1
|
Crorkin P, Hao S, Ferreri NR. Responses to Ang II (Angiotensin II), Salt Intake, and Lipopolysaccharide Reveal the Diverse Actions of TNF-α (Tumor Necrosis Factor-α) on Blood Pressure and Renal Function. Hypertension 2022; 79:2656-2670. [PMID: 36129177 PMCID: PMC9649876 DOI: 10.1161/hypertensionaha.122.19464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
TNF-α (tumor necrosis factor-alpha) is the best known as a proinflammatory cytokine; yet, this cytokine also has important immunomodulatory and regulatory functions. As the effects of TNF-α on immune system function were being revealed, the spectrum of its activities appeared in conflict with each other before investigators defined the settings and mechanisms by which TNF-α contributed to both host defense and chronic inflammation. These effects reflect self-protective mechanisms that may become harmful when dysregulated. The paradigm of physiological and pathophysiological effects of TNF-α has since been uncovered in the lung, colon, and kidney where its role has been identified in pulmonary edema, electrolyte reabsorption, and blood pressure regulation, respectively. Recent studies on the prohypertensive and inflammatory effects of TNF-α in the cardiovascular system juxtaposed to those related to NaCl and blood pressure homeostasis, the response of the kidney to lipopolysaccharide, and protection against bacterial infections are helping define the mechanisms by which TNF-α modulates distinct functions within the kidney. This review discusses how production of TNF-α by renal epithelial cells may contribute to regulatory mechanisms that not only govern electrolyte excretion and blood pressure homeostasis but also maintain the appropriate local hypersalinity environment needed for optimizing the innate immune response to bacterial infections in the kidney. It is possible that the wide range of effects mediated by TNF-α may be related to severity of disease, amount of inflammation and TNF-α levels, and the specific cell types that produce this cytokine, areas that remain to be investigated further.
Collapse
Affiliation(s)
- Patrick Crorkin
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | | |
Collapse
|
2
|
Lucas R, Hadizamani Y, Enkhbaatar P, Csanyi G, Caldwell RW, Hundsberger H, Sridhar S, Lever AA, Hudel M, Ash D, Ushio-Fukai M, Fukai T, Chakraborty T, Verin A, Eaton DC, Romero M, Hamacher J. Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Front Physiol 2022; 12:793251. [PMID: 35264975 PMCID: PMC8899333 DOI: 10.3389/fphys.2021.793251] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar-capillary leak is a hallmark of the acute respiratory distress syndrome (ARDS), a potentially lethal complication of severe sepsis, trauma and pneumonia, including COVID-19. Apart from barrier dysfunction, ARDS is characterized by hyper-inflammation and impaired alveolar fluid clearance (AFC), which foster the development of pulmonary permeability edema and hamper gas exchange. Tumor Necrosis Factor (TNF) is an evolutionarily conserved pleiotropic cytokine, involved in host immune defense against pathogens and cancer. TNF exists in both membrane-bound and soluble form and its mainly -but not exclusively- pro-inflammatory and cytolytic actions are mediated by partially overlapping TNFR1 and TNFR2 binding sites situated at the interface between neighboring subunits in the homo-trimer. Whereas TNFR1 signaling can mediate hyper-inflammation and impaired barrier function and AFC in the lungs, ligand stimulation of TNFR2 can protect from ventilation-induced lung injury. Spatially distinct from the TNFR binding sites, TNF harbors within its structure a lectin-like domain that rather protects lung function in ARDS. The lectin-like domain of TNF -mimicked by the 17 residue TIP peptide- represents a physiological mediator of alveolar-capillary barrier protection. and increases AFC in both hydrostatic and permeability pulmonary edema animal models. The TIP peptide directly activates the epithelial sodium channel (ENaC) -a key mediator of fluid and blood pressure control- upon binding to its α subunit, which is also a part of the non-selective cation channel (NSC). Activity of the lectin-like domain of TNF is preserved in complexes between TNF and its soluble TNFRs and can be physiologically relevant in pneumonia. Antibody- and soluble TNFR-based therapeutic strategies show considerable success in diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease, but their chronic use can increase susceptibility to infection. Since the lectin-like domain of TNF does not interfere with TNF's anti-bacterial actions, while exerting protective actions in the alveolar-capillary compartments, it is currently evaluated in clinical trials in ARDS and COVID-19. A more comprehensive knowledge of the precise role of the TNFR binding sites versus the lectin-like domain of TNF in lung injury, tissue hypoxia, repair and remodeling may foster the development of novel therapeutics for ARDS.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Rudolf Lucas,
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Harald Hundsberger
- Department of Medical Biotechnology, University of Applied Sciences, Krems, Austria,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Alice Ann Lever
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Dipankar Ash
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tohru Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maritza Romero
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland,Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, University Medical Centre of the Saarland, Saarland University, Homburg, Germany,Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany,Jürg Hamacher,
| |
Collapse
|
3
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
4
|
Azzam ZS, Kinaneh S, Bahouth F, Ismael-Badarneh R, Khoury E, Abassi Z. Involvement of Cytokines in the Pathogenesis of Salt and Water Imbalance in Congestive Heart Failure. Front Immunol 2017; 8:716. [PMID: 28674538 PMCID: PMC5474564 DOI: 10.3389/fimmu.2017.00716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/02/2017] [Indexed: 12/28/2022] Open
Abstract
Congestive heart failure (CHF) has become a major medical problem in the western world with high morbidity and mortality rates. CHF adversely affects several systems, mainly the kidneys and the lungs. While the involvement of the renin-angiotensin-aldosterone system and the sympathetic nervous system in the progression of cardiovascular, pulmonary, and renal dysfunction in experimental and clinical CHF is well established, the importance of pro-inflammatory mediators in the pathogenesis of this clinical setting is still evolving. In this context, CHF is associated with overexpression of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1, and IL-6, which are activated in response to environmental injury. This family of cytokines has been implicated in the deterioration of CHF, where it plays an important role in initiating and integrating homeostatic responses both at the myocardium and circulatory levels. We and others showed that angiotensin II decreased the ability of the lungs to clear edema and enhanced the fibrosis process via phosphorylation of the mitogen-activated protein kinases p38 and p42/44, which are generally involved in cellular responses to pro-inflammatory cytokines. Literature data also indicate the involvement of these effectors in modulating ion channel activity. It has been reported that in heart failure due to mitral stenosis; there were varying degrees of vascular and other associated parenchymal changes such as edema and fibrosis. In this review, we will discuss the effects of cytokines and other inflammatory mediators on the kidneys and the lungs in heart failure; especially their role in renal and alveolar ion channels activity and fluid balance.
Collapse
Affiliation(s)
- Zaher S. Azzam
- Department of Physiology and Biophysics, Technion, Israel Institute of Technology, Haifa, Israel
- Internal Medicine “B”, Rambam Health Care Campus, Haifa, Israel
| | - Safa Kinaneh
- Department of Physiology and Biophysics, Technion, Israel Institute of Technology, Haifa, Israel
| | - Fadel Bahouth
- Department of Physiology and Biophysics, Technion, Israel Institute of Technology, Haifa, Israel
| | - Reem Ismael-Badarneh
- Department of Physiology and Biophysics, Technion, Israel Institute of Technology, Haifa, Israel
| | - Emad Khoury
- Department of Physiology and Biophysics, Technion, Israel Institute of Technology, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology and Biophysics, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Weidenfeld S, Kuebler WM. Cytokine-Regulation of Na +-K +-Cl - Cotransporter 1 and Cystic Fibrosis Transmembrane Conductance Regulator-Potential Role in Pulmonary Inflammation and Edema Formation. Front Immunol 2017; 8:393. [PMID: 28439270 PMCID: PMC5383711 DOI: 10.3389/fimmu.2017.00393] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary edema, a major complication of lung injury and inflammation, is defined as accumulation of extravascular fluid in the lungs leading to impaired diffusion of respiratory gases. Lung fluid balance across the alveolar epithelial barrier protects the distal airspace from excess fluid accumulation and is mainly regulated by active sodium transport and Cl- absorption. Increased hydrostatic pressure as seen in cardiogenic edema or increased vascular permeability as present in inflammatory lung diseases such as the acute respiratory distress syndrome (ARDS) causes a reversal of transepithelial fluid transport resulting in the formation of pulmonary edema. The basolateral expressed Na+-K+-2Cl- cotransporter 1 (NKCC1) and the apical Cl- channel cystic fibrosis transmembrane conductance regulator (CFTR) are considered to be critically involved in the pathogenesis of pulmonary edema and have also been implicated in the inflammatory response in ARDS. Expression and function of both NKCC1 and CFTR can be modulated by released cytokines; however, the relevance of this modulation in the context of ARDS and pulmonary edema is so far unclear. Here, we review the existing literature on the regulation of NKCC1 and CFTR by cytokines, and-based on the known involvement of NKCC1 and CFTR in lung edema and inflammation-speculate on the role of cytokine-dependent NKCC1/CFTR regulation for the pathogenesis and potential treatment of pulmonary inflammation and edema formation.
