1
|
Mu Q, Wang Q, Yang Y, Wei G, Wang H, Liao J, Yang X, Wang F. HMGB1 promotes M1 polarization of macrophages and induces COPD inflammation. Cell Biol Int 2024. [PMID: 39364689 DOI: 10.1002/cbin.12252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a pervasive and incapacitating respiratory condition, distinguished by airway inflammation and the remodeling of the lower respiratory tract. Central to its pathogenesis is an intricate inflammatory process, wherein macrophages exert significant regulatory functions, and High mobility group box 1 (HMGB1) emerges as a pivotal inflammatory mediator potentially driving COPD progression. This study explores the hypothesis that HMGB1, within macrophages, modulates COPD through inflammatory mechanisms, focusing on its influence on macrophage polarization. Our investigation uncovered that HMGB1 is upregulated in the context of COPD, associated with an enhanced proinflammatory M1 macrophage polarization induced by cigarette smoke. This polarization is linked to suppressed cell proliferation and induced apoptosis, indicative of HMGB1's role in the disease's inflammatory trajectory. The study further implicates HMGB1 in the activation of the Nuclear factor kappa-B (NF-κB) signaling pathway and chemokine signaling within macrophages, which are likely to amplify the inflammatory response characteristic of COPD. The findings underscore HMGB1's critical involvement in COPD pathogenesis, presenting it as a significant target for therapeutic intervention aimed at modulating macrophage polarization and inflammation.
Collapse
Affiliation(s)
- Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, Department of Gerontology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qin Wang
- Xinjiang Key Laboratory of Neurological Disorder Research, Department of Gerontology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ye Yang
- Xinjiang Key Laboratory of Neurological Disorder Research, Department of Gerontology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ganghua Wei
- Department of Cardiology, Department of Gerontology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hao Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| | - Jing Liao
- Xinjiang Key Laboratory of Neurological Disorder Research, Department of Gerontology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xinling Yang
- Xinjiang Key Laboratory of Neurological Disorder Research, Department of Gerontology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| |
Collapse
|
2
|
Liu Y, Leng C, Li Y, Zhou M, Ye X, Li C, Xia X, Sun B, Shu X, Liu W. A novel p55PIK signaling peptide inhibitor alleviates neuroinflammation via the STAT3/NF-kB signaling pathway in experimental stroke. J Stroke Cerebrovasc Dis 2024; 33:107736. [PMID: 38679216 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Ischemic stroke remains the predominant contributor to mortality and disability globally. Microglia undergo rapid activation and initiate inflammatory cascade reactions by phenotypic polarization, participating in the regulation of inflammatory injury and tissue repair post-ischemic stroke. Regulating microglia-mediated neuroinflammation is a promising therapeutic strategy for ischemic stroke. Previously, we designed and synthesized a novel p55PIK inhibitor, TAT-N15 polypeptide, which presents inhibitive activity on NF-κB signaling-mediated inflammation in acute conjunctivitis and allergic rhinitis. The present study aimed to explore the therapeutic effect and mechanism of TAT-N15 on ischemia stroke. METHODS The mouse model of transient cerebral ischemia was made using the intraluminal filament method. After being treated with daily intraperitoneal injections of TAT-N15 (10 mg/kg) for 7 d, the neurological outcomes and the cerebral infarction volume were evaluated. Histopathology of the ischemia cerebral hemisphere was observed by H&E and Nissl staining. Neuronal survival, astrogliosis, and co-labeling of CD86/Iba1 and CD206/Iba1 were detected by immunofluorescence. The cell apoptosis was estimated by TUNEL staining. The expression levels of apoptosis-associated proteins, proinflammatory cytokines, protein markers of M1 and M2 microglia, and the phosphorylation of NF-κB and STAT3 proteins in the ischemic penumbra were detected by Western blot. RESULTS TAT-N15 treatment significantly decreased the infarct volume and alleviated neurological functional impairment, neuronal injury, and neuron apoptosis. Meanwhile, TAT-N15 treatment restrained the activation of microglia and astrocytes as well as the protein expression of proinflammatory cytokine in ischemic penumbra. Additionally, the administration of TAT-N15 treatment resulted in a significant reduction in the density of M1 phenotype microglia while concurrently increasing the density of M2 phenotype microglia within the ischemic penumbra. Finally, mechanical analysis unveiled that TAT-N15 exerted a substantial inhibitory effect on the protein expression of phosphorylated STAT3 and NF-κB. CONCLUSION TAT-N15 may inhibit neuroinflammation via regulating microglia activation and polarization through the STAT3/NF-κB pathway, which exhibits the neuroprotection effect in ischemic stroke.
