1
|
Jiménez AG, Strasser R. Effects of Adverse Life History on Oxidative Stress and Cytokine Concentration in Domestic Dogs. J APPL ANIM WELF SCI 2024:1-13. [PMID: 39320276 DOI: 10.1080/10888705.2024.2405168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Early-life stress has been well studied in humans and laboratory animals; however, the impacts of similar adversity on the welfare of domestic dogs has recently begun to be addressed. For example, associations between processes linked to mitochondrial function, such as oxidative stress (OS) and proinflammatory immune systems, have been under-researched. Yet, mitochondria are targets and mediators of stress pathologies. This study investigates the impact of early-life stress on OS and proinflammatory immune responses in shelter dogs compared to client-owned dogs. We measured OS markers, including total antioxidant capacity (TAC), lipid oxidative damage, catalase (CAT) activity, glutathione peroxidase (GPx) activity, and superoxide dismutase (SOD) concentration, as well as inflammatory cytokines IL-1β, IL-6, and TNF-α. Shelter dogs exhibited significantly higher lipid oxidative damage (p = 0.0265), lower CAT activity (p = 0.002), higher SOD concentration (p < 0.001), and increased IL-1β levels (p = 0.027) compared to client-owned dogs. Compared to client-owned dogs, shelter dogs showed increased OS and inflammation, suggesting higher susceptibility to zoonotic and chronic diseases.
Collapse
Affiliation(s)
| | - Rosemary Strasser
- Department of Psychology, University of Nebraska Omaha, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Harper JM, Hicks M, Jiménez AG. The resistance of domestic canine skin-derived fibroblasts to oxidative and non-oxidative chemical injury: implications of breed and body size. GeroScience 2024:10.1007/s11357-024-01358-y. [PMID: 39316259 DOI: 10.1007/s11357-024-01358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Small-breed dogs live significantly longer lives than large-breed dogs, while having higher mass-specific metabolic rates and faster growth rates. Underlying this observed physiological difference across domestic dogs, there must also be differences at other levels of organization that could lead to elucidating what accounts for the disparity in aging rates and life span within this species. At the cellular level, a clear mechanism underlying whole animal traits has not been fully elucidated. Here, we cultured dermal fibroblasts from large and small breed dogs from both young and old age categories and examined the degree of resistance to multiple sources of cytotoxic stress. This included heat (42 °C), paraquat, cadmium, and hydrogen peroxide for increasing amounts of time (heat) or increasing concentrations (chemical stressors). We hypothesized that small breed dogs, with longer lifespans, would have greater cellular resistance to stress compared with large breed dogs. Final sample sizes include small puppies (N = 18), large puppy (N = 32), small old (N = 11), and large old (N = 23) dogs. Using a 2 (donor size) by 2 (donor age) between-subjects multivariate analysis of variance, we found that the values for the dose that killed 50% of the cells (LD50) were not significantly different based on donor size (p = 0.45) or donor age (p = 0.20). The interaction was also not significant (p = 0.47). Interestingly, we did find that the degree of resistance to cadmium toxicity was significantly correlated with the degree of resistance to both heat and hydrogen peroxide, but not paraquat (p < 0.01 for both). These data suggest that cellular stress resistance does not differ among domestic dogs as a function of size or age, pointing to other cellular pathways as the mechanistic basis for the observed differences in lifespan.
Collapse
Affiliation(s)
- James M Harper
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77341, USA.
| | - Megan Hicks
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77341, USA
| | | |
Collapse
|
3
|
Geraz H, Pinello K, Mendonça D, Severo M, Niza-Ribeiro J. Investigating the Life Expectancy at Birth of Companion Dogs in Portugal Using Official National Registry Data. Animals (Basel) 2024; 14:2141. [PMID: 39123667 PMCID: PMC11311093 DOI: 10.3390/ani14152141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to provide a comprehensive picture of the life expectancy of dogs in Portugal, focusing on the impact of diverse factors including breed, sex, size, and skull shape. The final dataset, gathering data from the national registry database, consisted of 278,116 dogs with confirmed deaths. The mean lifespan at birth for all the dogs was around 8.91 years, with the female dogs tended to have a similar lifespan to male dogs. The analysis of life expectancy at birth for the 20 most common non-Portuguese breeds and 10 Portuguese breeds revealed that Yorkshire Terriers had the highest life expectancy (10.89 years) and French Bulldogs the lowest (6.27 years). Size and cephalic index were found to be influential factors, with large brachycephalic breeds exhibiting shorter life expectancies and smaller, mesocephalic breeds experiencing longer lifespans. Additionally, the cephalic index had a more substantial impact on life expectancy compared to body size. These findings enhance the understanding of the factors influencing canine longevity and aid in developing strategies to improve the health and lifespan of companion dogs.
Collapse
Affiliation(s)
- Helena Geraz
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (K.P.); (D.M.); (J.N.-R.)
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Katia Pinello
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (K.P.); (D.M.); (J.N.-R.)
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal;
- Vet-OncoNet, Departamento de Estudo de Populações, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Denisa Mendonça
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (K.P.); (D.M.); (J.N.-R.)