Collapse
Affiliation(s)
- Sarah Weidenfeld
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Wang L, Zhu B, Zhang M, Wang X. Roles of immune microenvironment heterogeneity in therapy-associated biomarkers in lung cancer. Semin Cell Dev Biol 2017; 64:90-97. [DOI: 10.1016/j.semcdb.2016.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022]
|
7
|
He XH, Li QW, Wang YL, Zhang ZZ, Ke JJ, Yan XT, Chen K. Transduced PEP-1-heme oxygenase-1 fusion protein reduces remote organ injury induced by intestinal ischemia/reperfusion. Med Sci Monit 2015; 21:1057-65. [PMID: 25863938 PMCID: PMC4404748 DOI: 10.12659/msm.893924] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background A fusion protein composed of heme oxygenase-1 (HO-1) and cell-penetrating peptide PEP-1 has been shown to reduce local intestinal injury after intestinal ischemia/reperfusion (I/R). In this study, we investigated the effects of PEP-1-HO-1 fusion protein on remote organ injury induced by intestinal I/R in rats. Material/methods We randomly assigned 24 male Sprague-Dawley rats to 3 groups: Sham, I/R, and I/R plus PEP-1-HO-1 treatment (HO). The model of intestinal I/R was established by occluding the superior mesenteric artery for 45 min followed by 120-min reperfusion. In HO group, PEP-1-HO-1 was administered intravenously 30 min before ischemia, while animals in the Sham and I/R groups received the equal volume of physiological saline. At the end of the experiment, lung, liver, and blood samples were collected and analyzed. Results Malondialdehyde levels and histological injury scores were increased, and superoxide dismutase activities were decreased in the lung and liver tissues in the I/R group compared with the Sham group (P<0.05). Serum levels of alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor-α, interleukin-6, and lung tissue wet weight to dry weight ratio were increased in the I/R group compared with the Sham group (P<0.05). NF-κB expression in intestinal tissues was significantly higher in the I/R group than in the Sham group. These changes were significantly reversed by treatment with PEP-1-HO-1. Conclusions This study demonstrates that administration of PEP-1-HO-1 has a protective role against lung and liver injury after intestinal I/R, attributable to the reduction of released proinflammatory cytokines regulated by NF-κB.
Collapse
Affiliation(s)
- Xiang-Hu He
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Qing-Wen Li
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Yan-Lin Wang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Zong-Ze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Jian-Juan Ke
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Xue-Tao Yan
- Department of Anesthesiology, Shenzhen Boan Maternity and Child Health Hospital, Shenzhen, Guangdong, China (mainland)
| | - Kai Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
8
|
Herrero R, Tanino M, Smith LS, Kajikawa O, Wong VA, Mongovin S, Matute-Bello G, Martin TR. The Fas/FasL pathway impairs the alveolar fluid clearance in mouse lungs. Am J Physiol Lung Cell Mol Physiol 2013; 305:L377-88. [PMID: 23812636 DOI: 10.1152/ajplung.00271.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alveolar epithelial damage is a critical event that leads to protein-rich edema in acute lung injury (ALI), but the mechanisms leading to epithelial damage are not completely understood. Cell death by necrosis and apoptosis occurs in alveolar epithelial cells in the lungs of patients with ALI. Fas activation induces apoptosis of alveolar epithelial cells, but its role in the formation of lung edema is unclear. The main goal of this study was to determine whether activation of the Fas/Fas ligand pathway in the lungs could alter the function of the lung epithelium, and the mechanisms involved. The results show that Fas activation alters the alveolar barrier integrity and impairs the ability of the lung alveolar epithelium to reabsorb fluid from the air spaces. This result was dependent on the presence of a normal Fas receptor and was not affected by inflammation induced by Fas activation. Alteration of the fluid transport properties of the alveolar epithelium was partially restored by β-adrenergic stimulation. Fas activation also caused apoptosis of alveolar endothelial cells, but this effect was less pronounced than the effect on the alveolar epithelium. Thus, activation of the Fas pathway impairs alveolar epithelial function in mouse lungs by mechanisms involving caspase-dependent apoptosis, suggesting that targeting apoptotic pathways could reduce the formation of lung edema in ALI.
Collapse
Affiliation(s)
- Raquel Herrero
- Medical Research Service of the Veterans Affairs Puget Sound Health Care Center, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
HARTMANN EK, BOEHME S, DUENGES B, BENTLEY A, KLEIN KU, KWIECIEN R, SHI C, SZCZYRBA M, DAVID M, MARKSTALLER K. An inhaled tumor necrosis factor-alpha-derived TIP peptide improves the pulmonary function in experimental lung injury. Acta Anaesthesiol Scand 2013; 57:334-41. [PMID: 23216436 DOI: 10.1111/aas.12034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2012] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The lectin-like domain of TNF-α enhances the fluid clearance across the alveolar barrier. For experimental purposes, the lectin-like domain can be mimicked by a synthetic peptide representing the TIP-motif of TNF-α. The present study aims to assess the acute effect of TIP on the pulmonary function in a porcine model of acute respiratory distress syndrome (ARDS). METHODS Lung injury was induced in 16 pigs (25-27 kg) by bronchoalveolar lavage followed by injurious ventilation. Following randomisation, either nebulised TIP (1 mg/kg; AP301, APEPTICO, Vienna, Austria) or water for injection (control group) was administered. During 5 h of monitoring, the extravascular lung water index (EVLWI), the quotient of partial pressure of oxygen and inspired oxygen concentration (PaO(2) /FiO(2) ) and the pulmonary shunt fraction were repetitively assessed. The data were evaluated by an analysis of variance including Bonferroni-Holm correction. RESULTS Comparable baseline conditions in both groups were achieved. Ventilatory parameters were standardised in both groups. In the TIP group, a significant reduction of the EVLWI and a simultaneous increase in the PaO(2) /FiO(2) ratio was shown (each P < 0.0001). No changes in the control group were observed (EVLWI: P = 0.43, PaO(2) /FiO(2) : P = 0.60). The intergroup comparison demonstrates a significant advantage of TIP inhalation over placebo (EVLWI: P < 0.0001, PaO(2) /FiO(2) : P = 0.004, shunt fraction: P = 0.0005). CONCLUSIONS The inhalation of TIP induces an amelioration of clinical surrogate parameters of the lung function in a porcine lung injury model. By mimicking the lectin-like domain, the synthetic TIP peptide AP301 is an innovative approach as supportive therapy in ARDS.
