1
|
Keramidas ME, Kölegård R, Elia A, Sköldefors H, Eiken O. Repetitive high-sustained gravitoinertial stress does not modulate pressure responsiveness to peripheral sympathetic stimulation. Eur J Appl Physiol 2024; 124:1253-1258. [PMID: 37991551 PMCID: PMC10954908 DOI: 10.1007/s00421-023-05354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE We evaluated the hypothesis that repetitive gravitoinertial stress would augment the arterial-pressure response to peripheral sympathetic stimulation. METHODS Before and after a 5-weeks G-training regimen conducted in a human-use centrifuge, twenty healthy men performed a hand cold-pressor test, and nine of them also a foot cold-pressor test (4 min; 4 °C water). Arterial pressures and total peripheral resistance were monitored. RESULTS The cold-induced elevation (P ≤ 0.002) in arterial pressures and total peripheral resistance did not vary between testing periods, either in the hand [mean arterial pressure: Before = + 16% vs. After = + 17% and total peripheral resistance: Before = + 13% vs. After = + 15%], or in the foot [mean arterial pressure: Before = + 19% vs. After = + 21% and total peripheral resistance: Before = + 16% vs. After = + 16%] cold-pressor tests (P > 0.05). CONCLUSION Present results demonstrate that 5 weeks of prolonged iterative exposure to hypergravity does not alter the responsiveness of sympathetically mediated circulatory reflexes.
Collapse
Affiliation(s)
- Michail E Keramidas
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Berzelius väg 13, Solna, 171 65, Stockholm, Sweden.
| | - Roger Kölegård
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Berzelius väg 13, Solna, 171 65, Stockholm, Sweden
| | - Antonis Elia
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Berzelius väg 13, Solna, 171 65, Stockholm, Sweden
| | | | - Ola Eiken
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Berzelius väg 13, Solna, 171 65, Stockholm, Sweden
| |
Collapse
|
2
|
Blue RS, Ong KM. Handheld Sonographic Cardiovascular Imaging Under Hypergravity Conditions. Aerosp Med Hum Perform 2024; 95:158-164. [PMID: 38356127 DOI: 10.3357/amhp.6339.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
INTRODUCTION: Real-time cardiovascular imaging during hypergravity exposure has been historically limited by technological and physical challenges. Previous efforts at sonographic hypergravity imaging have used fixed ultrasound probes; the use of hand-held ultrasound, particularly performed by minimally trained laypersons, has been less explored. Here we will discuss handheld sonography to self-visualize carotid vascular and cardiac changes during hypergravity.METHODS: Three subjects with variable ultrasound experience ranging from no familiarity to extensive clinical experience used handheld ultrasound at rest and under stepwise +Gz hypergravity exposures (maximum +3.5 Gz) to visualize carotid vascular changes. Subxiphoid cardiac ultrasound was obtained by the most experienced subject. Subjects had variable prior hypergravity experience; all were trained in anti-G straining techniques. Sonographically inexperienced subjects underwent a brief (< 5 min) familiarization with the ultrasound probe, user interface, and desirable viewing window immediately prior to centrifugation; real-time coaching was provided. Ultrasound images were correlated to self-reported symptoms and hemodynamic data.RESULTS: Handheld ultrasound performed as desired; all subjects were successful at obtaining ultrasound images with adequate capture of windows of interest. Subxiphoid imaging efforts were limited by probe overheating and associated with variable quality of imaging due to probe displacement from straining techniques; the subject noted transient, mild discomfort and ecchymosis after imaging in the subxiphoid region.DISCUSSION: Even individuals with minimal or no ultrasound experience successfully obtained usable images under centrifuge conditions. While there were some limitations, this technical demonstration provides initial validation of handheld sonography as an available tool for real-time cardiovascular imaging in a hypergravity environment.Blue RS, Ong KM. Handheld sonographic cardiovascular imaging under hypergravity conditions. Aerosp Med Hum Perform. 2024; 95(3):158-164.
Collapse
|
3
|
Abe C, Katayama C, Horii K, Ogawa B, Ohbayashi K, Iwasaki Y, Nin F, Morita H. Hypergravity load-induced hyperglycemia occurs due to hypothermia and increased plasma corticosterone level in mice. J Physiol Sci 2022; 72:18. [PMID: 35915429 DOI: 10.1186/s12576-022-00844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022]
Abstract
Hypothermia has been observed during hypergravity load in mice and rats. This response is beneficial for maintaining blood glucose level, although food intake decreases. However, saving glucose is not enough to maintain blood glucose level during hypergravity load. In this study, we examined the contribution of humoral factors related to glycolysis in maintaining blood glucose level in a 2 G environment. Increased plasma corticosterone levels were observed in mice with intact peripheral vestibular organs, but not in mice with vestibular lesions. Plasma glucagon levels did not change, and decrease in plasma adrenaline levels was observed in mice with intact peripheral vestibular organs. Accordingly, it is possible that increase in plasma corticosterone level and hypothermia contribute to prevent hypoglycemia in a 2 G environment.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Chikako Katayama
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kazuhiro Horii
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Bakushi Ogawa
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Fumiaki Nin
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|