1
|
Lynch E, Dempsey B, Saleeba C, Monteiro E, Turner A, Burke PGR, Allen AM, Dampney RAL, Hildreth CM, Cornish JL, Goodchild AK, McMullan S. Descending pathways from the superior colliculus mediating autonomic and respiratory effects associated with orienting behaviour. J Physiol 2022; 600:5311-5332. [PMID: 36271640 PMCID: PMC10107157 DOI: 10.1113/jp283789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 01/05/2023] Open
Abstract
The ability to discriminate competing external stimuli and initiate contextually appropriate behaviours is a key brain function. Neurons in the deep superior colliculus (dSC) integrate multisensory inputs and activate descending projections to premotor pathways responsible for orienting, attention and defence, behaviours which involve adjustments to respiratory and cardiovascular parameters. However, the neural pathways that subserve the physiological components of orienting are poorly understood. We report that orienting responses to optogenetic dSC stimulation are accompanied by short-latency autonomic, respiratory and electroencephalographic effects in awake rats, closely mimicking those evoked by naturalistic alerting stimuli. Physiological responses were not accompanied by detectable aversion or fear, and persisted under urethane anaesthesia, indicating independence from emotional stress. Anterograde and trans-synaptic viral tracing identified a monosynaptic pathway that links the dSC to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA), a key hub for the coordination of orienting and locomotor behaviours. In urethane-anaesthetized animals, sympathoexcitatory and cardiovascular, but not respiratory, responses to dSC stimulation were replicated by optogenetic stimulation of the dSC-GiA terminals, suggesting a likely role for this pathway in mediating the autonomic components of dSC-mediated responses. Similarly, extracellular recordings from putative GiA sympathetic premotor neurons confirmed short-latency excitatory inputs from the dSC. This pathway represents a likely substrate for autonomic components of orienting responses that are mediated by dSC neurons and suggests a mechanism through which physiological and motor components of orienting behaviours may be integrated without the involvement of higher centres that mediate affective components of defensive responses. KEY POINTS: Neurons in the deep superior colliculus (dSC) integrate multimodal sensory signals to elicit context-dependent innate behaviours that are accompanied by stereotypical cardiovascular and respiratory activities. The pathways responsible for mediating the physiological components of colliculus-mediated orienting behaviours are unknown. We show that optogenetic dSC stimulation evokes transient orienting, respiratory and autonomic effects in awake rats which persist under urethane anaesthesia. Anterograde tracing from the dSC identified projections to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA). Stimulation of this pathway recapitulated autonomic effects evoked by stimulation of dSC neurons. Electrophysiological recordings from putative GiA sympathetic premotor neurons confirmed short latency excitatory input from dSC neurons. This disynaptic dSC-GiA-spinal sympathoexcitatory pathway may underlie autonomic adjustments to salient environmental cues independent of input from higher centres.