Collapse
Affiliation(s)
- E. K. HARTMANN
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | | | - B. DUENGES
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | - A. BENTLEY
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | | | | | | | - M. SZCZYRBA
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | - M. DAVID
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | | |
Collapse
|
10
|
Yang G, Hamacher J, Gorshkov B, White R, Sridhar S, Verin A, Chakraborty T, Lucas R. The Dual Role of TNF in Pulmonary Edema. J Cardiovasc Dis Res 2011; 1:29-36. [PMID: 21188088 PMCID: PMC3004168 DOI: 10.4103/0975-3583.59983] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
—Pulmonary edema, a major manifestation of left ventricular heart failure, renal insufficiency, shock, diffuse alveolar damage and lung hypersensitivity states, is a significant medical problem worldwide and can be life-threatening. The proinflammatory cytokine tumor necrosis factor (TNF) has been shown to contribute to the pathogenesis and development of pulmonary edema. However, some recent studies have demonstrated surprisingly that TNF can also promote alveolar fluid reabsorption in vivo and in vitro. This protective effect of the cytokine is mediated by the lectin-like domain of the cytokine, which is spatially distinct from the TNF receptor binding sites. The TIP peptide, a synthetic mimic of the lectin-like domain of TNF, can significantly increase alveolar fluid clearance and improve lung compliance in pulmonary edema models. In this review, we will discuss the dual role of TNF in pulmonary edema.
Collapse
Affiliation(s)
- Guang Yang
- Vascular Biology Center & Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA, 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mac Sweeney R, Fischer H, McAuley DF. Nasal potential difference to detect Na+ channel dysfunction in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 300:L305-18. [PMID: 21112943 DOI: 10.1152/ajplung.00223.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pulmonary fluid clearance is regulated by the active transport of Na(+) and Cl(-) through respiratory epithelial ion channels. Ion channel dysfunction contributes to the pathogenesis of various pulmonary fluid disorders including high-altitude pulmonary edema (HAPE) and neonatal respiratory distress syndrome (RDS). Nasal potential difference (NPD) measurement allows an in vivo investigation of the functionality of these channels. This technique has been used for the diagnosis of cystic fibrosis, the archetypal respiratory ion channel disorder, for over a quarter of a century. NPD measurements in HAPE and RDS suggest constitutive and acquired dysfunction of respiratory epithelial Na(+) channels. Acute lung injury (ALI) is characterized by pulmonary edema due to alveolar epithelial-interstitial-endothelial injury. NPD measurement may enable identification of critically ill ALI patients with a susceptible phenotype of dysfunctional respiratory Na(+) channels and allow targeted therapy toward Na(+) channel function.
Collapse
Affiliation(s)
- R Mac Sweeney
- Respiratory Medicine Research Programme, Centre for Infection and Immunity, Queen’s University, Belfast, Northern Ireland
| | | | | |
Collapse
|
12
|
Hazemi P, Tzotzos SJ, Fischer B, Andavan GSB, Fischer H, Pietschmann H, Lucas R, Lemmens-Gruber R. Essential structural features of TNF-α lectin-like domain derived peptides for activation of amiloride-sensitive sodium current in A549 cells. J Med Chem 2010; 53:8021-9. [PMID: 20979368 DOI: 10.1021/jm100767p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC) plays a prominent role in sodium uptake from alveolar fluid and is the major component in alveolar fluid clearance in normal and diseased lungs. The lectin-like domain of TNF-α has been shown to activate amiloride-sensitive sodium uptake in type II alveolar epithelial cells. Therefore, several synthetic peptides that mimic the lectin-like domain of TNF-α (TIP) were synthesized and their ability to enhance sodium current through ENaC was studied in A549 cells with the patch clamp technique. Our data suggest that a free positively charged N-terminal amino group on residue 1 and/or a free negatively charged carboxyl group on residue 17 of the TIP peptide is essential for the ENaC-activating effect. Ventilation strategies apart, no standard treatment exists for pulmonary permeability edema. Therefore, novel therapies activating sodium uptake from the alveolar fluid via ENaC could improve clinical outcome.
Collapse
Affiliation(s)
- Parastoo Hazemi
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
13
|
The lectin-like domain of tumor necrosis factor improves lung function after rat lung transplantation--potential role for a reduction in reactive oxygen species generation. Crit Care Med 2010; 38:871-8. [PMID: 20081530 DOI: 10.1097/ccm.0b013e3181cdf725] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To test the hypothesis that the lectin-like domain of tumor necrosis factor, mimicked by the TIP peptide, can improve lung function after unilateral orthotopic lung isotransplantation. Because of a lack of a specific treatment for ischemia reperfusion-mediated lung injury, accompanied by a disrupted barrier integrity and a dysfunctional alveolar liquid clearance, alternative therapies restoring these parameters after lung transplantation are required. DESIGN Prospective, randomized laboratory investigation. SETTING University-affiliated laboratory. SUBJECTS Adult female rats. INTERVENTIONS Tuberoinfundibular peptide, mimicking the lectin-like domain of tumor necrosis factor, mutant TIP peptide, N,N'-diacetylchitobiose/TIP peptide, and amiloride/TIP peptide were instilled intratracheally in the left lung immediately before the isotransplantation was performed. An additional group received an intravenous TIP peptide treatment, 1.5 mins before transplantation. Studies using isolated rat type II alveolar epithelial cell monolayers and ovine pulmonary endothelial cells were also performed. MEASUREMENTS AND MAIN RESULTS Intratracheal pretreatment of the transplantable left lung with the TIP peptide, but not with an inactive mutant TIP peptide, resulted in significantly improved oxygenation 24 hrs after transplantation. This treatment led to a significantly reduced neutrophil content in the lavage fluid. Both the effects on oxygenation and neutrophil infiltration were inhibited by the epithelial sodium channel blocker amiloride. The TIP peptide blunted reactive oxygen species production in pulmonary artery endothelial cells under hypoxia and reoxygenation and reduced reactive oxygen species content in the transplanted rat lungs in vivo. Ussing chamber experiments using monolayers of primary type II rat pneumocytes indicated that the primary site of action of the peptide was on the apical side of these cells. CONCLUSIONS These data demonstrate that the TIP peptide significantly improves lung function after lung transplantation in the rat, in part, by reducing neutrophil content and reactive oxygen species generation. These studies suggest that the TIP peptide is a potential therapeutic agent against the ischemia reperfusion injury associated with lung transplantation.
Collapse
|
14
|
Oltean M, Zhu C, Mera S, Pullerits R, Mattsby-Baltzer I, Mölne J, Hallberg E, Blomgren K, Olausson M. Reduced liver injury and cytokine release after transplantation of preconditioned intestines. J Surg Res 2009; 154:30-37. [PMID: 19084239 DOI: 10.1016/j.jss.2008.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/09/2008] [Accepted: 05/13/2008] [Indexed: 12/25/2022]
Abstract
BACKGROUND The postischemic intestine liberates pro-inflammatory mediators (cytokines, lipopolysaccharide [LPS], free radicals) proportional with the local injury that may trigger a systemic inflammatory response and multi-system organ failure. Previously, intestines from donors receiving Tacrolimus revealed improved morphology and abrogated nuclear factor kappa B (NF-kappaB) activation. Because of its pivotal role in inflammation, we investigated if NF-kappaB intragraft inhibition influences the posttransplant inflammatory response and remote organ injury. MATERIALS AND METHODS Donor Sprague Dawley rats received tacrolimus (0.3 mg/kg) or saline i.v. 6 h before graft harvest. The intestines were preserved for 3 h and then transplanted heterotopically. Hepatic microcirculation was assessed at 20 min, 6 h, 12 h, or 24 h post-reperfusion (postR) using laser-Doppler flowmetry (n = 10/group). Blood pressure measurements and liver sampling were performed at 6, 12, or 24 h postR. Blood samples were obtained at 1, 3, 6, 12, and 24 h postR. Hepatic intercellular adhesion molecule 1 (ICAM-1) expression, caspase-3 and -9 activity, and circulating tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-6, and LPS were studied. RESULTS Pretreated graft (PG) recipients had superior cardiovascular parameters at 6 and 12 h postR, while liver perfusion was similar between groups at all time points. Recipients of PG had lower transaminase levels and ICAM-1 liver expression. Liver caspase 3 and 9 activity were similar at 6 and 12 h but increased at 24 h in both groups. At every time point, circulating tumor necrosis factor alph, IL-1beta, and IL-6 were lower in animals receiving PG. LPS was found increased only at the last time point. CONCLUSIONS Transplantation of tacrolimus-pretreated intestines triggered a milder inflammatory response and decreased liver injury early posttransplantation compared with untreated grafts. Cytokines, but not neutrophils, hypoperfusion, or LPS may underlie the dysfunction.
