1
|
Robin A, Van Ombergen A, Laurens C, Bergouignan A, Vico L, Linossier MT, Pavy-Le Traon A, Kermorgant M, Chopard A, Py G, Green DA, Tipton M, Choukér A, Denise P, Normand H, Blanc S, Simon C, Rosnet E, Larcher F, Fernandez P, de Glisezinski I, Larrouy D, Harant-Farrugia I, Antunes I, Gauquelin-Koch G, Bareille MP, Billette De Villemeur R, Custaud MA, Navasiolava N. Comprehensive assessment of physiological responses in women during the ESA dry immersion VIVALDI microgravity simulation. Nat Commun 2023; 14:6311. [PMID: 37813884 PMCID: PMC10562467 DOI: 10.1038/s41467-023-41990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Astronauts in microgravity experience multi-system deconditioning, impacting their inflight efficiency and inducing dysfunctions upon return to Earth gravity. To fill the sex gap of knowledge in the health impact of spaceflights, we simulate microgravity with a 5-day dry immersion in 18 healthy women (ClinicalTrials.gov Identifier: NCT05043974). Here we show that dry immersion rapidly induces a sedentarily-like metabolism shift mimicking the beginning of a metabolic syndrome with a drop in glucose tolerance, an increase in the atherogenic index of plasma, and an impaired lipid profile. Bone remodeling markers suggest a decreased bone formation coupled with an increased bone resorption. Fluid shifts and muscular unloading participate to a marked cardiovascular and sensorimotor deconditioning with decreased orthostatic tolerance, aerobic capacity, and postural balance. Collected datasets provide a comprehensive multi-systemic assessment of dry immersion effects in women and pave the way for future sex-based evaluations of countermeasures.
Collapse
Affiliation(s)
- Adrien Robin
- Univ Angers, CRC, CHU Angers, Inserm, CNRS, MITOVASC, Equipe CARME, SFR ICAT, F-49000, Angers, France.
| | | | - Claire Laurens
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Audrey Bergouignan
- Anschutz Health and Wellness Center, Division of Endocrinology, University of Colorado, Aurora, CO, USA
| | - Laurence Vico
- INSERM, University Jean Monnet, Mines Saint-Etienne, U 1059, Saint Etienne, France
| | | | - Anne Pavy-Le Traon
- Department of Neurology, CHU Toulouse and I2MC-INSERM 1297, Toulouse, France
| | - Marc Kermorgant
- Department of Neurology, CHU Toulouse and I2MC-INSERM 1297, Toulouse, France
| | - Angèle Chopard
- DMEM, Montpellier University, INRAE, Montpellier, France
| | - Guillaume Py
- DMEM, Montpellier University, INRAE, Montpellier, France
| | - David Andrew Green
- Centre of Human and Applied Physiological Sciences, King's College London, London, UK
| | - Michael Tipton
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, PO1 2EF, UK
| | - Alexander Choukér
- Laboratory of Translational Research Stress and Immunity, Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University (LUM), Munich, Germany
| | - Pierre Denise
- Université de Caen Normandie, Inserm, COMETE U1075, CYCERON, CHU de Caen, F-14000, Caen, France
| | - Hervé Normand
- Université de Caen Normandie, Inserm, COMETE U1075, CYCERON, CHU de Caen, F-14000, Caen, France
| | - Stéphane Blanc
- DEPE-IPHC - Département Ecologie, Physiologie et Ethologie, Strasbourg, France
| | - Chantal Simon
- CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, Human Nutrition Research Center Rhône-Alpes, Oullins, France
| | - Elisabeth Rosnet
- Faculty of Sport Sciences, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Peter Fernandez
- INSERM, University Jean Monnet, Mines Saint-Etienne, U 1059, Saint Etienne, France
| | - Isabelle de Glisezinski
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Dominique Larrouy
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Isabelle Harant-Farrugia
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Paul Sabatier University, UMR1297, Toulouse, France
| | - Inês Antunes
- Telespazio Belgium S.R.L. for the European Space Agency, Noordwijk, The Netherlands
| | | | | | | | - Marc-Antoine Custaud
- Univ Angers, CRC, CHU Angers, Inserm, CNRS, MITOVASC, Equipe CARME, SFR ICAT, F-49000, Angers, France.
| | - Nastassia Navasiolava
- Univ Angers, CRC, CHU Angers, Inserm, CNRS, MITOVASC, Equipe CARME, SFR ICAT, F-49000, Angers, France.
| |
Collapse
|
3
|
Plehuna A, Green DA, Amirova LE, Tomilovskaya ES, Rukavishnikov IV, Kozlovskaya IB. Dry immersion induced acute low back pain and its relationship with trunk myofascial viscoelastic changes. Front Physiol 2022; 13:1039924. [PMID: 36311233 PMCID: PMC9606241 DOI: 10.3389/fphys.2022.1039924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 08/12/2023] Open
Abstract
Microgravity induces spinal elongation and Low Back Pain (LBP) but the pathophysiology is unknown. Changes in paraspinal muscle viscoelastic properties may play a role. Dry Immersion (DI) is a ground-based microgravity analogue that induces changes in m. erector spinae superficial myofascial tissue tone within 2 h. This study sought to determine whether bilateral m. erector spinae tone, creep, and stiffness persist beyond 2 h; and if such changes correlate with DI-induced spinal elongation and/or LBP. Ten healthy males lay in the DI bath at the Institute of Biomedical Problems (Moscow, Russia) for 6 h. Bilateral lumbar (L1, L4) and thoracic (T11, T9) trunk myofascial tone, stiffness and creep (MyotonPRO), and subjective LBP (0-10 NRS) were recorded before DI, after 1h, 6 h of DI, and 30min post. The non-standing spinal length was evaluated on the bath lifting platform using a bespoke stadiometer before and following DI. DI significantly modulated m. erector spinae viscoelastic properties at L4, L1, T11, and T9 with no effect of laterality. Bilateral tissue tone was significantly reduced after 1 and 6 h DI at L4, L1, T11, and T9 to a similar extent. Stiffness was also reduced by DI at 1 h but partially recovered at 6 h for L4, L1, and T11. Creep was increased by DI at 1 h, with partial recovery at 6 h, although only T11 was significant. All properties returned to baseline 30 min following DI. Significant spinal elongation (1.17 ± 0.20 cm) with mild (at 1 h) to moderate (at 6 h) LBP was induced, mainly in the upper lumbar and lower thoracic regions. Spinal length increases positively correlated (Rho = 0.847, p = 0.024) with middle thoracic (T9) tone reduction, but with no other stiffness or creep changes. Spinal length positively correlated (Rho = 0.557, p = 0.039) with Max LBP; LBP failed to correlate with any m. erector spinae measured parameters. The DI-induced bilateral m. erector spinae tone, creep, and stiffness changes persist beyond 2 h. Evidence of spinal elongation and LBP allows suggesting that the trunk myofascial tissue changes could play a role in LBP pathogenesis observed in real and simulated microgravity. Further study is warranted with longer duration DI, assessment of IVD geometry, and vertebral column stability.
Collapse
Affiliation(s)
- Anastasija Plehuna
- King’s College London, Centre of Human & Applied Physiological Sciences, London, United Kingdom
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - David Andrew Green
- King’s College London, Centre of Human & Applied Physiological Sciences, London, United Kingdom
- Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle Laboratories GmbH, Cologne, Germany
| | - Liubov E. Amirova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Elena S. Tomilovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Rukavishnikov
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inessa B. Kozlovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|