1
|
Carvalho da Costa JF, Barrueco Otero E, Hidalgo Sierra V, Hernández Mezquita MA. [Impact of new nicotine delivery devices on smoking trends consumption and health]. Semergen 2024; 51:102413. [PMID: 39700734 DOI: 10.1016/j.semerg.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 12/21/2024]
Abstract
The use of electronic cigarettes and heated tobacco products is increasing among adolescents and young adults. Tobacco companies offer these devices to enhance the smoking experience by magnifying its attractive and minimizing the negatives associated with the consumption of conventional cigarettes. The objective of this review is to update the available knowledge on the impact of these devices, both from an individual perspective, in terms of their effects on health, and from a public health perspective due to direct exposure and the effects derived from the second and third hand emissions. Studies show that their aerosols contain a wide variety of toxic chemical components, responsible for adverse effects on organs and systems. There is still little evidence on long-term effects and they likely will not be fully understood for years or decades. The systematic review demonstrates that it is important for health professionals continue to investigate this matter and provide updated information on the adverse effects of these new tobacco products with a view to promoting the health of the population.
Collapse
Affiliation(s)
| | - E Barrueco Otero
- Centro de Salud de Ciudad Rodrigo, SACyL, Ciudad Rodrigo, Salamanca, España
| | | | - M A Hernández Mezquita
- Servicio de Neumología, Hospital Universitario de Salamanca, Salamanca, España; Instituto Investigación Biosanitaria de Salamanca, Salamanca, España.
| |
Collapse
|
2
|
Besaratinia A, Tommasi S. The Untapped Biomarker Potential of MicroRNAs for Health Risk-Benefit Analysis of Vaping vs. Smoking. Cells 2024; 13:1330. [PMID: 39195220 DOI: 10.3390/cells13161330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Despite the popularity of electronic cigarettes (e-cigs) among adolescent never-smokers and adult smokers seeking a less pernicious substitute for tobacco cigarettes, the long-term health impact of vaping is largely unknown. Like cigarette smoke, e-cig vapor contains harmful and potentially harmful compounds, although in fewer numbers and at substantially lower concentrations. Many of the same constituents of e-cig vapor and cigarette smoke induce epigenetic changes that can lead to the dysregulation of disease-related genes. MicroRNAs (MiRNAs) are key regulators of gene expression in health and disease states. Extensive research has shown that miRNAs play a prominent role in the regulation of genes involved in the pathogenesis of smoking-related diseases. However, the use of miRNAs for investigating the disease-causing potential of vaping has not been fully explored. This review article provides an overview of e-cigs as a highly consequential electronic nicotine delivery system, describes trends in e-cig use among adolescents and adults, and discusses the ongoing debate on the public health impact of vaping. Highlighting the significance of miRNAs in cell biology and disease, it summarizes the published and ongoing research on miRNAs in relation to gene regulation and disease pathogenesis in e-cig users and in vitro experimental settings. It identifies gaps in knowledge and priorities for future research while underscoring the need for empirical evidence that can inform the regulation of tobacco products to protect youth and promote public health.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Besaratinia A, Blumenfeld H, Tommasi S. Exploring the Utility of Long Non-Coding RNAs for Assessing the Health Consequences of Vaping. Int J Mol Sci 2024; 25:8554. [PMID: 39126120 PMCID: PMC11313266 DOI: 10.3390/ijms25158554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Electronic cigarette (e-cig) use, otherwise known as "vaping", is widespread among adolescent never-smokers and adult smokers seeking a less-harmful alternative to combustible tobacco products. To date, however, the long-term health consequences of vaping are largely unknown. Many toxicants and carcinogens present in e-cig vapor and tobacco smoke exert their biological effects through epigenetic changes that can cause dysregulation of disease-related genes. Long non-coding RNAs (lncRNAs) have emerged as prime regulators of gene expression in health and disease states. A large body of research has shown that lncRNAs regulate genes involved in the pathogenesis of smoking-associated diseases; however, the utility of lncRNAs for assessing the disease-causing potential of vaping remains to be fully determined. A limited but growing number of studies has shown that lncRNAs mediate dysregulation of disease-related genes in cells and tissues of vapers as well as cells treated in vitro with e-cig aerosol extract. This review article provides an overview of the evolution of e-cig technology, trends in use, and controversies on the safety, efficacy, and health risks or potential benefits of vaping relative to smoking. While highlighting the importance of lncRNAs in cell biology and disease, it summarizes the current and ongoing research on the modulatory effects of lncRNAs on gene regulation and disease pathogenesis in e-cig users and in vitro experimental settings. The gaps in knowledge are identified, priorities for future research are highlighted, and the importance of empirical data for tobacco products regulation and public health is underscored.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA; (H.B.); (S.T.)