Collapse
Affiliation(s)
- Mihai Oltean
- Institute for Clinical Sciences, Department of Surgery, University of Gothenburg, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yamagata T, Yamagata Y, Nishimoto T, Hirano T, Nakanishi M, Minakata Y, Ichinose M, Dagenais A, Berthiaume Y. The regulation of amiloride-sensitive epithelial sodium channels by tumor necrosis factor-alpha in injured lungs and alveolar type II cells. Respir Physiol Neurobiol 2008; 166:16-23. [PMID: 19150416 DOI: 10.1016/j.resp.2008.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 11/21/2008] [Accepted: 12/12/2008] [Indexed: 01/11/2023]
Abstract
Alveolar liquid clearance, which mainly depends on sodium transport in alveolar epithelial cells, is an important mechanism by which excess water in the alveoli is reabsorbed during the resolution of pulmonary edema. In this study, we examined the regulation of epithelial sodium channel (ENaC), the main contributor to sodium transport, during acute lung injury and the direct impact of tumor necrosis factor-alpha (TNF-alpha), one of the important cytokines in acute lung injury, on the ENaC regulation. During the development of pulmonary edema, the increases in the number of neutrophils and the levels of TNF-alpha in blood and bronchoalveolar lavage were seen. In parallel, the mRNA expression of the alpha-, beta- and gamma-ENaC subunits in the whole lung tissue was inhibited to 72.0, 47.8 and 53.9%, respectively. The direct exposure of rat alveolar type II cells to TNF-alpha inhibited the mRNA expression of alpha- and gamma-ENaC to 64.0 and 78.0%, but not that of the beta-ENaC. TNF-alpha also inhibited the ENaC function as indicated by the reduction of amiloride-sensitive current (control 4.4, TNF-alpha 1.9 microA/cm(2)). These data suggest that TNF-alpha may affect the pathophysiology of acute lung injury and pulmonary edema through the inhibition of alveolar liquid clearance and sodium transport.
Collapse
Affiliation(s)
- Toshiyuki Yamagata
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1, Kimiidera, Wakayama 641-8509, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The lectin-like domain of tumor necrosis factor-alpha improves alveolar fluid balance in injured isolated rabbit lungs. Crit Care Med 2008; 36:1543-50. [PMID: 18434905 DOI: 10.1097/ccm.0b013e31816f485e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Identification of mechanisms that preserve optimal alveolar fluid balance during pulmonary edema is of great clinical importance. This study was performed to determine whether the lectin-like domain of tumor necrosis factor-alpha (designated TIP) can improve fluid balance in experimental lung injury by affecting alveolocapillary permeability and/or fluid clearance. DESIGN Prospective, randomized laboratory investigation. SETTING University-affiliated laboratory. SUBJECTS Adult male rabbits. INTERVENTIONS TIP, a scrambled peptide (scrTIP), dibutyryl cyclic adenosine monophosphate (db-cAMP), or saline was applied to isolated, ventilated, and buffer-perfused rabbit lungs by ultrasonic nebulization, after which hydrostatic edema or endo/exotoxin-induced lung injury was induced and edema formation was assessed. In studies evaluating the resolution of alveolar edema, 2.5 mL of excess fluid was deposited into the alveolar space of isolated lungs by nebulization in the absence or presence of TIP, scrTIP, amiloride, or ouabain or combinations thereof. MEASUREMENTS AND MAIN RESULTS Microvascular permeability was largely increased during hydrostatic edema and endo/exotoxin-induced lung injury in saline-treated lungs, or lungs that received scrTIP, as assessed by capillary filtration coefficient (K(f,c)) and fluorescein isothiocyanate-labeled albumin flux across the alveolocapillary barrier. In contrast, TIP- or db-cAMP-treated lungs exhibited significantly lower vascular permeability upon hydrostatic challenge. Similarly, extravascular fluid accumulation, as assessed by fluid retention, wet weight to dry weight ratio, and epithelial lining fluid volume measurements, was largely inhibited by TIP or db-cAMP pretreatment. Furthermore, TIP increased sodium-potassium adenosine triphosphatase (Na,K-ATPase) activity 1.6-fold by promoting Na,K-ATPase exocytosis to the alveolar epithelial cell surface and increased amiloride-sensitive sodium uptake, resulting in a 2.2-fold increase in active Na+ transport, and hence improved clearance of excess fluid from the alveolar space. CONCLUSIONS Aerosolized TIP improved alveolar fluid balance by both reducing vascular permeability and enhancing the absorption of excess alveolar fluid in experimental lung injury. These data may suggest a role for TIP as a potential therapeutic agent in pulmonary edema.
Collapse
|
17
|
|
18
|
An S, Hishikawa Y, Liu J, Koji T. Lung injury after ischemia-reperfusion of small intestine in rats involves apoptosis of type II alveolar epithelial cells mediated by TNF-alpha and activation of Bid pathway. Apoptosis 2007; 12:1989-2001. [PMID: 17786556 DOI: 10.1007/s10495-007-0125-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although ischemia-reperfusion (I/R) of small intestine is known to induce lung cell apoptosis, there is little information on intracellular and extracellular molecular mechanisms. Here, we investigated the mechanisms of apoptosis including the expression of Fas, Fas ligand (FasL), Bid, Bax, Bcl-2, cytochrome c, and activated caspase-3 in the rat lung at various time-points (0-24 h) of reperfusion after 1-h ischemia of small intestine. As assessed by TUNEL, the number of apoptotic epithelial cells, which were subsequently identified as type II alveolar epithelial cells by electron microscopy and immunohistochemical double-staining, increased at 3 h of reperfusion in the lung. However, intravenous injections of anti-TNF-alpha antibody decreased the number of TUNEL-positive cells, indicating involvement of tumor necrosis factor-alpha (TNF-alpha) in the induction of lung cell apoptosis. Western blotting and/or immunohistochemistry revealed a marked up-regulation of Fas, FasL, Bid, Bax, cytochrome c and activated caspase-3 and down-regulation of Bcl-2 in lung epithelial and stromal cells at 3 h of reperfusion. Our results indicate that I/R of small intestine results in apoptosis of rat alveolar type II cells through a series of events including systemic TNF-alpha, activation of two apoptotic signaling pathways and mitochondrial translocation of Bid.
Collapse
Affiliation(s)
- Shucai An
- Department of Histology and Cell Biology, Unit of Basic Medical Science, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | |
Collapse
|
19
|
Matthay MA, Folkesson HG. Reduction of Alveolar Epithelial Ion and Fluid Transport by Inflammatory Mediators. Am J Respir Cell Mol Biol 2007. [DOI: 10.1165/ajrcmb.36.3.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Gaillard EA, Shaw NJ, Wallace HL, Vince G, Southern KW. Electrical potential difference across the nasal epithelium is reduced in premature infants with chronic lung disease but is not associated with lower airway inflammation. Pediatr Res 2007; 61:77-82. [PMID: 17211145 DOI: 10.1203/01.pdr.0000250035.10339.ce] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Airway liquid content and insufficient absorptive airway ion transport at birth are potentially important factors in the development and severity of neonatal respiratory disease. The role of deficient absorptive airway ion transport in the development of chronic lung disease of prematurity is unknown. Additionally, lung inflammatory mediators modulate airway ion transport. Their effect on preterm lung ion transport and absorptive capacity is not established. We performed serial nasal potential difference studies and broncho-alveolar lavage in preterm infants born less than 30 wk postmenstrual age over the first four postnatal weeks. Our study aims were to: 1) compare nasal potential difference between preterm infants developing chronic lung disease and babies of similar gestation who do not; and 2) examine for an association between airway inflammation and ion transport parameters. We found that potential difference across the nasal epithelium increased with gestation, remained low and unchanged in infants developing chronic lung disease over the first four postnatal weeks, was significantly lower at four weeks in chronic lung disease infants, and was not associated with lower airway inflammation at any time point. We conclude that infants with chronic lung disease postnatally have a persistently reduced absorptive airway ion transport capacity.
