1
|
Elfeky M, Tsubota A, Shimozuru M, Tsubota T, Kimura K, Okamatsu-Ogura Y. Regulation of mitochondrial metabolism by hibernating bear serum: Insights into seasonal metabolic adaptations. Biochem Biophys Res Commun 2024; 736:150510. [PMID: 39121671 DOI: 10.1016/j.bbrc.2024.150510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Hibernating animals undergo a unique and reversible decrease in their whole-body metabolism, which is often accompanied by a suppression of mitochondrial respiration. However, the precise mechanisms underlying these seasonal shifts in mitochondrial metabolism remain unclear. In this study, the effect of the serum from active and hibernating Japanese black bears on mitochondrial respiration was assessed. Stromal-vascular cells were obtained from bear white adipose tissue and cultured with or without an adipocyte differentiation cocktail. When the oxygen consumption was measured in the presence of bear serum, the hibernating bear serum reduced maximal respiration by 15.5 % (p < 0.05) and spare respiratory capacity by 46.0 % (p < 0.01) in the differentiated adipocytes in comparison to the active bear serum. Similar reductions of 23.4 % (p = 0.06) and 40.6 % (p < 0.05) respectively were observed in undifferentiated cells, indicating the effect is cell type-independent. Blue native PAGE analysis revealed that hibernating bear serum suppressed cellular metabolism independently of the assembly of mitochondrial respiratory chain complexes. RNA-seq analysis identified 1094 differentially expressed genes (fold change>1.5, FDR<0.05) related to insulin signaling and glucose metabolism pathways. These findings suggest that the rapid alterations in mitochondrial metabolism during hibernation are likely induced by a combination of reduced insulin signaling and suppressed mitochondrial function, rather than changes in respiratory complex assembly.
Collapse
Affiliation(s)
- Mohamed Elfeky
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt.
| | - Ayumi Tsubota
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Michito Shimozuru
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
2
|
Lewis CTA, Melhedegaard EG, Ognjanovic MM, Olsen MS, Laitila J, Seaborne RAE, Gronset M, Zhang C, Iwamoto H, Hessel AL, Kuehn MN, Merino C, Amigo N, Frobert O, Giroud S, Staples JF, Goropashnaya AV, Fedorov VB, Barnes B, Toien O, Drew K, Sprenger RJ, Ochala J. Remodeling of skeletal muscle myosin metabolic states in hibernating mammals. eLife 2024; 13:RP94616. [PMID: 38752835 PMCID: PMC11098559 DOI: 10.7554/elife.94616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.
Collapse
Affiliation(s)
| | | | - Marija M Ognjanovic
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
| | - Mathilde S Olsen
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
| | - Jenni Laitila
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
| | - Robert AE Seaborne
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King’s College LondonLondonUnited Kingdom
| | - Magnus Gronset
- Department of Cellular and Molecular Medicine, University of CopenhagenCopenhagenDenmark
| | - Changxin Zhang
- Department of Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Hiroyuki Iwamoto
- Spring-8, Japan Synchrotron Radiation Research InstituteHyogoJapan
| | - Anthony L Hessel
- Institute of Physiology II, University of MuensterMuensterGermany
- Accelerated Muscle Biotechnologies ConsultantsBostonUnited States
| | - Michel N Kuehn
- Institute of Physiology II, University of MuensterMuensterGermany
- Accelerated Muscle Biotechnologies ConsultantsBostonUnited States
| | | | | | - Ole Frobert
- Department of Clinical Medicine, Faculty of Health, Aarhus UniversityAarhusDenmark
- Faculty of Health, Department of Cardiology, Örebro UniversityÖrebroSweden
| | - Sylvain Giroud
- Energetics Lab, Department of Biology, Northern Michigan UniversityMarquetteUnited States
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine ViennaViennaAustria
| | - James F Staples
- Department of Biology, University of Western OntarioLondonCanada
| | - Anna V Goropashnaya
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Vadim B Fedorov
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Brian Barnes
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Oivind Toien
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
| | - Ryan J Sprenger
- Department of Zoology, University of British ColumbiaVancouverCanada
| | - Julien Ochala
- Department of Biomedical Sciences, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Hutchinson AJ, Duffy BM, Rego LH, Staples JF. Paper towel shredding as a novel, affordable, noninvasive method for detecting arousals in hibernating rodents. Lab Anim (NY) 2024; 53:117-120. [PMID: 38637688 DOI: 10.1038/s41684-024-01362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Many research groups explore the regulation of hibernation or compare the physiology of heterothermic mammals between the torpid and aroused, euthermic states. Current methods for monitoring torpor (for example, infrared cameras, body temperature or heart-rate telemetry, and motion sensing) are costly, require specialized techniques, and can be invasive. Here we present an alternate method for determining torpor-bout duration that is cost-effective, noninvasive and accurate: paper towel shredding. In the winter, euthermic thirteen-lined ground squirrels will shred paper towels placed in the cage, but torpid animals will not. The presence of a shredded paper towel, indicating an arousal from torpor, is easily evaluated during routine daily monitoring. In 12 animals over 52 days, this simple technique detected 59 arousals with 100% accuracy when compared with the body temperature telemetry of the same animals. Moreover, this novel method avoids some of the drawbacks of other cheap monitoring systems such as the sawdust technique.
