1
|
Chronic + binge alcohol exposure promotes inflammation and alters airway mechanics in the lung. Alcohol 2019; 80:53-63. [PMID: 30445135 DOI: 10.1016/j.alcohol.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Alcohol use disorders are major risk factors for the development of and susceptibility to acute respiratory distress syndrome. Although these risks of alcohol consumption on the lung are well described, mechanisms by which alcohol abuse promotes acute lung injury are poorly understood. These gaps in our understanding are due, at least in part, to limitations of animal models to recapitulate human alcohol consumption. Recently, a new model of chronic plus binge alcohol exposure was developed that is hypothesized to better model drinking patterns of individuals with alcohol use disorders. Specifically, this paradigm models chronic consumption coupled with periodic bouts of heavy drinking. The impacts of this alcohol-exposure regimen on the lung are uncharacterized. Therefore, the goal of this study was to examine lung injury and inflammation in a well-characterized experimental model of chronic + binge alcohol exposure. METHODS 10-week-old male C57Bl6/J mice were administered ethanol-containing (or isocaloric control) liquid diet for 10 days, followed by a single ethanol gavage (5 g/kg). Lung inflammation and pulmonary function were assessed. RESULTS Ten days of ethanol-containing liquid diet alone (chronic) did not detectably affect any variables measured. However, ethanol diet plus gavage (chronic + binge) caused neutrophils to accumulate in the lung tissue and in the bronchoalveolar lavage fluid 24 h post-binge. This inflammatory cell recruitment was associated with airway hyper-responsiveness to inhaled methacholine, as indicated by elevated resistance, Newtonian resistance, and respiratory resistance. CONCLUSIONS Taken together, the novel findings reveal that ethanol alone, absent of any secondary inflammatory insult, is sufficient to produce inflammation in the lung. Although these changes were relatively mild, they were associated with functional changes in the central airways. This animal model may be useful in the future for identifying mechanisms by which alcohol abuse sensitizes at-risk individuals to lung injury.
Collapse
|
2
|
Wang S, Sui S, Liu Z, Peng C, Liu J, Luo D, Fan X, Liu C, Lu WY. Protective roles of hepatic gamma-aminobutyric acid signaling in acute ethanol exposure-induced liver injury. J Appl Toxicol 2017; 38:341-350. [PMID: 29044621 DOI: 10.1002/jat.3544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 11/06/2022]
Abstract
Alcoholic liver disease (ALD) is a consequence of heavy and prolonged alcohol consumptions. We previously demonstrated a hepatic gamma-aminobutyric acid (GABA) signaling system that protects the liver from toxic injury. The present study was designed to investigate the role of the hepatic GABA signaling system in the process of acute ethanol exposure-induced liver injury. Our results showed that the expression of GABA synthesizing enzyme glutamic acid decarboxylase and type A GABA receptor (GABAA R) subunits was upregulated in ethanol-treated mice compared with saline-treated controls. Remarkably, pretreatment of mice with GABA (1.5 mg kg-1 body weight, intraperitoneal injection [i.p.]) or with the GABAA R agonist muscimol (1.2 mg kg-1 body weight, i.p.) protected the liver against ethanol toxicity and improved liver function, whereas pretreatment of mice with the GABAA R antagonist bicuculline (2.0 mg kg-1 body weight, i.p.) worsened the liver function. Further analyses suggest that GABAA R-mediated signaling protects the liver from ethanol injury by, at least partially, inhibiting the IRE1α-ASK1-JNK pro-apoptotic pathway in hepatocytes in the process of ethanol-induced endoplasmic reticulum stress response.