Collapse
Affiliation(s)
- Erol A Gaillard
- Institute of Child Health, University of Liverpool, Royal Liverpool Children's Hospital, Liverpool L12 2AP, United Kingdom.
| | | | | | | | | |
Collapse
|
21
|
Dagenais A, Fréchette R, Clermont ME, Massé C, Privé A, Brochiero E, Berthiaume Y. Dexamethasone inhibits the action of TNF on ENaC expression and activity. Am J Physiol Lung Cell Mol Physiol 2006; 291:L1220-31. [PMID: 16877633 DOI: 10.1152/ajplung.00511.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have reported that TNF, a proinflammatory cytokine present in several lung pathologies, decreases the expression and activity of the epithelial Na(+) channel (ENaC) by approximately 70% in alveolar epithelial cells. Because dexamethasone has been shown to upregulate ENaC mRNA expression and is well known to downregulate proinflammatory genes, we tested if it could alleviate the effect of TNF on ENaC expression and activity. In cotreatment with TNF, we found that dexamethasone reversed the inhibitory effect of TNF and upregulated alpha, beta, and gammaENaC mRNA expression. When the cells were pretreated for 24 h with TNF before cotreatment, dexamethasone was still able to increase alphaENaC mRNA expression to 1.8-fold above control values. However, in these conditions, beta and gammaENaC mRNA expression was reduced to 47% and 14%, respectively. The potential role of TNF and dexamethasone on alphaENaC promoter activity was tested in A549 alveolar epithelial cells. TNF decreased luciferase (Luc) expression by approximately 25% in these cells, indicating that the strong diminution of alphaENaC mRNA must be related to posttranscriptional events. Dexamethasone raised Luc expression by fivefold in the cells and augmented promoter activity by 2.77-fold in cotreatment with TNF. In addition to its effect on alphaENaC gene expression, dexamethasone was able to maintain amiloride-sensitive current as well as the liquid clearance abilities of TNF-treated cells within the normal range. All these results suggest that dexamethasone alleviates the downregulation of ENaC expression and activity in TNF-treated alveolar epithelial cells.
Collapse
Affiliation(s)
- André Dagenais
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu, Université de Montréal, Montréal, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ganter MT, Pittet JF. Bombesin-like peptides: modulators of inflammation in acute lung injury? Am J Respir Crit Care Med 2006; 173:1-2. [PMID: 16368789 DOI: 10.1164/rccm.2510002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Folkesson HG, Matthay MA. Alveolar epithelial ion and fluid transport: recent progress. Am J Respir Cell Mol Biol 2006; 35:10-9. [PMID: 16514116 PMCID: PMC2658691 DOI: 10.1165/rcmb.2006-0080sf] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Hans G Folkesson
- Department of Physiology and Pharmacology, Northeastern Ohio Universities College of Medicine, Rootstown, USA
| | | |
Collapse
|
24
|
Zemans RL, Matthay MA. Bench-to-bedside review: the role of the alveolar epithelium in the resolution of pulmonary edema in acute lung injury. Crit Care 2004; 8:469-77. [PMID: 15566618 PMCID: PMC1065044 DOI: 10.1186/cc2906] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Clearance of pulmonary edema fluid is accomplished by active ion transport, predominantly by the alveolar epithelium. Various ion pumps and channels on the surface of the alveolar epithelial cell generate an osmotic gradient across the epithelium, which in turn drives the movement of water out of the airspaces. Here, the mechanisms of alveolar ion and fluid clearance are reviewed. In addition, many factors that regulate the rate of edema clearance, such as catecholamines, steroids, cytokines, and growth factors, are discussed. Finally, we address the changes to the alveolar epithelium and its transport processes during acute lung injury (ALI). Since relevant clinical outcomes correlate with rates of edema clearance in ALI, therapies based on our understanding of the mechanisms and regulation of fluid transport may be developed.
Collapse
Affiliation(s)
- Rachel L Zemans
- Department of Medicine, University of California, San Francisco, California, USA.
| | | |
Collapse
|
25
|
Lebowitz J, Edinger RS, An B, Perry CJ, Onate S, Kleyman TR, Johnson JP. IκB Kinase-β (IKKβ) Modulation of Epithelial Sodium Channel Activity. J Biol Chem 2004; 279:41985-90. [PMID: 15292220 DOI: 10.1074/jbc.m403923200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using the yeast two-hybrid system, we identified a number of proteins that interacted with the carboxyl termini of murine epithelial sodium channel (ENaC) subunits. Initial screens indicated an interaction between the carboxyl terminus of beta-ENaC and IkappaB kinase-beta (IKKbeta), the kinase that phosphorylates Ikappabeta and results in nuclear targeting of NF-kappaB. A true two-hybrid reaction employing full-length IKKbeta and the carboxyl termini of all three subunits confirmed a strong interaction with beta-ENaC, a weak interaction with gamma-ENaC, and no interaction with alpha-ENaC. Co-immunoprecipitation studies for IKKbeta were performed in a murine cortical collecting duct cell line that endogenously expresses ENaC. Immunoprecipitation with beta-ENaC, but not gamma-ENaC, resulted in co-immunoprecipitation of IKKbeta. To examine the direct effects of IKKbeta on ENaC activity, co-expression studies were performed using the two-electrode voltage clamp technique in Xenopus oocytes. Oocytes were injected with cRNAs for alphabetagamma-ENaC with or without cRNA for IKKbeta. Co-injection of IKKbeta significantly increased the amiloride-sensitive current above controls. Using cell surface ENaC labeling, we determined that an increase of ENaC in the plasma membrane accounted for the increase in current. The injection of kinase-dead IKKbeta (K44A) in ENaC-expressing oocytes resulted in a significant decrease in current. Treatment of mpkCCD(c14) cells with aldosterone increased whole cell amounts of IKKbeta. Because this result suggested that aldosterone might activate NF-kappaB, mpkCCD(c14) cells were transiently transfected with a luciferase reporter gene responsive to NF-kappaB activation. Both aldosterone and tumor necrosis factor-alpha (TNFalpha) stimulation caused a similar and significant increase in luciferase activity as compared with controls. We conclude that IKKbeta interacts with ENaC by up-regulating ENaC at the plasma membrane and that the presence of IKKbeta is at very least permissive to ENaC function. These studies also suggest a previously unexpected interaction between the NF-kappaB transcription pathway and steroid regulatory pathways in epithelial cells.
Collapse
Affiliation(s)
- Jonathan Lebowitz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Insulin resistance is an important component of the metabolic syndrome associated with obesity. Early-stage insulin-resistance and related mild glucose intolerance may be compensated by increased insulin secretion. When combined with impaired insulin secretion, insulin resistance plays an important role in type 2 diabetes (1). Insulin-resistance is also associated with a variety of pathological conditions, including trauma, infection, and cancer. Obesity and type 2 diabetes are the most common metabolic diseases in Western societies, together affecting as much as half of the adult population (2). The prevalence of these conditions is not only high, but continues to increase. We have only recently come to appreciate the role of fat, especially visceral fat, as an endocrine organ. Visceral fat is the source of a number of substances which might play a role in the development of insulin resistance. Among the latter are tumor necrosis factor-alpha (TNF-alpha), adiponectin, IL-6, resistin and free fatty acids. This review will discuss the regulation of insulin responses by TNF-alpha and evidence supporting the hypothesis that over expression of TNF-alpha plays a role in the pathophysiology of insulin resistance.
