1
|
Kanda LL, Abdulhay A, Erickson C. Adult wheel access interaction with activity and boldness personality in Siberian dwarf hamsters (Phodopus sungorus). Behav Processes 2017; 138:82-90. [PMID: 28249731 DOI: 10.1016/j.beproc.2017.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/16/2017] [Accepted: 02/24/2017] [Indexed: 11/26/2022]
Abstract
Individual animal personalities interact with environmental conditions to generate differences in behavior, a phenomenon of growing interest for understanding the effects of environmental enrichment on captive animals. Wheels are common environmental enrichment for laboratory rodents, but studies conflict on how this influences behavior, and interaction of wheels with individual personalities has rarely been examined. We examined whether wheel access altered personality profiles in adult Siberian dwarf hamsters. We assayed animals in a tunnel maze twice for baseline personality, then again at two and at seven weeks after the experimental group was provisioned with wheels in their home cages. Linear mixed model selection was used to assess changes in behavior over time and across environmental gradient of wheel exposure. While animals showed consistent inter-individual differences in activity, activity personality did not change upon exposure to a wheel. Boldness also varies among individuals, and there is evidence for female boldness scores converging after wheel exposure, that is, opposite shifts in behavior by high and low boldness individuals, although sample size is too small for the mixed model results to be robust. In general, Siberian dwarf hamsters appear to show low behavioral plasticity, particularly in general activity, in response to running wheels.
Collapse
Affiliation(s)
- L Leann Kanda
- Dept. of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA.
| | - Amir Abdulhay
- Dept. of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA
| | - Caitlin Erickson
- Dept. of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA
| |
Collapse
|
2
|
Petri I, Diedrich V, Wilson D, Fernández-Calleja J, Herwig A, Steinlechner S, Barrett P. Orchestration of gene expression across the seasons: Hypothalamic gene expression in natural photoperiod throughout the year in the Siberian hamster. Sci Rep 2016; 6:29689. [PMID: 27406810 PMCID: PMC4942572 DOI: 10.1038/srep29689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/23/2016] [Indexed: 01/17/2023] Open
Abstract
In nature Siberian hamsters utilize the decrement in day length following the summer solstice to implement physiological adaptations in anticipation of the forthcoming winter, but also exploit an intrinsic interval timer to initiate physiological recrudescence following the winter solstice. However, information is lacking on the temporal dynamics in natural photoperiod of photoperiodically regulated genes and their relationship to physiological adaptations. To address this, male Siberian hamsters born and maintained outdoors were sampled every month over the course of one year. As key elements of the response to photoperiod, thyroid hormone signalling components were assessed in the hypothalamus. From maximum around the summer solstice (late-June), Dio2 expression rapidly declined in advance of physiological adaptations. This was followed by a rapid increase in Mct8 expression (T3/T4 transport), peaking early-September before gradually declining to minimum expression by the following June. Dio3 showed a transient peak of expression beginning late-August. A recrudescence of testes and body mass occurred from mid-February, but Dio2 expression remained low until late-April of the following year, converging with the time of year when responsiveness to short-day length is re-established. Other photoperiodically regulated genes show temporal regulation, but of note is a transient peak in Gpr50 around late-July.
Collapse
Affiliation(s)
- Ines Petri
- University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Victoria Diedrich
- University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Dana Wilson
- Rowett Institute for Nutrition and Health, University of Aberdeen, Greenburn Road Bucksburn, Aberdeen AB21 9SB, UK
| | - José Fernández-Calleja
- Rowett Institute for Nutrition and Health, University of Aberdeen, Greenburn Road Bucksburn, Aberdeen AB21 9SB, UK
| | - Annika Herwig
- Zoological Institute, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Stephan Steinlechner
- University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Perry Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Greenburn Road Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
3
|
Scherbarth F, Diedrich V, Dumbell RA, Schmid HA, Steinlechner S, Barrett P. Somatostatin receptor activation is involved in the control of daily torpor in a seasonal mammal. Am J Physiol Regul Integr Comp Physiol 2015; 309:R668-74. [DOI: 10.1152/ajpregu.00191.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/05/2015] [Indexed: 01/21/2023]
Abstract
Siberian hamsters ( Phodopus sungorus) show spontaneous daily torpor only after ∼2 mo in winter-like short photoperiods (SP). Although some SP-induced hormonal changes have been demonstrated to be necessary for the occurrence of seasonal torpor, the whole set of preconditions is still unknown. Recent findings provide evidence that the hypothalamic pituitary growth axis is involved in endocrine responses to SP exposure in the photoperiodic hamsters. To examine whether suppression of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) secretion affects the incidence of daily torpor, we used two somatostatin receptor agonists, pasireotide (SOM230) and octreotide, with different affinity profiles for receptor subtypes. Pasireotide strikingly increased the torpor frequency in male hamsters compared with sham-treated controls, and torpor duration was often increased, which in some cases exceeded 12 h. In contrast, administration of octreotide reduced the body weight of SP hamsters but had only a marginal effect on torpor frequency in males and no effect in females. Together with measured concentrations of circulating IGF-1, the present results strongly suggest that reduced activity of the GH/IGF-1 axis is not critical for stimulation of torpor expression but activation of specific somatostatin receptors is critical. This putative role for certain somatostatin receptor subtypes in torpor induction provides a promising new approach to unravel the endocrine mechanisms of torpor regulation.