Collapse
Affiliation(s)
- Shuanglian Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Shaofeng Sui
- Shandong Center for Disease Control and Prevention, Institute of Occupational and Environmental Health, Jinan, Shandong, People's Republic of China
| | - Zhiyan Liu
- Department of Pathology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Cheng Peng
- Shandong University Qi Lu Hospital, Jinan, Shandong, People's Republic of China
| | - Jia Liu
- Xinhua Hospital, Huainan, Anhui, People's Republic of China
| | - Dan Luo
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Xinhuan Fan
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Chuanyong Liu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
3
|
Rodriguez E, Sakowski L, Hobson GM, Armani MH, Kreiger PA, Zhu Y, Waldman SA, Shaffer TH. Plp1 gene duplication inhibits airway responsiveness and induces lung inflammation. Pulm Pharmacol Ther 2015; 30:22-31. [PMID: 25445931 PMCID: PMC6874309 DOI: 10.1016/j.pupt.2014.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/26/2014] [Accepted: 10/25/2014] [Indexed: 11/25/2022]
Abstract
Mice with Plp1 gene duplication model the most common form of Pelizaeus-Merzbacher disease (PMD), a CNS disease in which patients may suffer respiratory complications. We hypothesized that affected mice would lack airway responsiveness compared to wild-type and carrier mice during methacholine challenge. Wild-type (n = 10), carrier female (n = 6) and affected male (n = 8) mice were anesthetized-paralyzed, tracheostomized and ventilated. Respiratory mechanics were recorded at baseline and during escalating doses of nebulized methacholine followed by albuterol. Lung resistance (RL) was the primary endpoint. Lung tissues were assayed for inflammatory and histological differences. At baseline, phase angles were higher in carrier and affected mice than wild-type. Dose-response RL curves in affected and carrier mice indicated a lack of methacholine response. Albuterol reduced RL in wild-type and carrier, but not affected mice. Affected mice exhibited lower interleukin (IL)-6 tissue levels and alveolar inflammatory infiltrates. Affected and carrier mice, compared to wild-type, lacked airway reactivity during methacholine challenge, but only affected mice exhibited decreased lung tissue levels of IL-6 and inflammation.
Collapse
Affiliation(s)
- Elena Rodriguez
- Alfred I. duPont Hospital for Children, Nemours Lung Center, Wilmington, DE 19803, USA; Alfred I. duPont Hospital for Children, Nemours Biomedical Research, Wilmington, DE 19803, USA; Thomas Jefferson University, Division of Clinical Pharmacology, Dept. of Pharmacology and Experimental Therapeutics, Philadelphia, PA 19107, USA.
| | - Lauren Sakowski
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Wilmington, DE 19803, USA; University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | - Grace M Hobson
- Alfred I. duPont Hospital for Children, Nemours Biomedical Research, Wilmington, DE 19803, USA; Center for Applied Clinical Genomics, Nemours Biomedical Research, Wilmington, DE 19803, USA; University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA; Thomas Jefferson University, Department of Pediatrics, Philadelphia, PA 19107, USA
| | - Milena Hirata Armani
- Alfred I. duPont Hospital for Children, Nemours Lung Center, Wilmington, DE 19803, USA
| | - Portia A Kreiger
- Nemours Alfred I. duPont Hospital for Children, Department of Pathology, Wilmington, DE 19803, USA
| | - Yan Zhu
- Alfred I. duPont Hospital for Children, Nemours Lung Center, Wilmington, DE 19803, USA; Alfred I. duPont Hospital for Children, Nemours Biomedical Research, Wilmington, DE 19803, USA
| | - Scott A Waldman
- Thomas Jefferson University, Division of Clinical Pharmacology, Dept. of Pharmacology and Experimental Therapeutics, Philadelphia, PA 19107, USA
| | - Thomas H Shaffer
- Alfred I. duPont Hospital for Children, Nemours Lung Center, Wilmington, DE 19803, USA; Alfred I. duPont Hospital for Children, Nemours Biomedical Research, Wilmington, DE 19803, USA
| |
Collapse
|
4
|
Ethanol-induced alcohol dehydrogenase E (AdhE) potentiates pneumolysin in Streptococcus pneumoniae. Infect Immun 2014; 83:108-19. [PMID: 25312953 DOI: 10.1128/iai.02434-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence.