Collapse
Affiliation(s)
- Amalie J Hutchinson
- Department of Biology, The University of Western Ontario, London, Ontario, Canada.
| | - Brynne M Duffy
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Lauren H Rego
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - James F Staples
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Bundgaard A, Borowiec BG, Lau GY. Are reactive oxygen species always bad? Lessons from hypoxic ectotherms. J Exp Biol 2024; 227:jeb246549. [PMID: 38533673 DOI: 10.1242/jeb.246549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Oxygen (O2) is required for aerobic energy metabolism but can produce reactive oxygen species (ROS), which are a wide variety of oxidant molecules with a range of biological functions from causing cell damage (oxidative distress) to cell signalling (oxidative eustress). The balance between the rate and amount of ROS generated and the capacity for scavenging systems to remove them is affected by several biological and environmental factors, including oxygen availability. Ectotherms, and in particular hypoxia-tolerant ectotherms, are hypothesized to avoid oxidative damage caused by hypoxia, although it is unclear whether this translates to an increase in ecological fitness. In this Review, we highlight the differences between oxidative distress and eustress, the current mechanistic understanding of the two and how they may affect ectothermic physiology. We discuss the evidence of occurrence of oxidative damage with hypoxia in ectotherms, and that ectotherms may avoid oxidative damage through (1) high levels of antioxidant and scavenging systems and/or (2) low(ering) levels of ROS generation. We argue that the disagreements in the literature as to how hypoxia affects antioxidant enzyme activity and the variable metabolism of ectotherms makes the latter strategy more amenable to ectotherm physiology. Finally, we argue that observed changes in ROS production and oxidative status with hypoxia may be a signalling mechanism and an adaptive strategy for ectotherms encountering hypoxia.
Collapse
Affiliation(s)
- Amanda Bundgaard
- University of Cologne, CECAD, Joseph-Stelzmann-Straße 26, DE-50931 Köln, Germany
- Aarhus University, Department of Biology, CF Moellers Alle 3, DK-8000 Aarhus C, Denmark
| | - Brittney G Borowiec
- Wilfrid Laurier University, Department of Biology, 75 University Ave. W., Waterloo, ON, Canada, N2L 3C5
| | - Gigi Y Lau
- University of British Columbia, Department of Zoology, 6270 University Blvd, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
5
|
Lewis CTA, Melhedegaard EG, Ognjanovic MM, Olsen MS, Laitila J, Seaborne RAE, Gronset MN, Zhang C, Iwamoto H, Hessel AL, Kuehn MN, Merino C, Amigo N, Frobert O, Giroud S, Staples JF, Goropashnaya AV, Fedorov VB, Barnes BM, Toien O, Drew KL, Sprenger RJ, Ochala J. Remodelling of Skeletal Muscle Myosin Metabolic States in Hibernating Mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.566992. [PMID: 38014200 PMCID: PMC10680686 DOI: 10.1101/2023.11.14.566992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20°C). Upon repeating loaded Mant-ATP chase experiments at 8°C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.
Collapse
|
6
|
Hutchinson AJ, Duffy BM, Staples JF. Electron transport system supercomplexes affect reactive-oxygen species production and respiration in both a hibernator (Ictidomys tridecemlineatus) and a nonhibernator (Rattus norvegicus). J Comp Physiol B 2024; 194:81-93. [PMID: 37979043 DOI: 10.1007/s00360-023-01525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Across many taxa, the complexes of the electron transport system associate with each other within the inner mitochondrial membrane to form supercomplexes (SCs). These SCs are thought to confer some selective advantage, such as increasing cellular respiratory capacity or decreasing the production of damaging reactive oxygen species (ROS). In this study, we investigate the relationship between supercomplex abundance and performance of liver mitochondria isolated from rats that do not hibernate and hibernating ground squirrels in which metabolism fluctuates substantially. We quantified the abundance of SCs (respirasomes (SCs containing CI, CIII, and CIV) or SCs containing CIII and CIV) and examined the relationship with state 3 (OXPHOS) and state 4 (LEAK) respiration rate, as well as net ROS production. We found that, in rats, state 3 and 4 respiration rate correlated negatively with respirasome abundance, but positively with CIII/CIV SC abundance. Despite the greater range of respiration rates in different hibernation stages, these relationships were similar in ground squirrels. This is, to our knowledge, the first report of differential effects of supercomplex types on mitochondrial respiration and ROS production.
Collapse
Affiliation(s)
- Amalie J Hutchinson
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Brynne M Duffy
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
7
|
Chung DJ. Hibernating ground squirrels keep their mitochondria supercomplex. J Exp Biol 2022. [DOI: 10.1242/jeb.243512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Staples JF, Mathers KE, Duffy BM. Mitochondrial Metabolism in Hibernation: Regulation and Implications. Physiology (Bethesda) 2022; 37:0. [PMID: 35658625 DOI: 10.1152/physiol.00006.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hibernators rapidly and reversibly suppress mitochondrial respiration and whole animal metabolism. Posttranslational modifications likely regulate these mitochondrial changes, which may help conserve energy in winter. These modifications are affected by reactive oxygen species (ROS), so suppressing mitochondrial ROS production may also be important for hibernators, just as it is important for surviving ischemia-reperfusion injury.
Collapse
Affiliation(s)
- James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Katherine E Mathers
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Brynne M Duffy
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|