Collapse
Affiliation(s)
- Yujing Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Changlong Leng
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Youwei Li
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Meiling Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiansheng Ye
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chaoxing Li
- Wuhan Yicheng Biotechnology Co., Wuhan, 430060, China
| | - Xianmin Xia
- Wuhan Yicheng Biotechnology Co., Wuhan, 430060, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
3
|
Zhan Y, Huang Q, Deng Z, Chen S, Yang R, Zhang J, Zhang Y, Peng M, Wu J, Gu Y, Zeng Z, Xie J. DNA hypomethylation-mediated upregulation of GADD45B facilitates airway inflammation and epithelial cell senescence in COPD. J Adv Res 2024:S2090-1232(24)00067-5. [PMID: 38342401 DOI: 10.1016/j.jare.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease typically characterized by chronic airway inflammation, with emerging evidence highlighting the driving role of cellular senescence-related lung aging. Accelerated lung aging and inflammation mutually reinforce each other, creating a detrimental cycle that contributes to disease progression. Growth arrest and DNA damage-inducible (GADD45) family has been reported to involve in multiple biological processes, including inflammation and senescence. However, the role of GADD45 family in COPD remains elusive. OBJECTIVES To investigate the role and mechanism of GADD45 family in COPD pathogenesis. METHODS Expressions of GADD45 family were evaluated by bioinformatic analysis combined with detections in clinical specimens. The effects of GADD45B on inflammation and senescence were investigated via constructing cell model with siRNA transfection or overexpression lentivirus infection and animal model with Gadd45b knockout. Targeted bisulfite sequencing was performed to probe the influence of DNA methylation in GADD45B expression in COPD. RESULTS GADD45B expression was significantly increased in COPD patients and strongly associated with lung function, whereas other family members presented no changes. GADD45B upregulation was confirmed in mice exposed by cigarette smoke (CS) and HBE cells treated by CS extract as well. Moreover, experiments involving bidirectional modulation of GADD45B expression in HBE cells further substantiated its positive regulatory role in inflammatory response and cellular senescence. Mechanically, GADD45B-facilitated inflammation was directly mediated by p38 phosphorylation, while GADD45B interacted with FOS to promote cellular senescence in a p38 phosphorylation-independent manner. Furthermore, Gadd45b deficiency remarkably alleviated inflammation and senescence of lungs in CS-exposed mice, as well as improved emphysema and lung function. Eventually, in vivo and vitro experiments demonstrated that GADD45B overexpression was partially mediated by CS-induced DNA hypomethylation. CONCLUSION Our findings have shed light on the impact of GADD45B in the pathogenesis of COPD, thereby offering a promising target for intervention in clinical settings.
Collapse
Affiliation(s)
- Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Chen
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaheng Zhang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yating Zhang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Maocuo Peng
- Department of Respiratory Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhilin Zeng
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Fang Y, Cai J, Ren M, Zhong T, Wang D, Zhang K. Inhalable Bottlebrush Polymer Bioconjugates as Vectors for Efficient Pulmonary Delivery of Oligonucleotides. ACS NANO 2024; 18:592-599. [PMID: 38147573 PMCID: PMC10786149 DOI: 10.1021/acsnano.3c08660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Antisense oligonucleotides hold therapeutic promise for various lung disorders, but their efficacy is limited by suboptimal delivery. To address this challenge, we explored the use of inhaled bottlebrush polymer-DNA conjugates, named pacDNA, as a delivery strategy. Inhaled pacDNA exhibits superior mucus penetration, achieving a uniform and sustained lung distribution in mice. Targeting the 5' splice site of an aberrant enhanced green fluorescence protein (EGFP) pre-mRNA in EGFP-654 mice, inhaled pacDNA more efficiently corrects splicing than a B-peptide conjugate and restores EGFP expression in the lung. Additionally, in an orthotopic NCI-H358 non-small-cell lung tumor mouse model, inhaled pacDNA targeting wild-type KRAS mRNA effectively suppresses KRAS expression and inhibits lung tumor growth, requiring a substantially lower dosage compared to intravenously injected pacDNA. These findings demonstrate the potential of bottlebrush polymer-DNA conjugates as a promising agent for enhanced oligonucleotide therapy in the lung and advancing the treatment landscape for lung disorders.