Collapse
|
5
|
Adenylate kinase from Streptococcus pneumoniae is essential for growth through its catalytic activity. FEBS Open Bio 2014; 4:672-82. [PMID: 25180151 PMCID: PMC4141199 DOI: 10.1016/j.fob.2014.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/26/2014] [Accepted: 07/02/2014] [Indexed: 01/13/2023] Open
Abstract
Crystal structure of adenylate kinase from Streptococcus pneumoniae was determined. Arg-89 was identified as a key residue for enzymatic activity. Expression of the R89A mutated protein did not rescue a pneumococcal growth defect. Lack of functional adenylate kinase caused a growth defect in vivo. Pneumoccocal adenylate kinase is essential for growth both in vitro and in vivo.
Streptococcus pneumoniae (pneumococcus) infection causes more than 1.6 million deaths worldwide. Pneumococcal growth is a prerequisite for its virulence and requires an appropriate supply of cellular energy. Adenylate kinases constitute a major family of enzymes that regulate cellular ATP levels. Some bacterial adenylate kinases (AdKs) are known to be critical for growth, but the physiological effects of AdKs in pneumococci have been poorly understood at the molecular level. Here, by crystallographic and functional studies, we report that the catalytic activity of adenylate kinase from S.pneumoniae (SpAdK) serotype 2 D39 is essential for growth. We determined the crystal structure of SpAdK in two conformations: ligand-free open form and closed in complex with a two-substrate mimic inhibitor adenosine pentaphosphate (Ap5A). Crystallographic analysis of SpAdK reveals Arg-89 as a key active site residue. We generated a conditional expression mutant of pneumococcus in which the expression of the adk gene is tightly regulated by fucose. The expression level of adk correlates with growth rate. Expression of the wild-type adk gene in fucose-inducible strains rescued a growth defect, but expression of the Arg-89 mutation did not. SpAdK increased total cellular ATP levels. Furthermore, lack of functional SpAdK caused a growth defect in vivo. Taken together, our results demonstrate that SpAdK is essential for pneumococcal growth in vitro and in vivo.
Collapse
|
6
|
Treatment with the C5a receptor/CD88 antagonist PMX205 reduces inflammation in a murine model of allergic asthma. Int Immunopharmacol 2014; 21:293-300. [PMID: 24859057 DOI: 10.1016/j.intimp.2014.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 02/03/2023]
Abstract
Allergic asthma is a chronic inflammatory airway disease arising from an aberrant immune response following exposure to environmental stimuli in genetically susceptible persons. The complement component 5 (C5)/C5a Receptor (C5aR/CD88) signaling pathway has been implicated in both experimental allergic asthma and human asthmatic disease. Targeting the C5a/C5aR signaling pathway in rodent models has been shown to either enhance or reduce allergic asthma consequences. Treatment with a recombinant humanized monoclonal antibody directed against C5 has shown unclear results in patients with asthma. The objective of this proof-of-concept animal study was to determine whether the low molecular weight C5aR peptidomimetic antagonist, PMX205, would reduce experimental allergic asthma consequences in mice. PMX205 or vehicle control was administered subcutaneously to BALB/c mice prior to and during standard ovalbumin (OVA) allergen sensitization and aerosolized challenge phases. PMX205 substantially reduced OVA-induced total cell (60%), neutrophil (66%) and eosinophil (65%) influxes in lavage fluid sampling. There were also significant reductions in OVA-induced lavage fluid IL-13 protein and lung Th2 cytokine gene expression with PMX205 administration. PMX205 treatment also diminished OVA-induced lung parenchyma cellular infiltration. PMX205 administration did not reduce OVA-induced serum IgE levels or epithelial mucous/goblet cell generation. There was no evidence of toxicity observed with PMX205 treatment in saline or OVA-challenged animals. These data provide evidence that pharmacologic blockade of C5aR by a low molecular weight antagonist (PMX205) reduces airway inflammatory cell and cytokine responses in experimental allergic asthma, and suggests that PMX205 might represent a novel therapeutic agent for reducing asthmatic outcomes.