Collapse
Affiliation(s)
- Stephen E Borst
- Department of Exercise & Sport Sciences, University of Florida, Malcom Randall VA Medical Center, Gainesville, Florida 32608-1197, USA.
| |
Collapse
|
27
|
Groshaus HE, Manocha S, Walley KR, Russell JA. Mechanisms of beta-receptor stimulation-induced improvement of acute lung injury and pulmonary edema. Crit Care 2004; 8:234-42. [PMID: 15312205 PMCID: PMC522843 DOI: 10.1186/cc2875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) and the acute respiratory distress syndrome are complex syndromes because both inflammatory and coagulation cascades cause lung injury. Transport of salt and water, repair and remodeling of the lung, apoptosis, and necrosis are additional important mechanisms of injury. Alveolar edema is cleared by active transport of salt and water from the alveoli into the lung interstitium by complex cellular mechanisms. Beta-2 agonists act on the cellular mechanisms of pulmonary edema clearance as well as other pathways relevant to repair in ALI. Numerous studies suggest that the beneficial effects of beta-2 agonists in ALI include at least enhanced fluid clearance from the alveolar space, anti-inflammatory actions, and bronchodilation. The purposes of the present review are to consider the effects of beta agonists on three mechanisms of improvement of lung injury: edema clearance, anti-inflammatory effects, and bronchodilation. This update reviews specifically the evidence on the effects of beta-2 agonists in human ALI and in models of ALI. The available evidence suggests that beta-2 agonists may be efficacious therapy in ALI. Further randomized controlled trials of beta agonists in pulmonary edema and in acute lung injury are necessary.
Collapse
Affiliation(s)
- Horacio E Groshaus
- Critical Care Research Laboratories, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanjay Manocha
- Critical Care Research Laboratories, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Keith R Walley
- Critical Care Research Laboratories, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - James A Russell
- Critical Care Research Laboratories, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Bouadma L, Schortgen F, Ricard JD, Martet G, Dreyfuss D, Saumon G. Ventilation strategy affects cytokine release after mesenteric ischemia-reperfusion in rats. Crit Care Med 2004; 32:1563-9. [PMID: 15241103 DOI: 10.1097/01.ccm.0000129674.25259.d4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the impact of different ventilation modalities on lung and plasma concentrations of cytokines in a model of secondary lung inflammation, mesenteric ischemia-reperfusion, in rats. DESIGN Prospective, randomized, controlled animal study. SETTING Research laboratory of a university. SUBJECTS Sixty-four male adult Wistar rats weighing 320-380 g. INTERVENTIONS Eight groups were studied. Two groups underwent no surgical procedure: They were either not ventilated or ventilated with an injurious modality consisting of 30 mL/kg tidal volume (Vt) without positive-end expiratory pressure (PEEP). Animals of the other groups underwent laparotomy with or without 2-hr mesenteric ischemia followed by 4 hrs of reperfusion during which the rats were mechanically ventilated. Ventilation modalities were conventional (tidal volume 10 mL/kg, PEEP 3 cm H2O), protective (6 mL/kg, 6 cm H(2)O), or injurious (tidal volume 30 mL/kg and no PEEP). Rats were killed by exsanguination, and their lungs were excised and homogenized in buffer. Supernatants of lung homogenates and plasmas were stored at -80 degrees C for subsequent measurements. MEASUREMENTS AND MAIN RESULTS Tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6, macrophage inhibitory protein 2, and interleukin-10 were determined in lung supernatants and plasmas with a rat-specific enzyme-linked immunosorbent assay. Lung and plasma cytokine concentrations were not significantly different between rats ventilated with the injurious modality only and nonventilated rats. Lung and plasma cytokine concentrations were higher in rats that had undergone mesenteric ischemia-reperfusion than in rats with laparotomy only, whatever ventilation modality. Lung and plasma cytokine concentrations were higher in these rats after the injurious ventilation modality than after the other modalities. CONCLUSION This study shows that an injurious ventilation does not produce significant in vivo release of cytokines in intact animals but promotes the release of pro- and anti-inflammatory cytokines in an inflammatory context.
Collapse
Affiliation(s)
- Lila Bouadma
- EA3512, IFR Claude Bernard, Faculté Xavier Bichat, Paris, France
| | | | | | | | | | | |
Collapse
|
29
|
Mutlu GM, Dumasius V, Burhop J, McShane PJ, Meng FJ, Welch L, Dumasius A, Mohebahmadi N, Thakuria G, Hardiman K, Matalon S, Hollenberg S, Factor P. Upregulation of alveolar epithelial active Na+ transport is dependent on beta2-adrenergic receptor signaling. Circ Res 2004; 94:1091-100. [PMID: 15016730 DOI: 10.1161/01.res.0000125623.56442.20] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alveolar epithelial beta-adrenergic receptor (betaAR) activation accelerates active Na+ transport in lung epithelial cells in vitro and speeds alveolar edema resolution in human lung tissue and normal and injured animal lungs. Whether these receptors are essential for alveolar fluid clearance (AFC) or if other mechanisms are sufficient to regulate active transport is unknown. In this study, we report that mice with no beta1- or beta2-adrenergic receptors (beta1AR-/-/beta2AR-/-) have reduced distal lung Na,K-ATPase function and diminished basal and amiloride-sensitive AFC. Total lung water content in these animals was not different from wild-type controls, suggesting that betaAR signaling may not be required for alveolar fluid homeostasis in uninjured lungs. Comparison of isoproterenol-sensitive AFC in mice with beta1- but not beta2-adrenergic receptors to beta1AR-/-/beta2AR-/- mice indicates that the beta2AR mediates the bulk of beta-adrenergic-sensitive alveolar active Na+ transport. To test the necessity of betaAR signaling in acute lung injury, beta1AR-/-/beta2AR-/-, beta1AR+/+/beta2AR-/-, and beta1AR+/+/beta2AR+/+ mice were exposed to 100% oxygen for up to 204 hours. beta1AR-/-/beta2AR-/- and beta1AR+/+/beta2AR-/- mice had more lung water and worse survival from this form of acute lung injury than wild-type controls. Adenoviral-mediated rescue of beta2-adrenergic receptor (beta2AR) function into the alveolar epithelium of beta1AR-/-/beta2AR-/- and beta1AR+/+/beta2AR-/- mice normalized distal lung beta2AR function, alveolar epithelial active Na+ transport, and survival from hyperoxia. These findings indicate that betaAR signaling may not be necessary for basal AFC, and that beta2AR is essential for the adaptive physiological response needed to clear excess fluid from the alveolar airspace of normal and injured lungs.
