1
|
Convertino VA, Koons NJ, Suresh MR. Physiology of Human Hemorrhage and Compensation. Compr Physiol 2021; 11:1531-1574. [PMID: 33577122 DOI: 10.1002/cphy.c200016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hemorrhage is a leading cause of death following traumatic injuries in the United States. Much of the previous work in assessing the physiology and pathophysiology underlying blood loss has focused on descriptive measures of hemodynamic responses such as blood pressure, cardiac output, stroke volume, heart rate, and vascular resistance as indicators of changes in organ perfusion. More recent work has shifted the focus toward understanding mechanisms of compensation for reduced systemic delivery and cellular utilization of oxygen as a more comprehensive approach to understanding the complex physiologic changes that occur following and during blood loss. In this article, we begin with applying dimensional analysis for comparison of animal models, and progress to descriptions of various physiological consequences of hemorrhage. We then introduce the complementary side of compensation by detailing the complexity and integration of various compensatory mechanisms that are activated from the initiation of hemorrhage and serve to maintain adequate vital organ perfusion and hemodynamic stability in the scenario of reduced systemic delivery of oxygen until the onset of hemodynamic decompensation. New data are introduced that challenge legacy concepts related to mechanisms that underlie baroreflex functions and provide novel insights into the measurement of the integrated response of compensation to central hypovolemia known as the compensatory reserve. The impact of demographic and environmental factors on tolerance to hemorrhage is also reviewed. Finally, we describe how understanding the physiology of compensation can be translated to applications for early assessment of the clinical status and accurate triage of hypovolemic and hypotensive patients. © 2021 American Physiological Society. Compr Physiol 11:1531-1574, 2021.
Collapse
Affiliation(s)
- Victor A Convertino
- Battlefield Healthy & Trauma Center for Human Integrative Physiology, United States Army Institute of Surgical Research, JBSA San Antonio, Texas, USA
| | - Natalie J Koons
- Battlefield Healthy & Trauma Center for Human Integrative Physiology, United States Army Institute of Surgical Research, JBSA San Antonio, Texas, USA
| | - Mithun R Suresh
- Battlefield Healthy & Trauma Center for Human Integrative Physiology, United States Army Institute of Surgical Research, JBSA San Antonio, Texas, USA
| |
Collapse
|
2
|
Noiseless Variable-Pressure Neck Chamber Device to Assess the Carotid Baroreflex Function. Front Physiol 2021; 11:613311. [PMID: 33551840 PMCID: PMC7854574 DOI: 10.389/fphys.2020.613311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The blood pressure responses to baroreflex perturbations can be assessed only using the variable-pressure neck chamber technique. However, the application of this approach in hospital environments is limited owing to the loud noise emitted during its operation. This study was aimed at developing a noiseless neck suction chamber device (NCD) that could stimulate the baroreceptors located in the carotid sinus in humans. Methods: A non-invasive device was developed to pressurize the carotid arteries externally. A microcontroller with a computer interface and neck chamber (3D-printed) was used. The anatomical neck chamber was fitted on six healthy, young, asymptomatic participants (five men; 32 ± 6 year), who were normotensive, nonsmoking, in sinus rhythm, free of known cardiovascular or metabolic diseases, and not consuming any acute or chronic medications. A suction of −60 mmHg was applied for 5 s, and the corresponding data were recorded. Before each study visit, the participants were instructed to abstain from caffeine, alcohol, and strenuous exercise for 12–24 h. Results: In all the trials, a significant reflex bradycardia (−10 ± 2 bpm) and depressor response (−15 ± 4 mmHg) to neck suction were observed, consistent with the results in the literature. The neck chamber device operated noiselessly [sound pressure level (SPL) of 34.3 dB] compared to a regular vacuum-cleaner-based system (74.6 dB). Conclusion: Using the proposed approach, consistent blood pressure and heart rate responses to carotid baroreflex hypertensive stimuli could be recorded, as in previous studies conducted using neck collar devices. Furthermore, the neck chamber device operated noiselessly and can thus be applied in hospital environments.