Collapse
|
7
|
Bouchard JC, Beal DR, Kim J, Vaickus LJ, Remick DG. Chemokines mediate ethanol-induced exacerbations of murine cockroach allergen asthma. Clin Exp Immunol 2013; 172:203-16. [PMID: 23574317 DOI: 10.1111/cei.12048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2012] [Indexed: 10/27/2022] Open
Abstract
Asthma imposes considerable patient and economic burdens, with the most severe cases causing the greatest affliction. Identifying stimuli that worsen asthma severity is an essential step to controlling both disease morbidity and the lessening economic impact. This study provides the first mechanistic investigation into how acute ethanol exposure will increase asthma severity in a murine model of mild cockroach allergen (CRA)-induced asthma. Outbred mice were sensitized to induce mild allergic asthma, with intratracheal CRA exposures on days 0 and 14. On day 21 mice were gavaged with water or 32% ethanol, and the third allergen exposure was given 30 min post-gavage. Asthmatic responses were measured at several time-points up to 42 h after the third allergen challenge. Ethanol-gavaged mice showed increased asthma severity within 90 min post-allergen challenge, with exacerbations lasting for 24 h. Ethanol caused greater airways obstruction, including an eightfold increase in epithelial cell mucin and increased mucus plugs, resulting in a 50% reduction in bronchiole patency. Ethanol gavage also induced significant increases in airways hyperreactivity. While T helper type 1 (Th1) and Th2 cytokines were not altered by ethanol gavage, pulmonary neutrophil and eosinophil recruitment were augmented. This increase was associated with increased chemokine production. Administration 2 h prior to ethanol gavage of a neutralizing antibody cocktail to keratinocyte-derived chemokine, macrophage inflammatory protein-2, eotaxin-1 and eotaxin-2 prevented ethanol-induced eosinophil recruitment and airways hyperreactivity. These data provide evidence that acute alcohol exposure immediately prior to a mild allergen-triggered asthmatic episode will exacerbate asthma severity mediated by increased production of chemokines.
Collapse
Affiliation(s)
- J C Bouchard
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
8
|
Thevenot P, Saravia J, Giaimo J, Happel KI, Dugas TR, Cormier SA. Chronic alcohol induces M2 polarization enhancing pulmonary disease caused by exposure to particulate air pollution. Alcohol Clin Exp Res 2013; 37:1910-9. [PMID: 23763452 DOI: 10.1111/acer.12184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/25/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND Chronic alcohol consumption causes persistent oxidative stress in the lung, leading to impaired alveolar macrophage (AM) function and impaired immune responses. AMs play a critical role in protecting the lung from particulate matter (PM) inhalation by removing particulates from the airway and secreting factors which mediate airway repair. We hypothesized AM dysfunction caused by chronic alcohol consumption increases the severity of injury caused by PM inhalation. METHODS Age- and sex-matched C57BL/6 mice were fed the Lieber-DeCarli liquid diet containing either alcohol or an isocaloric substitution (control diet) for 8 weeks. Mice from both diet groups were exposed to combustion-derived PM (CDPM) for the final 2 weeks. AM number, maturation, and polarization status were assessed by flow cytometry. Noninvasive and invasive strategies were used to assess pulmonary function and correlated with histomorphological assessments of airway structure and matrix deposition. RESULTS Co-exposure to alcohol and CDPM decreased AM number and maturation status (CD11c expression), while increasing markers of M2 activation (interleukin [IL]-4Rα, Ym1, Fizz1 expression, and IL-10 and transforming growth factor [TGF]-β production). Changes in AM function were accompanied by decreased airway compliance and increased elastance. Altered lung function was attributable to elevated collagen content localized to the small airways and loss of alveolar integrity. Intranasal administration of neutralizing antibody to TGF-β during the CDPM exposure period improved changes in airway compliance and elastance, while reducing collagen content caused by co-exposure. CONCLUSIONS Combustion-derived PM inhalation causes enhanced disease severity in the alcoholic lung by stimulating the release of latent TGF-β stores in AMs. The combinatorial effect of elevated TGF-β, M2 polarization of AMs, and increased oxidative stress impairs pulmonary function by increasing airway collagen content and compromising alveolar integrity.