| | | | | |
Collapse
|
4
|
Ghuman A, Choudhary P, Kasana J, Kumar S, Sawhney H, Bhat R, Kashwani R. A Systematic Literature Review on the Composition, Health Impacts, and Regulatory Dynamics of Vaping. Cureus 2024; 16:e66068. [PMID: 39229398 PMCID: PMC11368577 DOI: 10.7759/cureus.66068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
This comprehensive review deals with the multifaceted aspects of electronic cigarettes (e-cigarettes), examining their composition, health implications, regulatory challenges, and market dynamics. E-cigarettes, also known as vaping devices, function by warming a solution of liquid containing flavors, nicotine, and various other compounds to produce an aerosol for users to inhale. This review underscores the evolution and widespread adoption of e-cigarettes since their introduction in 2003, highlighting their appeal as alternatives to traditional tobacco smoking. The essential parts of e-cigarettes are the battery, heating element, e-liquid (or e-juice), and mouthpiece. Propylene glycol and vegetable glycerin are common ingredients in e-liquids, along with nicotine and other flavors. Concerns over the health impacts of e-cigarettes have grown, particularly in light of incidents like the e-cigarette or vaping-associated lung injury outbreak in 2019 linked to vaping-associated lung injuries. Evidence suggests that while e-cigarettes may pose fewer risks than conventional cigarettes, they are not without health consequences, including potential respiratory and cardiovascular effects. Regulatory efforts worldwide have struggled to keep pace with the rapid evolution of e-cigarettes, exacerbated by their diverse flavors and marketing strategies that appeal to youth. The review discusses global regulatory responses, including bans and restrictions, to curb youth uptake and address public health concerns. Furthermore, the rise of a black market for e-cigarettes poses additional challenges to effective regulation and tobacco control efforts. In conclusion, while e-cigarettes offer potential harm reduction benefits for adult smokers seeking alternatives to traditional tobacco products, their widespread availability and evolving landscape necessitate vigilant regulatory oversight to protect public health, especially among youth. Future research should continue to explore the long-term health impacts and efficacy of e-cigarettes as smoking elimination aids, informing evidence-based policies and interventions.
Collapse
Affiliation(s)
- Annayat Ghuman
- Department of Oral and Maxillofacial Surgery, Baba Farid University of Health Sciences, Faridkot, IND
| | - Priyanka Choudhary
- Department of Oral Pathology and Microbiology, Poornima Sethi Multi Speciality Hospital, New Delhi, IND
| | - Jyoti Kasana
- Department of Periodontology, North Delhi Municipal Corporation Medical College, Hindu Rao Hospital, New Delhi, IND
| | - Sumana Kumar
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, IND
| | - Hemant Sawhney
- Department of Oral Medicine and Radiology, School of Dental Sciences, Greater Noida, IND
| | - Ramdas Bhat
- Department of Pharmacology, Rajiv Gandhi University of Health Sciences, Mangalore, IND
| | - Ritik Kashwani
- Department of Oral Medicine and Radiology, School of Dental Sciences, Greater Noida, IND
| |
Collapse
|
5
|
Gál L, Fóthi Á, Orosz G, Nagy S, Than NG, Orbán TI. Exosomal small RNA profiling in first-trimester maternal blood explores early molecular pathways of preterm preeclampsia. Front Immunol 2024; 15:1321191. [PMID: 38455065 PMCID: PMC10917917 DOI: 10.3389/fimmu.2024.1321191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Preeclampsia (PE) is a severe obstetrical syndrome characterized by new-onset hypertension and proteinuria and it is often associated with fetal intrauterine growth restriction (IUGR). PE leads to long-term health complications, so early diagnosis would be crucial for timely prevention. There are multiple etiologies and subtypes of PE, and this heterogeneity has hindered accurate identification in the presymptomatic phase. Recent investigations have pointed to the potential role of small regulatory RNAs in PE, and these species, which travel in extracellular vesicles (EVs) in the circulation, have raised the possibility of non-invasive diagnostics. The aim of this study was to investigate the behavior of exosomal regulatory