Collapse
Affiliation(s)
- Frank Scherbarth
- Department of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Victoria Diedrich
- Department of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Rebecca A. Dumbell
- Rowett Institute for Nutrition and Health, Aberdeen, United Kingdom; and
| | - Herbert A. Schmid
- Oncology Department, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stephan Steinlechner
- Department of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Perry Barrett
- Rowett Institute for Nutrition and Health, Aberdeen, United Kingdom; and
| |
Collapse
|
4
|
Müller D, Hauer J, Schöttner K, Fritzsche P, Weinert D. Seasonal adaptation of dwarf hamsters (Genus Phodopus): differences between species and their geographic origin. J Comp Physiol B 2015; 185:917-30. [DOI: 10.1007/s00360-015-0926-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 11/28/2022]
|
5
|
Petri I, Dumbell R, Scherbarth F, Steinlechner S, Barrett P. Effect of exercise on photoperiod-regulated hypothalamic gene expression and peripheral hormones in the seasonal Dwarf Hamster Phodopus sungorus. PLoS One 2014; 9:e90253. [PMID: 24603871 PMCID: PMC3946023 DOI: 10.1371/journal.pone.0090253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/31/2014] [Indexed: 12/30/2022] Open
Abstract
The Siberian hamster (Phodopus sungorus) is a seasonal mammal responding to the annual cycle in photoperiod with anticipatory physiological adaptations. This includes a reduction in food intake and body weight during the autumn in anticipation of seasonally reduced food availability. In the laboratory, short-day induction of body weight loss can be reversed or prevented by voluntary exercise undertaken when a running wheel is introduced into the home cage. The mechanism by which exercise prevents or reverses body weight reduction is unknown, but one hypothesis is a reversal of short-day photoperiod induced gene expression changes in the hypothalamus that underpin body weight regulation. Alternatively, we postulate an exercise-related anabolic effect involving the growth hormone axis. To test these hypotheses we established photoperiod-running wheel experiments of 8 to 16 weeks duration assessing body weight, food intake, organ mass, lean and fat mass by magnetic resonance, circulating hormones FGF21 and insulin and hypothalamic gene expression. In response to running wheel activity, short-day housed hamsters increased body weight. Compared to short-day housed sedentary hamsters the body weight increase was accompanied by higher food intake, maintenance of tissue mass of key organs such as the liver, maintenance of lean and fat mass and hormonal profiles indicative of long day housed hamsters but there was no overall reversal of hypothalamic gene expression regulated by photoperiod. Therefore the mechanism by which activity induces body weight gain is likely to act largely independently of photoperiod regulated gene expression in the hypothalamus.