Collapse
Affiliation(s)
- Paul Thevenot
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | | | | | | | |
Collapse
|
9
|
Yamamoto Y, Enkhbaatar P, Sousse LE, Sakurai H, Rehberg SW, Asmussen S, Kraft ER, Wright CL, Bartha E, Cox RA, Hawkins HK, Traber LD, Traber MG, Szabo C, Herndon DN, Traber DL. Nebulization with γ-tocopherol ameliorates acute lung injury after burn and smoke inhalation in the ovine model. Shock 2012; 37:408-14. [PMID: 22266978 PMCID: PMC3306540 DOI: 10.1097/shk.0b013e3182459482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We hypothesize that the nebulization of γ-tocopherol (g-T) in the airway of our ovine model of acute respiratory distress syndrome will effectively improve pulmonary function following burn and smoke inhalation after 96 h. Adult ewes (n = 14) were subjected to 40% total body surface area burn and were insufflated with 48 breaths of cotton smoke under deep anesthesia, in a double-blind comparative study. A customized aerosolization device continuously delivered g-T in ethanol with each breath from 3 to 48 h after the injury (g-T group, n = 6), whereas the control group (n = 5) was nebulized with only ethanol. Animals were weaned from the ventilator when possible. All animals were killed after 96 h, with the exception of one untreated animal that was killed after 64 h. Lung g-T concentration significantly increased after g-T nebulization compared with the control group (38.5 ± 16.8 vs. 0.39 ± 0.46 nmol/g, P < 0.01). The PaO(2)/FIO(2) ratio was significantly higher after treatment with g-T compared with the control group (310 ± 152 vs. 150 ± 27.0, P < 0.05). The following clinical parameters were improved with g-T treatment: pulmonary shunt fraction, peak and pause pressures, lung bloodless wet-to-dry weight ratios (2.9 ± 0.87 vs. 4.6 ± 1.4, P < 0.05), and bronchiolar obstruction (2.0% ± 1.1% vs. 4.6% ± 1.7%, P < 0.05). Nebulization of g-T, carried by ethanol, improved pulmonary oxygenation and markedly reduced the time necessary for assisted ventilation in burn- and smoke-injured sheep. Delivery of g-T into the lungs may be a safe, novel, and efficient approach for management of acute lung injury patients who have sustained oxidative damage to the airway.