small RNAs in the most severe subtype of PE with IUGR. Methods We isolated exosomal EVs from first-trimester peripheral blood plasma samples of women who later developed preterm PE with IUGR (n=6) and gestational age-matched healthy controls (n=14). The small RNA content of EVs and their differential expression were determined by next-generation sequencing and further validated by quantitative real-time PCR. We also applied the rigorous exceRpt bioinformatics pipeline for small RNA identification, followed by target verification and Gene Ontology analysis. Results Overall, >2700 small RNAs were identified in all samples and, of interest, the majority belonged to the RNA interference (RNAi) pathways. Among the RNAi species, 16 differentially expressed microRNAs were up-regulated in PE, whereas up-regulated and down-regulated members were equally found among the six identified Piwi-associated RNAs. Gene ontology analysis of the predicted small RNA targets showed enrichment of genes in pathways related to immune processes involved in decidualization, placentation and embryonic development, indicating that dysregulation of the induced small RNAs is connected to the impairment of immune pathways in preeclampsia development. Finally, the subsequent validation experiments revealed that the hsa_piR_016658 piRNA is a promising biomarker candidate for preterm PE associated with IUGR. Discussion Our rigorously designed study in a homogeneous group of patients unraveled small RNAs in circulating maternal exosomes that act on physiological pathways dysregulated in preterm PE with IUGR. Therefore, our small RNA hits are not only suitable biomarker candidates, but the revealed biological pathways may further inform us about the complex pathology of this severe PE subtype.
Collapse
Affiliation(s)
- Luca Gál
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ábel Fóthi
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Gergő Orosz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Nagy
- Department of Obstetrics and Gynecology, Petz Aladár University Teaching Hospital, Győr, Hungary
- Faculty of Health and Sport Sciences, Széchenyi István University, Győr, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
| | - Tamás I. Orbán
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
6
|
Poussin C, Titz B, Xiang Y, Baglia L, Berg R, Bornand D, Choukrallah MA, Curran T, Dijon S, Dossin E, Dulize R, Etter D, Fatarova M, Medlin LF, Haiduc A, Kishazi E, Kolli AR, Kondylis A, Kottelat E, Laszlo C, Lavrynenko O, Eb-Levadoux Y, Nury C, Peric D, Rizza M, Schneider T, Guedj E, Calvino F, Sierro N, Guy P, Ivanov NV, Picavet P, Spinelli S, Hoeng J, Peitsch MC. Blood and urine multi-omics analysis of the impact of e-vaping, smoking, and cessation: from exposome to molecular responses. Sci Rep 2024; 14:4286. [PMID: 38383592 PMCID: PMC10881465 DOI: 10.1038/s41598-024-54474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
Cigarette smoking is a major preventable cause of morbidity and mortality. While quitting smoking is the best option, switching from cigarettes to non-combustible alternatives (NCAs) such as e-vapor products is a viable harm reduction approach for smokers who would otherwise continue to smoke. A key challenge for the clinical assessment of NCAs is that self-reported product use can be unreliable, compromising the proper evaluation of their risk reduction potential. In this cross-sectional study of 205 healthy volunteers, we combined comprehensive exposure characterization with in-depth multi-omics profiling to compare effects across four study groups: cigarette smokers (CS), e-vapor users (EV), former smokers (FS), and never smokers (NS). Multi-omics analyses included metabolomics, transcriptomics, DNA methylomics, proteomics, and lipidomics. Comparison of the molecular effects between CS and NS recapitulated several previous observations, such as increased inflammatory markers in CS. Generally, FS and EV demonstrated intermediate molecular effects between the NS and CS groups. Stratification of the FS and EV by combustion exposure markers suggested that this position on the spectrum between CS and NS was partially driven by non-compliance/dual use. Overall, this study highlights the importance of in-depth exposure characterization before biological effect characterization for any NCA assessment study.