Collapse
Affiliation(s)
- Erin Lynch
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Bowen Dempsey
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Christine Saleeba
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Eloise Monteiro
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Anita Turner
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter G R Burke
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Andrew M Allen
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Roger A L Dampney
- School of Medical Sciences (Physiology), University of Sydney, Sydney, New South Wales, Australia
| | - Cara M Hildreth
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer L Cornish
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ann K Goodchild
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Simon McMullan
- Macquarie Medical School, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Bellinger DL, Wood C, Wergedal JE, Lorton D. Driving β 2- While Suppressing α-Adrenergic Receptor Activity Suppresses Joint Pathology in Inflammatory Arthritis. Front Immunol 2021; 12:628065. [PMID: 34220796 PMCID: PMC8249812 DOI: 10.3389/fimmu.2021.628065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Hypersympathetic activity is prominent in rheumatoid arthritis, and major life stressors precede onset in ~80% of patients. These findings and others support a link between stress, the sympathetic nervous system and disease onset and progression. Here, we extend previous research by evaluating how selective peripherally acting α/β2-adrenergic drugs affect joint destruction in adjuvant-induced arthritis. Methods Complete Freund's adjuvant induced inflammatory arthritis in male Lewis rats. Controls received no treatment. Arthritic rats then received vehicle or twice-daily treatment with the α-adrenergic antagonist, phentolamine (0.5 mg/day) and the β2-adrenergic agonist, terbutaline (1200 µg/day, collectively named SH1293) from day (D) of disease onset (D12) through acute (D21) and severe disease (D28). Disease progression was assessed in the hind limbs using dorsoplantar widths, X-ray analysis, micro-computed tomography, and routine histology on D14, D21, and D28 post-immunization. Results On D21, SH1293 significantly attenuated arthritis in the hind limbs, based on reduced lymphocytic infiltration, preservation of cartilage, and bone volume. Pannus formation and sympathetic nerve loss were not affected by SH1293. Bone area and osteoclast number revealed high- and low-treatment-responding groups. In high-responding rats, treatment with SH1293 significantly preserved bone area and decreased osteoclast number, data that correlated with drug-mediated joint preservation. SH1293 suppressed abnormal bone formation based on reduced production of osteophytes. On D28, the arthritic sparing effects of SH1293 on lymphocytic infiltration, cartilage and bone sparing were maintained at the expense of bone marrow adipocity. However, sympathetic nerves were retracted from the talocrural joint. Conclusion and Significance Our findings support a significant delay in early arthritis progression by treatment with SH1293. Targeting sympathetic neurotransmission may provide a strategy to slow disease progression.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-2 Receptor Agonists/pharmacology
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Drug Combinations
- Freund's Adjuvant
- Joints/diagnostic imaging
- Joints/drug effects
- Joints/metabolism
- Joints/pathology
- Male
- Phentolamine/pharmacology
- Rats, Inbred Lew
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction
- Terbutaline/pharmacology
- Rats
Collapse
Affiliation(s)
- Denise L. Bellinger
- Department of Human Anatomy and Pathology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Carlo Wood
- Department of Human Anatomy and Pathology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jon E. Wergedal
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Departments of Medicine and Biochemistry, Loma Linda University, Loma Linda, CA, United States
| | - Dianne Lorton
- Hoover Arthritis Research Center, Banner Health Research Institute, Sun City, AZ, United States
| |
Collapse
|
3
|
Liu J, Tao J, Xia R, Li M, Huang M, Li S, Chen X, Wilson G, Park J, Zheng G, Chen L, Kong J. Mind-Body Exercise Modulates Locus Coeruleus and Ventral Tegmental Area Functional Connectivity in Individuals With Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:646807. [PMID: 34194314 PMCID: PMC8236862 DOI: 10.3389/fnagi.2021.646807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Mild cognitive impairment (MCI) is a common global health problem. Recently, the potential of mind-body intervention for MCI has drawn the interest of investigators. This study aims to comparatively explore the modulation effect of Baduanjin, a popular mind-body exercise, and physical exercise on the cognitive function, as well as the norepinephrine and dopamine systems using the resting state functional connectivity (rsFC) method in patients with MCI. 69 patients were randomized to the Baduanjin, brisk walking, or healthy education control group for 6 months. The Montreal Cognitive Assessment (MoCA) and magnetic resonance imaging (MRI) scans were applied at baseline and at the end of the experiment. Results showed that (1) compared to the brisk walking, the Baduanjin significantly increased MoCA scores; (2) Baduanjin significantly increased the right locus coeruleus (LC) and left ventral tegmental area (VTA) rsFC with the right insula and right amygdala compared to that of the control group; and the right anterior cingulate cortex (ACC) compared to that of the brisk walking group; (3) the increased right LC-right insula rsFC and right LC-right ACC rsFC were significantly associated with the corresponding MoCA score after 6-months of intervention; (4) both exercise groups experienced an increased effective connectivity from the right ACC to the left VTA compared to the control group; and (5) Baduanjin group experienced an increase in gray matter volume in the right ACC compared to the control group. Our results suggest that Baduanjin can significantly modulate intrinsic functional connectivity and the influence of the norepinephrine (LC) and dopamine (VTA) systems. These findings may shed light on the mechanisms of mind-body intervention and aid the development of new treatments for MCI.