Collapse
Affiliation(s)
- Yusuke Yamamoto
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
- Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, 8-1 Kawata-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Linda E. Sousse
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Hiroyuki Sakurai
- Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, 8-1 Kawata-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sebastian W. Rehberg
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Sven Asmussen
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Edward R. Kraft
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Charlotte L. Wright
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331-6512, USA
| | - Eva Bartha
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Robert A. Cox
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Hal K. Hawkins
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Lillian D. Traber
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Maret G. Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331-6512, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - David N. Herndon
- Shriners Hospitals for Children, Burn Unit, Galveston, Texas 77555-0833
| | - Daniel L. Traber
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| |
Collapse
|
10
|
Oldenburg PJ, Poole JA, Sisson JH. Alcohol reduces airway hyperresponsiveness (AHR) and allergic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol 2011; 302:L308-15. [PMID: 22114149 DOI: 10.1152/ajplung.00077.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is very limited knowledge about the effects of alcohol on airway hyperresponsiveness and inflammation in asthma. Historical accounts of alcohol administration to patients with breathing problems suggest that alcohol may have bronchodilating properties. We hypothesized that alcohol exposure will alter airway hyperresponsiveness (AHR) and pulmonary inflammation in a mouse model of allergic asthma. To test this hypothesis, BALB/c mice were fed either 18% alcohol or water and then sensitized and challenged with ovalbumin (OVA). AHR was assessed by means of ventilation or barometric plethysmography and reported as either total lung resistance or enhanced pause, respectively. Airway inflammation was assessed by total and differential cell counts in bronchoalveolar lavage fluid (BALF), cytokine levels in BALF, lung histology, and serum immunoglobulin E (IgE) levels. Alcohol feeding significantly blocked methacholine-induced increases in AHR compared with water-fed controls. Alcohol feeding significantly reduced total cell numbers (64%) as well as the number of eosinophils (84%) recruited to the lungs of these mice. Modest changes in lung pathology were also observed. Alcohol exposure led to a reduction of IgE in the serum of the EtOH OVA mice. These data demonstrate that alcohol exposure blunts AHR and dampens allergic airway inflammation indices in allergic mice and suggest that there may be an important role for alcohol in the modulation of asthma. These data provide an in vivo basis for previous clinical observations in humans substantiating the bronchodilator properties of alcohol and for the first time demonstrates an alcohol-induced reduction of allergic inflammatory cells in a mouse model of allergic asthma.
Collapse
Affiliation(s)
- Peter J Oldenburg
- Nebraska Medical Center, Univ. of Nebraska Medical Ctr., Omaha, NE 68198-5910, USA
| | | | | |
Collapse
|
11
|
Poole JA, Wyatt TA, Kielian T, Oldenburg P, Gleason AM, Bauer A, Golden G, West WW, Sisson JH, Romberger DJ. Toll-like receptor 2 regulates organic dust-induced airway inflammation. Am J Respir Cell Mol Biol 2011; 45:711-9. [PMID: 21278324 DOI: 10.1165/rcmb.2010-0427oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Organic dust exposure in agricultural environments results in significant airway inflammatory diseases. Gram-positive cell wall components are present in high concentrations in animal farming dusts, but their role in mediating dust-induced airway inflammation is not clear. This study investigated the role of Toll-like receptor (TLR) 2, a pattern recognition receptor for gram-positive cell wall products, in regulating swine facility organic dust extract (DE)-induced airway inflammation in mice. Isolated lung macrophages from TLR2 knockout mice demonstrated reduced TNF-α, IL-6, keratinocyte chemoattractant/CXCL1, but not macrophage inflammatory protein-2/CXCL2 expression, after DE stimulation ex vivo. Next, using an established mouse model of intranasal inhalation challenge, we analyzed bronchoalveolar lavage fluid and lung tissue in TLR2-deficient and wild-type (WT) mice after single and repetitive DE challenge. Neutrophil influx and select cytokines/chemokines were significantly lower in TLR2-deficient mice at 5 and 24 hours after single DE challenge. After daily exposure to DE for 2 weeks, there were significant reductions in total cellularity, neutrophil influx, and TNF-α, IL-6, CXCL1, but not CXCL2 expression, in TLR2-deficient mice as compared with WT animals. Lung pathology revealed that bronchiolar inflammation, but not alveolar inflammation, was reduced in TLR2-deficient mice after repetitive exposure. Airway hyperresponsiveness to methacholine after dust exposure was similar in both groups. Finally, airway inflammatory responses in WT mice after challenge with a TLR2 agonist, peptidoglycan, resembled DE-induced responses. Collectively, these results demonstrate that the TLR2 pathway is important in regulating swine facility organic dust-induced airway inflammation, which suggests the importance of TLR2 agonists in mediating large animal farming-induced airway inflammatory responses.