Collapse
Affiliation(s)
- Carine Poussin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Yang Xiang
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Laurel Baglia
- University of Rochester Medical Center, Rochester, NY, USA
| | - Rachel Berg
- University of Rochester Medical Center, Rochester, NY, USA
| | - David Bornand
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | - Timothy Curran
- University of Rochester Medical Center, Rochester, NY, USA
| | - Sophie Dijon
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Eric Dossin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Remi Dulize
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Doris Etter
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Maria Fatarova
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Loyse Felber Medlin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Adrian Haiduc
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Edina Kishazi
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Aditya R Kolli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Emmanuel Kottelat
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Csaba Laszlo
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Oksana Lavrynenko
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Yvan Eb-Levadoux
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Catherine Nury
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Melissa Rizza
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Florian Calvino
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Philippe Guy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Patrick Picavet
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| |
Collapse
|
7
|
Tommasi S, Blumenfeld H, Besaratinia A. Vaping Dose, Device Type, and E-Liquid Flavor are Determinants of DNA Damage in Electronic Cigarette Users. Nicotine Tob Res 2023; 25:1145-1154. [PMID: 36780924 PMCID: PMC10202635 DOI: 10.1093/ntr/ntad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Despite the widespread use of electronic cigarettes, the long-term health consequences of vaping are largely unknown. AIMS AND METHODS We investigated the DNA-damaging effects of vaping as compared to smoking in healthy adults, including "exclusive" vapers (never smokers), cigarette smokers only, and nonusers, matched for age, gender, and race (N = 72). Following biochemical verification of vaping or smoking status, we quantified DNA damage in oral epithelial cells of our study subjects, using a long-amplicon quantitative polymerase chain reaction assay. RESULTS We detected significantly increased levels of DNA damage in both vapers and smokers as compared to nonusers (p = .005 and p = .020, respectively). While the mean levels of DNA damage did not differ significantly between vapers and smokers (p = .522), damage levels increased dose-dependently, from light users to heavy users, in both vapers and smokers as compared to nonusers. Among vapers, pod users followed by mod users, and those who used sweet-, mint or menthol-, and fruit-flavored e-liquids, respectively, showed the highest levels of DNA damage. The nicotine content of e-liquid was not a predictor of DNA damage in vapers. CONCLUSIONS This is the first demonstration of a dose-dependent formation of DNA damage in vapers who had never smoked cigarettes. Our data support a role for product characteristics, specifically device type and e-liquid flavor, in the induction of DNA damage in vapers. Given the popularity of pod and mod devices and the preferability of sweet-, mint or menthol-, and fruit-flavored e-liquids by both adult- and youth vapers, our findings can have significant implications for public health and tobacco products regulation. IMPLICATIONS We demonstrate a dose-dependent formation of DNA damage in oral cells from vapers who had never smoked tobacco cigarettes as well as exclusive cigarette smokers. Device type and e-liquid flavor determine the extent of DNA damage detected in vapers. Users of pod devices followed by mod users, and those who use sweet-, mint or menthol-, and fruit-flavored e-liquids, respectively, show the highest levels of DNA damage when compared to nonusers. Given the popularity of pod and mod devices and the preferability of these same flavors of e-liquid by both adult- and youth vapers, our findings can have significant implications for public health and tobacco products regulation.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Hannah Blumenfeld