Collapse
Affiliation(s)
- Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Fujian University of Traditional Chinese Medicine, Ministry of Education, Fuzhou, China
| | - Rui Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Moyi Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Maomao Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuzhen Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiangli Chen
- Department of Rehabilitation Psychology and Special Education, University of Wisconsin, Madison, WI, United States
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Joe Park
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Guohua Zheng
- School of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
4
|
Antipov A, Brizuela M, Blessing WW, Ootsuka Y. Alpha 2-adrenergic receptor agonists prevent emotional hyperthermia. Brain Res 2020; 1732:146678. [PMID: 31981679 DOI: 10.1016/j.brainres.2020.146678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 01/31/2023]
Abstract
Emotionally significant stimuli, including potential threats from the external environment, trigger an increase in body temperature, a response known as emotional hyperthermia. Sympathetically-mediated brown adipose tissue (BAT) thermogenesis contributes substantially to this hyperthermic response. The systemic administration of α2-adrenergic agonists is known to inhibit both febrile and shivering responses. In the present study, we investigated whether systemic administration of clonidine, a α2-adrenoceptor agonist, attenuates the emotional hyperthermia evoked in conscious unrestrained rats suddenly confronted with a second (intruder) rat, itself confined to a small cage. Pre-implanted thermistors were used to measure BAT and body temperature in conscious, freely moving, male Sprague-Dawley rats. The rats were pre-treated with intraperitoneally administered vehicle (Ringer solution) or clonidine (1, 10 and 100 µg/kg). Clonidine, in a dose-dependent manner, reduced the intruder-elicited increases in BAT (log-dose linear regression F(1,16) = 9.52, R2 = 0.37, P < 0.01) and body temperature (F(1,16) = 6.48, R2 = 0.29, P < 0.05). We also investigated, in anesthetized rats, whether systemic clonidine administration inhibits BAT sympathetic nerve discharge evoked via activation of neurons in the lateral habenula (LHb) - a nucleus involved in the regulation of emotional hyperthermia. In anesthetized rats, clonidine abolished the BAT sympathetic nerve discharges elicited via bicuculline-mediated disinhibition of the LHb. These results suggest that activation of central α2-adrenergic receptors attenuates the process of emotional hyperthermia by reduction of BAT thermogenesis.
Collapse
Affiliation(s)
- Anna Antipov
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Mariana Brizuela
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - William W Blessing
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Youichirou Ootsuka
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
5
|
Bast N, Banaschewski T, Dziobek I, Brandeis D, Poustka L, Freitag CM. Pupil Dilation Progression Modulates Aberrant Social Cognition in Autism Spectrum Disorder. Autism Res 2019; 12:1680-1692. [DOI: 10.1002/aur.2178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Nico Bast
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity Hospital, Goethe University Frankfurt am Main Frankfurt Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg University Mannheim Germany
| | - Isabel Dziobek
- Berlin School of Mind and Brain and Institute of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg University Mannheim Germany
- Department of Child and Adolescent Psychiatry and PsychotherapyPsychiatric Hospital, University of Zurich Zurich Switzerland
- Center for Integrative Human Physiology Zurich Switzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH Zurich Zurich Switzerland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty MannheimHeidelberg University Mannheim Germany
- Department of Child and Adolescent Psychiatry/PsychotherapyUniversity Medical Center Göttingen, Medical University of Göttingen Göttingen Germany
| | - Christine M. Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity Hospital, Goethe University Frankfurt am Main Frankfurt Germany
| |
Collapse
|
6
|