Collapse
Affiliation(s)
- Yang Fang
- Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jiansong Cai
- Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mengqi Ren
- Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Tongtong Zhong
- Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dali Wang
- Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ke Zhang
- Department of Chemistry and Chemical
Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Huang S, Zhen Y, Yin X, Yang Z, Li X, Wang R, Wen H, Zhong H, Yan J, Sun Q. KMT2C Induced by FABP5P3 Aggravates Keratinocyte Hyperproliferation and Psoriasiform Skin Inflammation by Upregulating the Transcription of PIK3R3. J Invest Dermatol 2023; 143:37-47.e8. [PMID: 35870559 DOI: 10.1016/j.jid.2022.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022]
Abstract
The extensive involvement of lysine methyltransferase 2C (KMT2C) in the inflammatory response is well-documented. However, little is known about the role of KMT2C in psoriasis. We identified that KMT2C was significantly upregulated in the epidermis of psoriatic skin lesions and the psoriasiform cell model. KMT2C knockdown diminished keratinocyte proliferation and the secretion of IL-6, IL-8, CCL20, and S100A9 in vitro and in vivo. In psoriasiform keratinocytes, KMT2C promoted the transcription of PIK3R3 by regulating the enrichment of histone H3 lysine 4 trimethylation at the PIK3R3 promoter and histone 3 lysine 4 monomethylation at the enhancer. The PIK3R3/protein kinase B/NF-κB pathway is a vital step in KMT2C-mediated alleviation of cytokine-primed inflammation. The long noncoding RNA FABP5P3 sustained KMT2C mRNA stability by recruiting human antigen R. Furthermore, inhibition of KMT2C attenuated epidermal hyperplasia and skin inflammation in mice with psoriasis. Taken together, our findings indicated a link between KMT2C and psoriasis and opened the possibility of using KMT2C as a potential therapeutic target for psoriasis treatment.
Collapse
Affiliation(s)
- Shan Huang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Yunyue Zhen
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Xiran Yin
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Zhenxian Yang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Xueqing Li
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Ruijie Wang
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - He Wen
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Hua Zhong
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jianjun Yan
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
6
|
Zhan Y, Chen J, Wu J, Gu Y, Huang Q, Deng Z, Chen S, Wu X, Lv Y, Zeng Z, Xie J. Human epididymis protein 4 aggravates airway inflammation and remodeling in chronic obstructive pulmonary disease. Respir Res 2022; 23:120. [PMID: 35550579 PMCID: PMC9097053 DOI: 10.1186/s12931-022-02040-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by chronic inflammation and airway remodeling. Human epididymis protein 4 (HE4) plays a critical role in various inflammatory or fibrotic diseases. However, the role of HE4 in COPD remains unidentified. Methods HE4 expression was determined in the lung tissues from COPD patients and cigarette smoke (CS)-exposed mice using immunohistochemical staining, qPCR, or western blot. The plasma level of HE4 was detected by ELISA. The regulations of HE4 in the expressions of CS extract (CSE)-induced inflammatory cytokines in human bronchial epithelial cells (HBE) were investigated through knockdown or overexpression of HE4. The role of secretory HE4 (sHE4) in the differentiation and proliferation in human pulmonary fibroblast cells (HPF) was explored via qPCR, western blot, CCK8 assay or 5-ethynyl-2′-deoxyuridine (EdU) staining. The probe of related mechanism in CSE-induced HE4 increase in HBE was conducted by administrating N-acetylcysteine (NAC). Results HE4 was up-regulated in both the lung tissue and plasma of COPD patients relative to controls, and the plasma HE4 was negatively associated with lung function in COPD patients. The same enhanced HE4 expression was verified in CS-exposed mice and CSE-induced HBE, but CSE failed to increase HE4 expression in HPF. In vitro experiments showed that reducing HE4 expression in HBE alleviated CSE-induced IL-6 release while overexpressing HE4 facilitated IL-6 expression, mechanistically through affecting phosphorylation of NFκB-p65, whereas intervening HE4 expression had no distinctive influence on IL-8 secretion. Furthermore, we confirmed that sHE4 promoted fibroblast-myofibroblast transition, as indicated by promoting the expression of fibronectin, collagen I and α-SMA via phosphorylation of Smad2. EdU staining and CCK-8 assay demonstrated the pro-proliferative role of sHE4 in HPF, which was further confirmed by enhanced expression of survivin and PCNA. Pretreatment of NAC in CSE or H2O2-induced HBE mitigated HE4 expression. Conclusions Our study indicates that HE4 may participate in airway inflammation and remodeling of COPD. Cigarette smoke enhances HE4 expression and secretion in bronchial epithelium mediated by oxidative stress. Increased HE4 promotes IL-6 release in HBE via phosphorylation of NFκB-p65, and sHE4 promotes fibroblastic differentiation and proliferation. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02040-7.
Collapse
Affiliation(s)
- Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Jinkun Chen
- Department of Science, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Shanshan Chen
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China
| | - Xiaojie Wu
- Department of Respiratory and Critical Care Medicine, Wuhan NO.1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhilin Zeng
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|