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Cassidy RN. Commentary on Hartmann-Boyce et al.: Understanding the harms of dual use of cigarettes and e-cigarettes requires more precise data. Addiction 2023; 118:546-547. [PMID: 36509549 DOI: 10.1111/add.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Rachel N Cassidy
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Rebuli ME, Rose JJ, Noël A, Croft DP, Benowitz NL, Cohen AH, Goniewicz ML, Larsen BT, Leigh N, McGraw MD, Melzer AC, Penn AL, Rahman I, Upson D, Crotty Alexander LE, Ewart G, Jaspers I, Jordt SE, Kligerman S, Loughlin CE, McConnell R, Neptune ER, Nguyen TB, Pinkerton KE, Witek TJ. The E-cigarette or Vaping Product Use-Associated Lung Injury Epidemic: Pathogenesis, Management, and Future Directions: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2023; 20:1-17. [PMID: 36584985 PMCID: PMC9819258 DOI: 10.1513/annalsats.202209-796st] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
E-cigarette or vaping product use-associated lung injury (EVALI) is a severe pulmonary illness associated with the use of e-cigarettes or vaping products that was officially identified and named in 2019. This American Thoracic Society workshop was convened in 2021 to identify and prioritize research and regulatory needs to adequately respond to the EVALI outbreak and to prevent similar instances of disease associated with e-cigarette or vaping product use. An interdisciplinary group of 26 experts in adult and pediatric clinical care, public health, regulatory oversight, and toxicology were convened for the workshop. Four major topics were examined: 1) the public health and regulatory response to EVALI; 2) EVALI clinical care; 3) mechanisms contributing to EVALI; and 4) needed actions to address the health effects of EVALI. Oral presentations and group discussion were the primary modes used to identify top priorities for addressing EVALI. Initiatives including a national EVALI case registry and biorepository, integrated electronic medical record coding system, U.S. Food and Drug Administration regulation and enforcement of nicotine e-cigarette standards, regulatory authority over nontobacco-derived e-cigarettes, training in evaluating exogenous exposures, prospective clinical studies, standardized clinical follow-up assessments, ability to more readily study effects of cannabinoid e-cigarettes, and research to identify biomarkers of exposure and disease were identified as critical needs. These initiatives will require substantial federal investment as well as changes to regulatory policy. Overall, the workshop identified the need to address the root causes of EVALI to prevent future outbreaks. An integrated approach from multiple perspectives is required, including public health; clinical, basic, and translational research; regulators; and users of e-cigarettes. Improving the public health response to reduce the risk of another substantial disease-inducing event depends on coordinated actions to better understand the inhalational toxicity of these products, informing the public of the risks, and developing and enforcing regulatory standards for all e-cigarettes.
Collapse
|
10
|
Fowler S, Bhatt J, Brown S, Fleming L, Mayell S, Sinha I, Bush A. E-cigarette company tactics in sports advertising. THE LANCET. RESPIRATORY MEDICINE 2022; 10:634-636. [PMID: 35568053 DOI: 10.1016/s2213-2600(22)00166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Stephen Fowler
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; UK and NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| | - Jayesh Bhatt
- Nottingham Childrens Hospital, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| | - Sarah Brown
- Department of Paediatric Respiratory Medicine, Royal London Children's Hospital, Barts Health NHS Trust, London, UK
| | - Louise Fleming
- Department of Paediatric Respiratory Medicine and the Imperial Centre for Paediatrics and Child Health, Imperial College and Royal Brompton Hospital, London, UK
| | - Sarah Mayell
- Department of Paediatric Respiratory Medicine, Alder Hey Children's Hospital, Liverpool, UK
| | - Ian Sinha
- Department of Paediatric Respiratory Medicine, Alder Hey Children's Hospital, Liverpool, UK
| | - Andrew Bush