Cobos-Puc L, Aguayo-Morales H. Cardiovascular Effects Mediated by Imidazoline Drugs: An Update. Cardiovasc Hematol Disord Drug Targets 2019; 19:95-108. [PMID: 29962350 DOI: 10.2174/1871529x18666180629170336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/05/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Clonidine is a centrally acting antihypertensive drug. Hypotensive effect of clonidine is mediated mainly by central α2-adrenoceptors and/or imidazoline receptors located in a complex network of the brainstem. Unfortunately, clonidine produces side effects such as sedation, mouth dry, and depression. Moxonidine and rilmenidine, compounds of the second generation of imidazoline drugs, with fewer side effects, display a higher affinity for the imidazoline receptors compared with α2-adrenoceptors. The antihypertensive action of these drugs is due to inhibition of the sympathetic outflow primarily through central I1-imidazoline receptors in the RVLM, although others anatomical sites and mechanisms/receptors are involved. Agmatine is regarded as the endogenous ligand for imidazoline receptors. This amine modulates the cardiovascular function. Indeed, when administered in the RVLM mimics the hypotension of clonidine. RESULTS Recent findings have shown that imidazoline drugs also exert biological response directly on the cardiovascular tissues, which can contribute to their antihypertensive response. Currently, new imidazoline receptors ligands are in development. CONCLUSION In the present review, we provide a brief update on the cardiovascular effects of clonidine, moxonidine, rilmenidine, and the novel imidazoline agents since representing an important therapeutic target for some cardiovascular diseases.
Collapse
Affiliation(s)
- Luis Cobos-Puc
- Department of Pharmacology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Hilda Aguayo-Morales
- Department of Pharmacology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| |
Collapse
|
7
|
Blessing WW, Blessing EM, Mohammed M, Ootsuka Y. Clozapine, chlorpromazine and risperidone dose-dependently reduce emotional hyperthermia, a biological marker of salience. Psychopharmacology (Berl) 2017; 234:3259-3269. [PMID: 28812124 PMCID: PMC5660844 DOI: 10.1007/s00213-017-4710-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/02/2017] [Indexed: 10/27/2022]
Abstract
RATIONALE We recently introduced a new rat model of emotional hyperthermia in which a salient stimulus activates brown adipose tissue (BAT) thermogenesis and tail artery constriction. Antipsychotic drugs, both classical and second generation, act to reduce excessive assignment of salience to objects and events in the external environment. The close association between salient occurrences and increases in body temperature suggests that antipsychotic drugs may also reduce emotional hyperthermia. OBJECTIVES We determined whether chlorpromazine, clozapine, and risperidone dose dependently reduce emotionally elicited increases in BAT thermogenesis, cutaneous vasoconstriction, and body temperature in rats. METHODS Rats, chronically instrumented for measurement of BAT and body temperature and tail artery blood flow, singly housed, were confronted with an intruder rat (confined within a small wire-mesh cage) after systemic pre-treatment of the resident rat with vehicle or antipsychotic agent. BAT and body temperatures, tail blood flow, and behavioral activity were continuously measured. RESULTS Clozapine (30 μg-2 mg/kg), chlorpromazine (0.1-5 mg/kg), and risperidone (6.25 μg-1 mg/kg) robustly and dose-relatedly reduced intruder-elicited BAT thermogenesis and tail artery vasoconstriction, with consequent dose-related reduction in emotional hyperthermia. CONCLUSIONS Chlorpromazine, a first-generation antipsychotic, as well as clozapine and risperidone, second-generation agents, dose-dependently reduce emotional hyperthermia. Dopamine D2 receptor antagonist properties of chlorpromazine do not contribute to thermoregulatory effects. Interactions with monoamine receptors are important, and these monoamine receptor interactions may also contribute to the therapeutic effects of all three antipsychotics. Thermoregulatory actions of putative antipsychotic agents may constitute a biological marker of their therapeutic properties.
Collapse
Affiliation(s)
- William W Blessing
- Center for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, SA, Australia.
| | - Esther M Blessing
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Mazher Mohammed
- Center for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | - Youichirou Ootsuka
- Center for Neuroscience, Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| |
Collapse
|