Collapse
MESH Headings
- Amiloride/pharmacology
- Animals
- Biological Transport, Active/drug effects
- Biological Transport, Active/physiology
- Body Water/metabolism
- Cardiac Output
- Cyclic AMP/metabolism
- Cystic Fibrosis Transmembrane Conductance Regulator/metabolism
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Genotype
- Humans
- Hyperoxia/physiopathology
- Ion Transport/drug effects
- Ion Transport/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Potassium Channels/metabolism
- Pulmonary Alveoli/drug effects
- Pulmonary Alveoli/injuries
- Pulmonary Alveoli/physiology
- Pulmonary Alveoli/physiopathology
- Receptors, Adrenergic, beta-1/deficiency
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/physiology
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/physiology
- Recombinant Fusion Proteins/physiology
- Sodium/metabolism
- Sodium Channels/metabolism
- Sodium-Potassium-Exchanging ATPase/metabolism
- Specific Pathogen-Free Organisms
- Stroke Volume
- Transduction, Genetic
Collapse
Affiliation(s)
- Gökhan M Mutlu
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Borst SE. The role of TNF-alpha in insulin resistance. Endocrine 2004; 23:177-82. [PMID: 15146098 DOI: 10.1385/endo:23:2-3:177] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 11/14/2003] [Accepted: 11/14/2003] [Indexed: 02/08/2023]
Abstract
Insulin resistance is an important component of the metabolic syndrome associated with obesity. Early-stage insulin-resistance and related mild glucose intolerance may be compensated by increased insulin secretion. When combined with impaired insulin secretion, insulin resistance plays an important role in type 2 diabetes (1). Insulin-resistance is also associated with a variety of pathological conditions, including trauma, infection, and cancer. Obesity and type 2 diabetes are the most common metabolic diseases in Western societies, together affecting as much as half of the adult population (2). The prevalence of these conditions is not only high, but continues to increase. We have only recently come to appreciate the role of fat, especially visceral fat, as an endocrine organ. Visceral fat is the source of a number of substances which might play a role in the development of insulin resistance. Among the latter are tumor necrosis factor-alpha (TNF-alpha), adiponectin, IL-6, resistin and free fatty acids. This review will discuss the regulation of insulin responses by TNF-alpha and evidence supporting the hypothesis that over expression of TNF-alpha plays a role in the pathophysiology of insulin resistance.
Collapse
Affiliation(s)
- Stephen E Borst
- Department of Exercise & Sport Sciences, University of Florida, Malcom Randall VA Medical Center, Gainesville, Florida 32608-1197, USA.
| |
Collapse
|
31
|
Elia N, Tapponnier M, Matthay MA, Hamacher J, Pache JC, Brundler MA, Totsch M, De Baetselier P, Fransen L, Fukuda N, Morel DR, Lucas R. Functional identification of the alveolar edema reabsorption activity of murine tumor necrosis factor-alpha. Am J Respir Crit Care Med 2003; 168:1043-50. [PMID: 12842853 DOI: 10.1164/rccm.200206-618oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) activates sodium channels in Type II alveolar epithelial cells, an important mechanism for the reported fluid resorption capacity of the cytokine. Both TNF-alpha receptor-dependent and -independent effects were proposed for this activity in vitro, the latter mechanism mediated by the lectin-like domain of the molecule. In this study, the relative contribution of the receptor-dependent versus receptor-independent activities was investigated in an in situ mouse lung model and an ex vivo rat lung model. Fluid resorption due to murine TNF-alpha (mTNF-alpha) was functional in mice that were genetically deficient in both types of mTNF-alpha receptor, establishing the importance of mTNF-alpha receptor-independent effects in this species. In addition, we assessed the capacity of an mTNF-alpha-derived peptide (mLtip), which activates sodium transport by a receptor-independent mechanism, to reduce lung water content in an isolated, ventilated, autologous blood-perfused rat lung model. The results show that in this model, mLtip, in contrast to mTNF-alpha, produced a progressive recovery of dynamic lung compliance and airway resistance after alveolar flooding. There was also a significant reduction in lung water. These results indicate that the receptor-independent lectin-like domain of mTNF-alpha has a potential physiological role in the resolution of alveolar edema in rats and mice.
Collapse
Affiliation(s)
- Nadia Elia
- Division of Anesthesiological Investigations, University Medical Center, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Savas MC, Ozguner M, Ozguner IF, Delibas N. Splenectomy attenuates intestinal ischemia-reperfusion-induced acute lung injury. J Pediatr Surg 2003; 38:1465-70. [PMID: 14577069 DOI: 10.1016/s0022-3468(03)00497-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND/PURPOSE Intestinal ischemia-reperfusion (IIR) induced acute lung injury (ALI) has been documented. Kupffer cell blockage with gadolinium chloride (GdCl(3)) has been shown to attenuate IIR-induced ALI. However, the effects of splenic monocytes/macrophages on IIR-induced ALI has not been studied previously. In the current study, the authors aimed to investigate the role of splenectomy in IIR-induced ALI. METHODS Forty-eight rats were divided randomly into 6 groups as follows: SHAM, SHAM + KCB, SHAM + SPLN, IIR, IIR + KCB, IIR + SPLN. Two hours of ischemia and 1 hour of reperfusion has been applied by clipping the SMA. GdCl3 was given 24 hours before experiment. Splenectomy was done just before SMA clipping. Lung levels of tumor necrosis-factor (TNF), interleukin (IL)-6, myeloperoxidase (MPO), and malondialdehyde (MDA) were assayed biochemically. Lung leukosequestration was determined by counting PMNLs histologically. Kruskal-Wallis and Mann-Whitney U tests were done; P values less than.003 were considered significant. RESULTS Polimorphonuclear leukocyte (PMNL) counts and biochemical parameters in the IIR group were significantly higher than the other groups (P <.003). When compared with IIR group, PMNL counts and biochemical parameters were significantly decreased in the IIR+KCB and IIR+SPLN groups, respectively (P <.003). However, they were still significantly higher than their sham-operated controls (P <.003). CONCLUSIONS This study documents that splenectomy attenuates ALI as well as Kupffer cell blockage. Spleen, an important component of mononuclear phagocytic system as liver Kupffer cells, might play an important role in the IIR-induced ALI.
Collapse
Affiliation(s)
- M Cagri Savas
- Department of Pediatric Surgery, Suleyman Demirel University Medical School, Isparta, Turkey
| | | | | | | |
Collapse
|
33
|
Dagenais A, Fréchette R, Yamagata Y, Yamagata T, Carmel JF, Clermont ME, Brochiero E, Massé C, Berthiaume Y. Downregulation of ENaC activity and expression by TNF-alpha in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 286:L301-11. [PMID: 14514522 DOI: 10.1152/ajplung.00326.2002] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sodium absorption by an amiloride-sensitive channel is the main driving force of lung liquid clearance at birth and lung edema clearance in adulthood. In this study, we tested whether tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine involved in several lung pathologies, could modulate sodium absorption in cultured alveolar epithelial cells. We found that TNF-alpha decreased the expression of the alpha-, beta-, and gamma-subunits of epithelial sodium channel (ENaC) mRNA to 36, 43, and 16% of the controls after 24-h treatment and reduced to 50% the amount of alpha-ENaC protein in these cells. There was no impact, however, on alpha(1) and beta(1) Na(+)-K(+)-ATPase mRNA expression. Amiloride-sensitive current and ouabain-sensitive Rb(+) uptake were reduced, respectively, to 28 and 39% of the controls. A strong correlation was found at different TNF-alpha concentrations between the decrease of amiloride-sensitive current and alpha-ENaC mRNA expression. All these data show that TNF-alpha, a proinflammatory cytokine present during lung infection, has a profound influence on the capacity of alveolar epithelial cells to transport sodium.
Collapse
Affiliation(s)
- André Dagenais
- Centre de recherche, CHUM-Hôtel-Dieu, 3850 St-Urbain, Montreal, Quebec, Canada H2W 1T7.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Berthiaume Y, Folkesson HG, Matthay MA. Lung edema clearance: 20 years of progress: invited review: alveolar edema fluid clearance in the injured lung. J Appl Physiol (1985) 2002; 93:2207-13. [PMID: 12433940 DOI: 10.1152/japplphysiol.01201.2001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Resolution of pulmonary edema involved active transepithelial sodium transport. Although several of the cellular and molecular mechanisms involved are relatively well understood, it is only recently that the regulation of these mechanisms in injured lung are being evaluated. Interestingly, in mild-to-moderate lung injury, alveolar edema fluid clearance is often preserved. This preserved or enhanced alveolar fluid clearance is mediated by catecholamine-dependent or -independent mechanisms. This stimulation of alveolar liquid clearance is related to activation or increased expression of sodium transport molecules such as the epithelial sodium channel or the Na(+)-K(+)-ATPase pump and may also involve the cystic fibrosis transmembrane conductance regulator. When severe lung injury occurs, the decrease in alveolar liquid clearance may be related to changes in alveolar permeability or to changes in activity or expression of sodium or chloride transport molecules. Multiple pharmacological tools such as beta-adrenergic agonists, vasoactive drugs, or gene therapy may prove effective in stimulating the resolution of alveolar edema in the injured lung.
