EP2 receptor antagonist), BW A868C (10-7 M, a DP receptor antagonist) and CAY10441 (3×10-6 M, an IP receptor antagonist) on the acidification-induced change in tension were determined. The release of prostaglandin E2 (PGE2) from epithelium-denuded tissues in response to acidic pH was assessed using an ELISA. RESULTS In the bronchi stimulated with acetylcholine, change in the extracellular pH from 7.4 to 6.8 caused a transient augmentation of contraction followed by a sustained relaxing response. The latter inhibitory response was abolished by indomethacin and AH6809 but not by BW A868C or CAY10441. Both indomethacin and AH6809 significantly increased potency and efficacy of acetylcholine at pH 6.8. Stimulation with low pH caused an increase in PGE2 release from epithelium-denuded bronchi. Interestingly, the acidic pH-induced bronchial relaxation was significantly reduced in a murine asthma model that had a bronchial hyperresponsiveness to acetylcholine. CONCLUSION Taken together, extracellular acidification could inhibit the bronchial contraction via autocrine activation of EP2 receptors. The diminished acidic pH-mediated inhibition of bronchial tone may contribute to excessive bronchoconstriction in inflamed airways such as asthma.
Collapse
Affiliation(s)
| | - Yamato Yamane
- Laboratory of Molecular Biology and Physiology, Japan
| | - Tsubasa Sato
- Laboratory of Molecular Biology and Physiology, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
2
|
Chitano P, Wang L, Degan S, Worthington CL, Pozzato V, Hussaini SH, Turner WC, Dorscheid DR, Murphy TM. Ovalbumin sensitization of guinea pig at birth prevents the ontogenetic decrease in airway smooth muscle responsiveness. Physiol Rep 2014; 2:2/12/e12241. [PMID: 25501429 PMCID: PMC4332219 DOI: 10.14814/phy2.12241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Airway smooth muscle (ASM) displays a hyperresponsive phenotype at young age and becomes less responsive in adulthood. We hypothesized that allergic sensitization, which causes ASM hyperresponsiveness and typically occurs early in life, prevents the ontogenetic loss of the ASM hyperresponsive phenotype. We therefore studied whether neonatal allergic sensitization, not followed by later allergen challenges, alters the ontogenesis of ASM properties. We neonatally sensitized guinea pigs to ovalbumin and studied them at 1 week, 3 weeks, and 3 months (adult). A Schultz‐Dale response in isolated tracheal rings confirmed sensitization. The occurrence of inflammation was evaluated in the blood and in the submucosa of large airways. We assessed ASM function in tracheal strips as ability to produce force and shortening. ASM content of vimentin was also studied. A Schultz‐Dale response was observed in all 3‐week or older sensitized animals. A mild inflammatory process was characterized by eosinophilia in the blood and in the airway submucosa. Early life sensitization had no effect on ASM force generation, but prevented the ontogenetic decline of shortening velocity and the increase in resistance to shortening. Vimentin increased with age in control but not in sensitized animals. Allergic sensitization at birth without subsequent allergen exposures is sufficient to prevent normal ASM ontogenesis, inducing persistence to adulthood of an ASM hyperresponsive phenotype. Airway smooth muscle (ASM) displays a hyperresponsive phenotype at young age and becomes less responsive in adulthood. In this study, we found that allergic sensitization at birth without subsequent allergen exposures is sufficient to prevent normal ASM ontogenesis, inducing persistence to adulthood of an ASM hyperresponsive phenotype.
Collapse
Affiliation(s)
- Pasquale Chitano
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina James Hogg Research Centre, Institute for Heart and Lung Innovation and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lu Wang
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina James Hogg Research Centre, Institute for Heart and Lung Innovation and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simone Degan
- Duke Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Durham, North Carolina Duke Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Charles L Worthington
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Valeria Pozzato
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Syed H Hussaini
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Wesley C Turner
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Delbert R Dorscheid
- James Hogg Research Centre, Institute for Heart and Lung Innovation and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas M Murphy
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
3
|
Chitano P. Models to understand contractile function in the airways. Pulm Pharmacol Ther 2011; 24:444-51. [PMID: 21511049 DOI: 10.1016/j.pupt.2011.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 11/25/2022]
Abstract
Although the role of contractile function in the airways is controversial, there is general consensus on the importance of airway smooth muscle (ASM) as a therapeutic target for diseases characterized by airway obstruction, such as asthma or chronic obstructive pulmonary disease. Indeed, the use of bronchodilators to relax ASM is the most common and effective practice to treat airflow obstruction. Excessive pathologic bronchoconstriction may originate from primary alterations of ASM mechanical function and/or from the effects exerted on ASM function by disease processes, such as inflammation and remodeling. An in depth knowledge of the potentially multiple mechanisms that distinctively regulate primary and secondary alterations in ASM contractile function would be essential for the development of new therapeutic approaches aimed at preventing the occurrence or reducing the severity of bronchoconstriction. The present review discusses studies that have addressed the mechanisms of altered ASM contractile function in models of airway hyperresponsiveness. Although not comprehensively, in the present review, animal models of intrinsic airway hyperresponsiveness, normal ontogenesis, and allergic sensitization are analyzed in the attempt to summarize the current knowledge on regulatory mechanisms of ASM contractile function in health and disease. Studies in human ASM and the need for additional models to understand contractile function in the airways are also discussed.
Collapse
Affiliation(s)
- Pasquale Chitano
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Abstract
Understanding the role of ontogeny in the disposition and actions of medicines is the most fundamental prerequisite for safe and effective pharmacotherapeutics in the pediatric population. The maturational process represents a continuum of growth, differentiation, and development, which extends from the very small preterm newborn infant through childhood, adolescence, and to young adulthood. Developmental changes in physiology and, consequently, in pharmacology influence the efficacy, toxicity, and dosing regimen of medicines. Relevant periods of development are characterized by changes in body composition and proportion, developmental changes of physiology with pathophysiology, exposure to unique safety hazards, changes in drug disposition by major organs of metabolism and elimination, ontogeny of drug targets (e.g., enzymes, transporters, receptors, and channels), and environmental influences. These developmental components that result in critical windows of development of immature organ systems that may lead to permanent effects later in life interact in a complex, nonlinear fashion. The ontogeny of these physiologic processes provides the key to understanding the added dimension of development that defines the essential differences between children and adults. A basic understanding of the developmental dynamics in pediatric pharmacology is also essential to delineating the future directions and priority areas of pediatric drug research and development.
Collapse
MESH Headings
- Adolescent
- Body Composition/physiology
- Child
- Child, Preschool
- Drug-Related Side Effects and Adverse Reactions
- Female
- Human Development/physiology
- Humans
- Infant
- Infant, Newborn/physiology
- Infant, Newborn, Diseases/drug therapy
- Infant, Newborn, Diseases/physiopathology
- Infant, Premature/physiology
- Infant, Premature, Diseases/drug therapy
- Infant, Premature, Diseases/physiopathology
- Male
- Pediatrics
- Pharmaceutical Preparations/metabolism
- Pharmacokinetics
- Pharmacological Phenomena/physiology
Collapse
Affiliation(s)
- Hannsjörg W Seyberth
- Klinik fur Kinder- und Jugendmedizin, Philipps-Universität Marburg, Baldingerstraße, 35043 Marburg, Germany.
| | | |
Collapse
|