- Department of Paediatric Respiratory Medicine and the Imperial Centre for Paediatrics and Child Health, Imperial College and Royal Brompton Hospital, London, UK
| |
Collapse
|
11
|
Influence of E-Cigarette and Cannabis Vaping on Orthodontically Induced Tooth Movement and Periodontal Health in Patients Undergoing Orthodontic Therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116518. [PMID: 35682101 PMCID: PMC9180231 DOI: 10.3390/ijerph19116518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023]
|
12
|
Podguski S, Kaur G, Muthumalage T, McGraw MD, Rahman I. Noninvasive systemic biomarkers of e-cigarette or vaping use-associated lung injury: a pilot study. ERJ Open Res 2022; 8:00639-2021. [PMID: 35386827 PMCID: PMC8977595 DOI: 10.1183/23120541.00639-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Electronic cigarette (e-cigarette) vaping, containing nicotine and/or Δ8, Δ9 or Δ10 or Δo tetrahydrocannabinol (Δn-THC), is associated with an outbreak of e-cigarette, or vaping, product use-associated lung injury (EVALI). Despite thousands being hospitalised with EVALI, much remains unknown about diagnosis, treatment and disease pathogenesis. Biomarkers of inflammation, oxidative stress and lipid mediators may help identify e-cigarette users with EVALI. Methods We collected plasma and urine along with demographic and vaping-related data of EVALI subjects (age 18-35 years) and non-users matched for sex and age in a pilot study. Biomarkers were assessed by ELISA/EIA and Luminex-based assays. Results Elevated levels of THC metabolite (11-nor-9-carboxy-Δ9-THC) were found in plasma from EVALI subjects compared to non-users. Levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidative DNA damage biomarker, and 8-isoprostane, an oxidative stress marker, were slightly increased in urine samples from EVALI subjects compared to non-users. Conversely, plasma levels of lipid mediators, including resolvin D1 (RvD1) and prostaglandin E2 (PGE2), were significantly lower in EVALI subjects compared to non-users. Both pro-inflammatory biomarkers, such as tumour necrosis factor-α, macrophage inflammatory protein-1β, RANTES (regulated on activation, normal T-cell expressed and secreted) and granulocyte-macrophage colony-stimulating factor, as well as anti-inflammatory biomarkers, such as interleukin-9 and CC10/16, were decreased in plasma from EVALI subjects compared to non-users, supportive of a possible dysregulated inflammatory response in EVALI subjects. Conclusions Significant elevations in urine and plasma biomarkers of oxidative stress, as well as reductions in lipid mediators, were shown in EVALI subjects. These noninvasive biomarkers (8-OHdG, 8-isoprostane, RvD1 and CC10/16), either individually or collectively, may serve as tools in diagnosing future EVALI subjects.
Collapse
Affiliation(s)
- Stephanie Podguski
- Dept of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
- These authors contributed equally
| | - Gagandeep Kaur
- Dept of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
- These authors contributed equally
| | - Thivanka Muthumalage
- Dept of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew D. McGraw
- Division of Pediatric Pulmonology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Dept of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
13
|
Schaunaman N, Dimasuay KG, Berg B, Cervantes D, Chu HW. Human Bronchial Epithelial Cell Culture Models for Cigarette Smoke and Vaping Studies. Methods Mol Biol 2022; 2506:135-149. [PMID: 35771469 PMCID: PMC9306142 DOI: 10.1007/978-1-0716-2364-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the continuing public health efforts to stop or reduce smoking, cigarette smoke use remains popular in the youth and adult population. A recent surge in the use of electronic cigarette and vaping products has created another major health challenge in public health. There is an urgent need to use physiologically relevant models to study the health effect of smoking or vaping in human subjects. Airway diseases such as bronchitis (Landman et al., CMAJ 191:E1321-E1331, 2019; Goniewicz, et al. Harm Reduct J 17:91, 2020; Xie et al., JAMA Netw Open 3:e2020816, 2020) have been described in people who smoke, vape, or both. Here, we will describe methods to collect, expand, and culture human airway epithelial cells from endobronchial brushings and expose these cells cultured at the air-liquid interface to cigarette smoke or electronic cigarette vapor.