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal;
| | - Milton Severo
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal;
| | - João Niza-Ribeiro
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (K.P.); (D.M.); (J.N.-R.)
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal;
- Vet-OncoNet, Departamento de Estudo de Populações, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Kolb H, Kempf K, Martin S. Insulin and aging - a disappointing relationship. Front Endocrinol (Lausanne) 2023; 14:1261298. [PMID: 37854186 PMCID: PMC10579801 DOI: 10.3389/fendo.2023.1261298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023] Open
Abstract
Experimental studies in animal models of aging such as nematodes, fruit flies or mice have observed that decreased levels of insulin or insulin signaling promotes longevity. In humans, hyperinsulinemia and concomitant insulin resistance are associated with an elevated risk of age-related diseases suggestive of a shortened healthspan. Age-related disorders include neurodegenerative diseases, hypertension, cardiovascular disease, and type 2 diabetes. High ambient insulin concentrations promote increased lipogenesis and fat storage, heightened protein synthesis and accumulation of non-functional polypeptides due to limited turnover capacity. Moreover, there is impaired autophagy activity, and less endothelial NO synthase activity. These changes are associated with mitochondrial dysfunction and oxidative stress. The cellular stress induced by anabolic activity of insulin initiates an adaptive response aiming at maintaining homeostasis, characterized by activation of the transcription factor Nrf2, of AMP activated kinase, and an unfolded protein response. This protective response is more potent in the long-lived human species than in short-lived models of aging research resulting in a stronger pro-aging impact of insulin in nematodes and fruit flies. In humans, resistance to insulin-induced cell stress decreases with age, because of an increase of insulin and insulin resistance levels but less Nrf2 activation. These detrimental changes might be contained by adopting a lifestyle that promotes low insulin/insulin resistance levels and enhances an adaptive response to cellular stress, as observed with dietary restriction or exercise.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Düsseldorf, Germany
| | - Kerstin Kempf
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Düsseldorf, Germany
| | - Stephan Martin
- Faculty of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Düsseldorf, Germany
| |
Collapse
|
5
|
Kraus C, Snyder-Mackler N, Promislow DEL. How size and genetic diversity shape lifespan across breeds of purebred dogs. GeroScience 2023; 45:627-643. [PMID: 36066765 PMCID: PMC9886701 DOI: 10.1007/s11357-022-00653-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/27/2022] [Indexed: 02/03/2023] Open
Abstract
While the lifespan advantage of small body size and mixed breed status has been documented repeatedly, evidence for an effect of genetic diversity across dog breeds is equivocal. We hypothesized that this might be due to a strong right-censoring bias in available breed-specific lifespan estimates where early-dying dogs from birth cohorts that have not died off completely at the time of data collection are sampled disproportionately, especially in breeds with rapidly growing populations. We took advantage of data on owner reported lifespan and cause of death from a large public database to quantify the effect of size and genetic diversity (heterozygosity) on mortality patterns across 118 breeds based on more than 40,000 dogs. After documenting and removing the right-censoring bias from the breed-specific lifespan estimates by including only completed birth cohorts in our analyses, we show that small size and genetic diversity are both linked to a significant increase in mean lifespan across breeds. To better understand the proximate mechanisms underlying these patterns, we then investigated two major mortality causes in dogs - the cumulative pathophysiologies of old age and cancer. Old age lifespan, as well as the percentage of old age mortality, decreased with increasing body size and increased with increasing genetic diversity. The lifespan of dogs dying of cancer followed the same patterns, but while large size significantly increased proportional cancer mortality, we could not detect a significant signal for lowered cancer mortality with increasing diversity. Our findings suggest that outcross programs will be beneficial for breed health and longevity. They also emphasize the need for high-quality mortality data for veterinary epidemiology as well as for developing the dog as a translational model for human geroscience.
Collapse
Affiliation(s)
| | - Noah Snyder-Mackler
- School of Life Sciences, Center for Evolution and Medicine, School for Human Evolution and Social Change, Arizona State University, Tempe, AZ USA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
6
|
Bartke A. Somatotropic Axis, Pace of Life and Aging. Front Endocrinol (Lausanne) 2022; 13:916139. [PMID: 35909509 PMCID: PMC9329927 DOI: 10.3389/fendo.2022.916139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/17/2022] [Indexed: 12/01/2022] Open
Abstract
Mice with genetic growth hormone (GH) deficiency or GH resistance live much longer than their normal siblings maintained under identical conditions with unlimited access to food. Extended longevity of these mutants is associated with extension of their healthspan (period of life free of disability and disease) and with delayed and/or slower aging. Importantly, GH and GH-related traits have been linked to the regulation of aging and longevity also in mice that have not been genetically altered and in other mammalian species including humans. Avai+lable evidence indicates that the impact of suppressed GH signaling on aging is mediated by multiple interacting mechanisms and involves trade-offs among growth, reproduction, and longevity. Life history traits of long-lived GH-related mutants include slow postnatal growth, delayed sexual maturation, and reduced fecundity (smaller litter size and increased intervals between the litters). These traits are consistent with a slower pace-of-life, a well-documented characteristic of species of wild animals that are long-lived in their natural environment. Apparently, slower pace-of-life (or at least some of its features) is associated with extended longevity both within and between species. This association is unexpected and may appear counterintuitive, because the relationships between adult body size (a GH-dependent trait) and longevity within and between species are opposite rather than similar. Studies of energy metabolism and nutrient-dependent signaling pathways at different stages of the life course will be needed to elucidate mechanisms of these relationships.