Collapse
Affiliation(s)
- Yves Berthiaume
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Quebec, Canada H2W 1T7.
| | | | | |
Collapse
|
35
|
Tillie-Leblond I, Guery BPH, Janin A, Leberre R, Just N, Pittet JF, Tonnel AB, Gosset P. Chronic bronchial allergic inflammation increases alveolar liquid clearance by TNF-alpha -dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1303-9. [PMID: 12388371 DOI: 10.1152/ajplung.00147.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bronchial inflammation in allergic asthma is associated with active exudation from the bronchial tree into the interstitial space of both mucosa and submucosa. The aim of this study was to evaluate epithelial and endothelial permeability as well as alveolar fluid movement in a model of chronic allergic inflammation in Brown-Norway rats sensitized and challenged with ovalbumin (OA). Control groups were challenged with saline solution (C), and rats were immunized by OA but not challenged (Se). Lung sections showed a marked inflammatory infiltrate associated with perivascular and peribronchiolar edema in OA. To measure alveolar liquid clearance, a 5% bovine albumin solution with 1 microCi of (125)I-labeled human albumin was instilled into the air spaces. Alveolar-capillary barrier permeability was evaluated by intravascular injection of 1 microCi of (131)I-labeled albumin. Endothelial permeability was significantly increased in OA, from 0.08 +/- 0.01 in the C group to 0.19 +/- 0.03 in OA group (P < 0.05). Final-to-initial protein ratio was also statistically higher in OA (1.6 +/- 0.05) compared with C (1.38 +/- 0.03, P = 0.01) and Se groups (1.42 +/- 0.03, P = 0.04). Administration of anti-tumor necrosis factor-alpha antibodies within the instillate significantly decreased this ratio (1.32 +/- 0.08, P = 0.003 vs. OA). To conclude, we demonstrated a tumor necrosis factor-alpha-dependent increase in alveolar fluid movement in a model of severe bronchial allergic inflammation associated with endothelial and epithelial leakage.
Collapse
Affiliation(s)
- Isabelle Tillie-Leblond
- Institut National de la Santé et de la Recherche Médicale U416, Institut Pasteur de Lille, 59019 Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sartori C, Fang X, McGraw DW, Koch P, Snider ME, Folkesson HG, Matthay MA. Selected contribution: long-term effects of beta(2)-adrenergic receptor stimulation on alveolar fluid clearance in mice. J Appl Physiol (1985) 2002; 93:1875-80. [PMID: 12381778 DOI: 10.1152/japplphysiol.00275.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Stimulation of active fluid transport with beta-adrenergic receptor (betaAR) agonists can accelerate the resolution of alveolar edema. However, chronic betaAR-agonist administration may cause betaAR desensitization and downregulation that may impair physiological responsiveness to betaAR-agonist stimulation. Therefore, we measured baseline and terbutaline- (10(-3) M) stimulated alveolar fluid clearance in mice that received subcutaneously (miniosmotic pumps) either saline or albuterol (2 mg. kg(-1). day(-1)) for 1, 3, or 6 days. Continuous albuterol administration increased plasma albuterol levels (10(-5) M), an effect that was associated with 1) a significant decrease in betaAR density and 2) attenuation, but not ablation, of maximal terbutaline-induced cAMP production. Forskolin-mediated cAMP-release was unaffected. Continuous albuterol infusion stimulated alveolar fluid clearance on day 1 but did not increase alveolar fluid clearance on days 3 and 6. However, terbutaline-stimulated alveolar fluid clearance in albuterol-treated mice was not reduced compared with saline-treated mice. Despite significant reductions in betaAR density and agonist-mediated cAMP production by long-term betaAR-agonist exposure, maximal betaAR-agonist-mediated increase in alveolar fluid clearance is not diminished in mice.
Collapse
Affiliation(s)
- C Sartori
- Cardiovascular Research Institute, University of California, San Francisco, California 94143-0130, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82:569-600. [PMID: 12087129 DOI: 10.1152/physrev.00003.2002] [Citation(s) in RCA: 496] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery of mechanisms that regulate salt and water transport by the alveolar and distal airway epithelium of the lung has generated new insights into the regulation of lung fluid balance under both normal and pathological conditions. There is convincing evidence that active sodium and chloride transporters are expressed in the distal lung epithelium and are responsible for the ability of the lung to remove alveolar fluid at the time of birth as well as in the mature lung when pathological conditions lead to the development of pulmonary edema. Currently, the best described molecular transporters are the epithelial sodium channel, the cystic fibrosis transmembrane conductance regulator, Na+-K+-ATPase, and several aquaporin water channels. Both catecholamine-dependent and -independent mechanisms can upregulate isosmolar fluid transport across the distal lung epithelium. Experimental and clinical studies have made it possible to examine the role of these transporters in the resolution of pulmonary edema.
Collapse
Affiliation(s)
- Michael A Matthay
- Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco, California 94143-0624, USA.
| | | | | |
Collapse
|
38
|
Fukuda N, Jayr C, Lazrak A, Wang Y, Lucas R, Matalon S, Matthay MA. Mechanisms of TNF-alpha stimulation of amiloride-sensitive sodium transport across alveolar epithelium. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1258-65. [PMID: 11350806 DOI: 10.1152/ajplung.2001.280.6.l1258] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Because tumor necrosis factor (TNF)-alpha can upregulate alveolar fluid clearance (AFC) in pneumonia or septic peritonitis, the mechanisms responsible for the TNF-alpha-mediated increase in epithelial fluid transport were studied. In rats, 5 microg of TNF-alpha in the alveolar instillate increased AFC by 67%. This increase was inhibited by amiloride but not by propranolol. We also tested a triple-mutant TNF-alpha that is deficient in the lectinlike tip portion of the molecule responsible for its membrane conductance effect; the mutant also has decreased binding affinity to both TNF-alpha receptors. The triple-mutant TNF-alpha did not increase AFC. Perfusion of human A549 cells, patched in the whole cell mode, with TNF-alpha (120 ng/ml) resulted in a sustained increase in Na(+) currents from 82 +/- 9 to 549 +/- 146 pA (P < 0.005; n = 6). The TNF-alpha-elicited Na(+) current was inhibited by amiloride, and there was no change when A549 cells were perfused with the triple-mutant TNF-alpha or after preincubation with blocking antibodies to the two TNF-alpha receptors before perfusion with TNF-alpha. In conclusion, although TNF- alpha can initiate acute inflammation and edema formation in the lung, TNF-alpha can also increase AFC by an amiloride-sensitive, cAMP-independent mechanism that enhances the resolution of alveolar edema in pathological conditions by either binding to its receptors or activating Na(+) channels by means of its lectinlike domain.
Collapse
MESH Headings
- Adrenergic beta-Agonists/administration & dosage
- Adrenergic beta-Antagonists/administration & dosage
- Amiloride/administration & dosage
- Amino Acid Substitution
- Animals
- Antibodies, Blocking/pharmacology
- Antigens, CD/metabolism
- Biological Transport/drug effects
- Biological Transport/physiology
- Cell Line
- Humans
- Instillation, Drug
- Male
- Membrane Potentials/drug effects
- Mutation
- Patch-Clamp Techniques
- Propranolol/administration & dosage
- Pulmonary Alveoli/drug effects
- Pulmonary Alveoli/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Respiratory Mucosa/drug effects
- Respiratory Mucosa/metabolism
- Sodium/metabolism
- Sodium Channels/drug effects
- Sodium Channels/metabolism
- Tumor Necrosis Factor-alpha/administration & dosage
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- N Fukuda
- Cardiovascular Research Institute, University of California, 505 Parnassus Ave., San Francisco, CA 94143-0130, USA
| | | | | | | | | | | | | |
Collapse
|