Collapse
Affiliation(s)
| | | | - Bruce Berg
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Diana Cervantes
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
14
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
15
|
Wang L, Wang Y, Chen J, Yang XM, Jiang XT, Liu P, Li M. Comparison of biological and transcriptomic effects of conventional cigarette and electronic cigarette smoke exposure at toxicological dose in BEAS-2B cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112472. [PMID: 34229167 DOI: 10.1016/j.ecoenv.2021.112472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Cigarette seriously affects human health, and electronic cigarette (e-cigarette), considered as cigarette substitutes, become popular as its contribution to quit smoking. But scientific evidence about the absolute safety of e-cigarette is insufficient. Previous studies also have indicated that different dosages of cigarette can lead to different biological effects. Thus, the impact of cigarette at toxicological dose such as IC50 compared with that of e-cigarette are highly needed. In this study, we investigated the effects of cigarette smoke condensate (CSC) at toxicological dose compared with e-cigarette smoke condensate (ECSC) in equivalent nicotine level. Nicotine content of CSC and ECSC were determined by UPLC. Human lung epithelial cells (BEAS-2B) were exposed to 0-32 μg/ml of CSC and ECSC for 24 h to determine IC50 of cell viability and morphological assessment. Inflammation, apoptosis, cell cycle analysis and RNA-Seq transcriptome analysis were performed to characterize the differences between CSC and ECSC. We found that acute exposure of BEAS-2B cells to CSC at IC50 leaded to morphological change, inflammatory cytokines production and cell apoptosis, while ECSC did not exert such cell effects in equivalent nicotine level. The transcriptome analysis showed that differentially expressed genes in CSC were far more than that in ECSC, and mainly enriched in the category of cell cycle, DNA repair, cancer, and metabolic related pathways. Such cell cycle arrest was further experimentally confirmed. These results suggested that toxicological dose of ECSC might be much higher than that of CSC. Based on equivalent nicotine content, an acute exposure to CSC had significant impacts on cell effects and gene expression profile compared to ECSC. Our results provided a reference for the safety studies of conventional cigarette and e-cigarette.
Collapse
Affiliation(s)
- Lilan Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yao Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jianwen Chen
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xue-Min Yang
- RELX Lab, Shenzhen RELX Tech. Co,. Ltd., Shenzhen, Guangdong 518000, China
| | - Xing-Tao Jiang
- RELX Lab, Shenzhen RELX Tech. Co,. Ltd., Shenzhen, Guangdong 518000, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Min Li
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
16
|
Sussman MA. VAPIng into ARDS: Acute Respiratory Distress Syndrome and Cardiopulmonary Failure. Pharmacol Ther 2021; 232:108006. [PMID: 34582836 DOI: 10.1016/j.pharmthera.2021.108006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
"Modern" vaping involving battery-operated electronic devices began approximately one dozen years and has quickly evolved into a multibillion dollar industry providing products to an estimated 50 million users worldwide. Originally developed as an alternative to traditional cigarette smoking, vaping now appeals to a diverse demographic including substantial involvement of young people who often have never used cigarettes. The rapid rise of vaping fueled by multiple factors has understandably outpaced understanding of biological effects, made even more challenging due to wide ranging individual user habits and preferences. Consequently while vaping-related research gathers momentum, vaping-associated pathological injury (VAPI) has been established by clinical case reports with severe cases manifesting as acute respiratory distress syndrome (ARDS) with examples of right ventricular cardiac failure. Therefore, basic scientific studies are desperately needed to understand the impact of vaping upon the lungs as well as cardiopulmonary structure and function. Experimental models that capture fundamental characteristics of vaping-induced ARDS are essential to study pathogenesis and formulate recommendations to mitigate harmful effects attributable to ingredients or equipment. So too, treatment strategies to promote recovery from vaping-associated damage require development and testing at the preclinical level. This review summarizes the back story of vaping leading to present day conundrums with particular emphasis upon VAPI-associated ARDS and prioritization of research goals.
Collapse
Affiliation(s)
- Mark A Sussman
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
17
|
Xie Z, Rahman I, Goniewicz ML, Li D. Perspectives on Epigenetics Alterations Associated with Smoking and Vaping. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab022. [PMID: 35330676 PMCID: PMC8788872 DOI: 10.1093/function/zqab022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 01/11/2023]
Abstract
Epigenetic alterations, including DNA methylation, microRNA, and long noncoding RNA, play important roles in the pathogenesis of numerous respiratory health conditions and diseases. Exposure to tobacco smoking has been found to be associated with epigenetic changes in the respiratory tract. Marketed as a less harmful alternative to combustible cigarettes, electronic cigarette (e-cigarette) has rapidly gained popularity in recent years, especially among youth and young adults. Accumulative evidence from both animal and human studies has shown that e-cigarette use (vaping) is also linked to similar respiratory health conditions as observed with cigarette smoking, including wheezing, asthma, and COPD. This review aims to provide an overview of current studies on associations of smoking and vaping with epigenetic alterations in respiratory cells and provide future research directions in epigenetic studies related to vaping.
Collapse
Affiliation(s)
- Zidian Xie
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA,Address correspondence to D.L. (e-mail: )
| |
Collapse
|