Collapse
Affiliation(s)
- Jill A Poole
- Omaha Veterans Affairs Medical Center, Omaha, Nebraska, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vaickus LJ, Bouchard J, Kim J, Natarajan S, Remick DG. Assessing pulmonary pathology by detailed examination of respiratory function. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1861-9. [PMID: 20724595 PMCID: PMC2947281 DOI: 10.2353/ajpath.2010.100053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/18/2010] [Indexed: 12/12/2022]
Abstract
Pulmonary inflammation causes multiple alterations within the lung, including mucus production, recruitment of inflammatory cells, and airway hyperreactivity (AHR). Measurement of AHR by direct, invasive means (eg, mechanical ventilation) or noninvasive techniques, like whole body plethysmography (WBP), assesses the severity of pulmonary inflammation in animal models of inflammatory lung disease. Direct measurement of AHR is acknowledged as the most accurate method for assessing airway mechanics, but analysis of all data obtained from WBP may offer insights into which inflammatory aspects of the lung are altered along with AHR. Using WBP, we compared the respiratory parameters of two groups of mice sensitized with cockroach allergen. One group was treated with dexamethasone (Dex) before final challenge (Dex-Asthma), while the other group received vehicle treatment (Asthma). Respiratory parameters from plethysmography revealed that Dex-Asthma mice compensated to maintain high minute ventilation, whereas Asthma mice showed significant impairment in minute ventilation despite increased peak expiratory flow (103 ± 5 ml/min vs. 69 ± 70 ml/min). The WBP data suggest that enhanced air exchange in the Dex-Asthma mice results from significant decreases in airway mucus production. Additional studies with quantitative morphometry of histological sections confirmed that Dex reduced airway mucus. In conclusion, a detailed examination of WBP parameters can accurately assess the respiratory health of mice and will help direct additional studies.
Collapse
Affiliation(s)
| | | | | | | | - Daniel G. Remick
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
13
|
Corson L, Zhu H, Quan C, Grunig G, Ballaney M, Jin X, Perera FP, Factor PH, Chen LC, Miller RL. Prenatal allergen and diesel exhaust exposure and their effects on allergy in adult offspring mice. Allergy Asthma Clin Immunol 2010; 6:7. [PMID: 20459836 PMCID: PMC2875211 DOI: 10.1186/1710-1492-6-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 05/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background Multiple studies have suggested that prenatal exposure to either allergens or air pollution may increase the risk for the development of allergic immune responses in young offspring. However, the effects of prenatal environmental exposures on adult offspring have not been well-studied. We hypothesized that combined prenatal exposure to Aspergillus fumigatus (A. fumigatus) allergen and diesel exhaust particles will be associated with altered IgE production, airway inflammation, airway hyperreactivity (AHR), and airway remodeling of adult offspring. Methods Following sensitization via the airway route to A. fumigatus and mating, pregnant BALB/c mice were exposed to additional A. fumigatus and/or diesel exhaust particles. At age 9-10 weeks, their offspring were sensitized and challenged with A. fumigatus. Results We found that adult offspring from mice that were exposed to A. fumigatus or diesel exhaust particles during pregnancy experienced decreases in IgE production. Adult offspring of mice that were exposed to both A. fumigatus and diesel exhaust particles during pregnancy experienced decreases in airway eosinophilia. Conclusion These results suggest that, in this model, allergen and/or diesel administration during pregnancy may be associated with protection from developing systemic and airway allergic immune responses in the adult offspring.