Collapse
|
7
|
Metabolomics of aging in primary fibroblasts from small and large breed dogs. GeroScience 2021; 43:1683-1696. [PMID: 34132979 PMCID: PMC8492862 DOI: 10.1007/s11357-021-00388-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/18/2021] [Indexed: 01/09/2023] Open
Abstract
Among several animal groups (eutherian mammals, birds, reptiles), lifespan positively correlates with body mass over several orders of magnitude. Contradicting this pattern are domesticated dogs, with small dog breeds exhibiting significantly longer lifespans than large dog breeds. The underlying mechanisms of differing aging rates across body masses are unclear, but it is generally agreed that metabolism is a significant regulator of the aging process. Herein, we performed a targeted metabolomics analysis on primary fibroblasts isolated from small and large breed young and old dogs. Regardless of size, older dogs exhibited lower glutathione and ATP, consistent with a role for oxidative stress and bioenergetic decline in aging. Furthermore, several size-specific metabolic patterns were observed with aging, including the following: (i) An apparent defect in the lower half of glycolysis in large old dogs at the level of pyruvate kinase. (ii) Increased glutamine anaplerosis into the TCA cycle in large old dogs. (iii) A potential defect in coenzyme A biosynthesis in large old dogs. (iv) Low nucleotide levels in small young dogs that corrected with age. (v) An age-dependent increase in carnitine in small dogs that was absent in large dogs. Overall, these data support the hypothesis that alterations in metabolism may underlie the different lifespans of small vs. large breed dogs, and further work in this area may afford potential therapeutic strategies to improve the lifespan of large dogs.
Collapse
|
8
|
Abstract
Across Mammalia, body size and lifespan are positively correlated. However, in domestic dogs, the opposite is true: small dogs have longer lives compared with large dogs. Here, I present literature-based data on life-history traits that may affect dog lifespan, including adaptations at the whole-organism, and organ-level. Then, I compare those same traits to wild canids. Because oxidative stress is a byproduct of aerobic metabolism, I also present data on oxidative stress in dogs that suggests that small breed dogs accumulate significantly more circulating lipid peroxidation damage compared with large breed dogs, in opposition to lifespan predictions. Further, wild canids have increased antioxidant concentrations compared with domestic dogs, which may aid in explaining why wild canids have longer lifespans than similar-sized domestic dogs. At the cellular level, I describe mechanisms that differ across size classes of dogs, including increases in aerobic metabolism with age, and increases in glycolytic metabolic rates in large breed dogs across their lifespan. To address potential interventions to extend lifespan in domestic dogs, I describe experimental alterations to cellular architecture to test the "membrane pacemaker" hypotheses of metabolism and aging. This hypothesis suggests that increased lipid unsaturation and polyunsaturated fatty acids in cell membranes can increase cellular metabolic rates and oxidative damage, leading to potential decreased longevity. I also discuss cellular metabolic changes of primary fibroblast cells isolated from domestic dogs as they are treated with commercially available drugs that are linked to lifespan and health span expansion.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| |
Collapse
|
9
|
Jimenez AG. Plasma Concentration of Advanced Glycation End-Products From Wild Canids and Domestic Dogs Does Not Change With Age or Across Body Masses. Front Vet Sci 2021; 8:637132. [PMID: 33575284 PMCID: PMC7870499 DOI: 10.3389/fvets.2021.637132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Dogs provide a physiological paradox: In domestic dogs, small breeds live longer lives than large breed dogs. Comparatively, a wild canid can be a similar size than many large breed dogs and outlive their domestic cousin. We have previously shown that oxidative stress patterns between domestic and wild canids differ, so that wild canids invest in a robust antioxidant system across their lives; whereas domestic dogs tend to accumulate lipid damage with age. There is a close association between oxidative stress and the production of a carbohydrate based-damage, Advanced Glycation End-products (AGEs). AGEs can bind to their receptor (RAGE), which can lead to increases in reactive oxygen species (ROS) production, and decreases in antioxidant capacity. Here, I used plasma from wild and domestic canids to address whether blood plasma AGE-BSA concentration associated with body mass and age in domestic dogs; And whether AGE-BSA concentration patterns in blood plasma from wild canids are similar to those found in domestic dogs. I found no correlation between circulating AGE-BSA concentration and body size or age in either domestic dogs and wild canids. These data suggest that AGEs formation may be a conserved trait across the evolution of domesticated dogs from wild ancestors, in opposition to oxidative stress patterns between these two groups. And, that, in domestic dogs, lipid metabolism, rather than carbohydrate metabolism, may be upregulated to yield the previously found differences in circulating lipid damage across lifespan and body sizes.
Collapse
|