Collapse
Affiliation(s)
- Ines Petri
- Department of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Rebecca Dumbell
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Frank Scherbarth
- Department of Zoology, University of Veterinary Medicine, Hannover, Germany
| | | | - Perry Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Schöttner K, Schmidt M, Hering A, Schatz J, Weinert D. Short-day response in Djungarian hamsters of different circadian phenotypes. Chronobiol Int 2012; 29:430-42. [PMID: 22515562 DOI: 10.3109/07420528.2012.668506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In Djungarian hamsters (Phodopus sungorus) bred at the authors' institute, a certain number of animals show activity patterns incompatible with proper entrainment of their endogenous circadian pacemaker to the environmental light-dark (LD) cycle. Even though the activity-offset in these animals is stably coupled to "light-on," activity-onset is increasingly delayed, leading to a compression of the activity time (α). If α falls below a critical value, the circadian rhythm in these so called delayed activity-onset (DAO) hamsters starts to free-run and finally breaks down. Animals then show an arrhythmic activity pattern (AR hamsters). Previous studies revealed the mechanisms of photic entrainment have deteriorated (DAO) or the suprachiasmatic nucleus (SCN) does not generate a rhythmic signal (AR). The aim of the present study was to investigate the consequences that these deteriorations have upon photoperiodic time measurement. Animals were bred and kept under standardized housing conditions with food and water ad libitum and a 14L/10D (long day, LD) regimen. Locomotor activity was recorded continuously using passive infrared motion detectors. Body mass, testes size, and fur coloration were measured weekly or biweekly to further quantify the photoperiodic reaction. In a first experiment, adult male wild-type (WT), DAO, and AR hamsters were transferred initially to a 16L/8D cycle. After 3-4 wks, the light period was shortened symmetrically by 8 h. After 14 wks, none of the DAO and AR hamsters, and only 1 of 8 WT hamsters showed short-day (SD) traits. Therefore, in a second experiment, hamsters were transferred to SD conditions (8L/16D cycle) for 8 wks directly from standard LD conditions. In 6 of 7 WT hamsters, activity time expanded, body mass and testes size decreased, and fur coloration changed from summer to winter pelage. In contrast, none of the DAO and AR hamsters displayed an SD response. In a third experiment, DAO and AR hamsters were kept in constant darkness (DD) for 8 and 14 wks. After 8 wks, DAO hamsters showed a similar photoperiodic reaction to WT hamsters that had been kept for 8 wks under SD conditions. However, the level of adaptation was still less compared to WT hamsters, but this difference was not apparent after 14 wks. In contrast, AR animals did not display any photoperiodic reaction, even after 14 wks in DD. Type VI phase response curves (PRCs) were constructed to better understand the mechanism behind the SD response. In WT hamsters, the photosensitive phase, where light pulses induce phase shifts, was lengthened in SD condition. In DAO hamsters, in contrast, the PRCs were similar under LD and SD conditions with a compressed photosensitive phase corresponding to α. Also, "light-on" induced only weak phase advances of activity-onset, insufficient to compensate for the long endogenous period. The results show that physiological mechanisms necessary for seasonal adaptation are working in DAO hamsters and that it is the inadequate interaction of the LD cycle with the SCN that prevents the photoperiodic reaction. AR hamsters, on the other hand, are incapable of measuring photoperiodic time due to a complete disruption of circadian rhythmicity.
Collapse
Affiliation(s)
- Konrad Schöttner
- Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Germany
| | | | | | | | | |
Collapse
|
7
|
Petri I, Scherbarth F, Steinlechner S. Voluntary exercise at the expense of reproductive success in Djungarian hamsters (Phodopus sungorus). Naturwissenschaften 2010; 97:837-43. [DOI: 10.1007/s00114-010-0701-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 11/30/2022]
|
8
|
Endocrine mechanisms of seasonal adaptation in small mammals: from early results to present understanding. J Comp Physiol B 2010; 180:935-52. [PMID: 20640428 DOI: 10.1007/s00360-010-0498-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/01/2010] [Accepted: 07/03/2010] [Indexed: 12/16/2022]
Abstract
Seasonal adaptation is widespread among mammals of temperate and polar latitudes. The changes in physiology, morphology and behaviour are controlled by the photoneuroendocrine system that, as a first step, translates day lengths into a hormonal signal (melatonin). Decoding of the humoral melatonin signal, i.e. responses on the cellular level to slight alterations in signal duration, represents the prerequisite for appropriate timing of winter acclimatization in photoperiodic animals. Corresponding to the diversity of affected traits, several hormone systems are involved in the regulation downstream of the neural integration of photoperiodic time measurement. Results from recent studies provide new insights into seasonal control of reproduction and energy balance. Most intriguingly, the availability of thyroid hormone within hypothalamic key regions, which is a crucial determinant of seasonal transitions, appears to be regulated by hormone secretion from the pars tuberalis of the pituitary gland. This proposed neuroendocrine pathway contradicts the common view of the pituitary as a gland that acts downstream of the hypothalamus. In the present overview of (neuro)endocrine mechanisms underlying seasonal acclimatization, we are focusing on the dwarf hamster Phodopus sungorus (long-day breeder) that is known for large amplitudes in seasonal changes. However, important findings in other mammalian species such as Syrian hamsters and sheep (short-day breeder) are considered as well.
Collapse
|
9
|
Scherbarth F, Steinlechner S. The Annual Activity Pattern of Djungarian Hamsters (Phodopus sungorus) Is Affected by Wheel‐Running Activity. Chronobiol Int 2009; 25:905-22. [DOI: 10.1080/07420520802544514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Effects of wheel running on photoperiodic responses of Djungarian hamsters (Phodopus sungorus). J Comp Physiol B 2008; 178:607-15. [DOI: 10.1007/s00360-007-0251-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
|