Collapse
Affiliation(s)
- Lin Corson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Oldenburg PJ, Wyatt TA, Sisson JH. Ethanol attenuates contraction of primary cultured rat airway smooth muscle cells. Am J Respir Cell Mol Biol 2009; 43:539-45. [PMID: 19933378 DOI: 10.1165/rcmb.2009-0252oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Airway smooth muscle cells are the main effector cells involved in airway narrowing and have been used to study the signaling pathways involved in asthma-induced airway constriction. Our previous studies demonstrated that ethanol administration to mice attenuated methacholine-stimulated increases in airway responsiveness. Because ethanol administration attenuates airway responsiveness in mice, we hypothesized that ethanol directly blunts the ability of cultured airway smooth muscle cells to shorten. To test this hypothesis, we measured changes in the size of cultured rat airway smooth muscle (RASM) cells exposed to ethanol (100 mM) after treatment with methacholine. Ethanol markedly attenuated methacholine-stimulated cell shortening (methacholine-stimulated length change = 8.3 ± 1.2% for ethanol versus 43.9 ± 1.5% for control; P < 0.001). Ethanol-induced inhibition of methacholine-stimulated cell shortening was reversible 24 hours after removal of alcohol. To determine if ethanol acts through a cGMP-dependent pathway, incubation with ethanol for as little as 15 minutes produced a doubling of cGMP-dependent protein kinase (PKG) activity. Furthermore, treatment with the PKG antagonist analog Rp-8Br-cGMPS (10 μM) inhibited ethanol-induced kinase activation when compared with control-treated cells. In contrast to the effect of ethanol on PKG, ethanol pretreatment did not activate a cAMP-dependent protein kinase. These data demonstrate that brief ethanol exposure reversibly prevents methacholine-stimulated RASM cell contraction. In addition, it appears that this effect is the result of activation of the cGMP/PKG kinase pathway. These findings implicate a direct effect of ethanol on airway smooth muscle cells as the basis for in vivo ethanol effects.
Collapse
Affiliation(s)
- Peter J Oldenburg
- Department of Internal Medicine, Pulmonary, Critical Care, Sleep, & Allergy Division, University of Nebraska Medical Center, Omaha, Nebraska 68198-5910, USA
| | | | | |
Collapse
|
15
|
Poole JA, Wyatt TA, Oldenburg PJ, Elliott MK, West WW, Sisson JH, Von Essen SG, Romberger DJ. Intranasal organic dust exposure-induced airway adaptation response marked by persistent lung inflammation and pathology in mice. Am J Physiol Lung Cell Mol Physiol 2009; 296:L1085-95. [PMID: 19395665 DOI: 10.1152/ajplung.90622.2008] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Organic dust exposure in agricultural environments results in an inflammatory response that attenuates over time, but repetitive exposures can result in chronic respiratory disease. Animal models to study these mechanisms are limited. This study investigated the effects of single vs. repetitive dust-induced airway inflammation in mice by intranasal exposure method. Mice were exposed to swine facility dust extract (DE) or saline once and once daily for 1 and 2 wk. Dust exposure resulted in increased bronchoalveolar lavage fluid neutrophils and macrophages after single and repetitive exposures. Lavage fluid TNFalpha, IL-6, keratinocyte chemoattractant, and macrophage inflammatory protein-2 were significantly increased after single and repetitive dust exposures, but were dampened in 2-wk dust-exposed mice compared with single exposure. Dust exposure induced PKCalpha and -epsilon activation in isolated tracheal epithelial cells but were dampened with repetitive exposures. Ex vivo stimulation of alveolar macrophages from 2-wk animals demonstrated reduced cytokine responsiveness and phagocytic ability. Significant lung pathology occurred with development of mixed mononuclear cellular aggregates (T and B lymphocytes, phagocytes) after repetitive dust exposure, a novel observation. Airway hyperresponsiveness to methacholine occurred after single dust exposure but resolved after 2 wk. Collectively, intranasal exposure to DE results in significant lung inflammatory and pathological responses marked by a modulated innate immune response to single and repetitive dust exposures that is associated with PKC activity.
Collapse
Affiliation(s)
- Jill A Poole
- Pulmonary, Critical Care, Sleep, and Allergy Section, Univ. of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300, USA.
| | | | | | | | | | | | | | | |
Collapse
|