Collapse
|
3
|
Akerman AP, Meade RD, Notley SR, Rutherford MM, Kenny GP. Myths and methodologies: Reliability of non-invasive estimates of cardiac autonomic modulation during whole-body passive heating. Exp Physiol 2020; 106:593-614. [PMID: 33197089 DOI: 10.1113/ep089069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Observed individual variability in cardiac baroreflex sensitivity (cBRS) and heart rate variability (HRV) is extensive, especially during exposure to stressors such as heat. A large part of the observed variation may be related to the reliability (consistency) of the measurement. We therefore examined the test-retest reliability of cBRS and HRV measurements on three separate occasions in 14 young men (age: 24 (SD 5) years), at rest and during whole-body heating (water-perfused suit) to raise and clamp oesophageal temperature 0.6°C, 1.2°C and 1.8°C above baseline. Beat-to-beat measurements of RR interval and systolic blood pressure (BP) were obtained for deriving HRV (from RR), and cBRS calculated via (i) the spontaneous method, α coefficients and transfer function analysis at each level of heat strain, and (ii) during forced oscillations via squat-stand manoeuvres (0.1 Hz) before and after heating. Absolute values and changes in all cBRS estimates were variable but generally consistent with reductions in parasympathetic activity. cBRS estimates demonstrated poor absolute reliability (coefficient of variation ≥25%), but relative reliability (intraclass correlation coefficient; ICC) of some frequency estimates was acceptable (ICC ≥0.70) during low-heat strain (ICC: 0.56-0.74). After heating, forced oscillations in BP demonstrated more favourable responses than spontaneous oscillations (better reliability, lower minimum detectable change). Absolute reliability of HRV estimates were poor, but relative reliability estimates were often acceptable (≥0.70). Our findings illustrate how measurement consistency of cardiac autonomic modulation estimates are altered during heat stress, and we demonstrate the possible implications on research design and data interpretation.
Collapse
Affiliation(s)
- Ashley P Akerman
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Maura M Rutherford
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Claydon VE, Moore JP, Greene ER, Appenzeller O, Hainsworth R. Evaluation of forearm vascular resistance during orthostatic stress: Velocity is proportional to flow and size doesn't matter. PLoS One 2019; 14:e0224872. [PMID: 31730662 PMCID: PMC6857923 DOI: 10.1371/journal.pone.0224872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background The upright posture imposes a significant challenge to blood pressure regulation that is compensated through baroreflex-mediated increases in heart rate and vascular resistance. Orthostatic cardiac responses are easily inferred from heart rate, but vascular resistance responses are harder to elucidate. One approach is to determine vascular resistance as arterial pressure/blood flow, where blood flow is inferred from ultrasound-based measurements of brachial blood velocity. This relies on the as yet unvalidated assumption that brachial artery diameter does not change during orthostatic stress, and so velocity is proportional to flow. It is also unknown whether the orthostatic vascular resistance response is related to initial blood vessel diameter. Methods We determined beat-to-beat heart rate (ECG), blood pressure (Portapres) and vascular resistance (Doppler ultrasound) during a combined orthostatic stress test (head-upright tilting and lower body negative pressure) continued until presyncope. Participants were 16 men (aged 38.4±2.3 years) who lived permanently at high altitude (4450m). Results The supine brachial diameter ranged from 2.9–5.6mm. Brachial diameter did not change during orthostatic stress (supine: 4.19±0.2mm; tilt: 4.20±0.2mm; -20mmHg lower body negative pressure: 4.19±0.2mm, p = 0.811). There was no significant correlation between supine brachial artery diameter and the maximum vascular resistance response (r = 0.323; p = 0.29). Forearm vascular resistance responses evaluated using brachial arterial flow and velocity were strongly correlated (r = 0.989, p<0.00001) and demonstrated high equivalency with minimal bias (-6.34±24.4%). Discussion During severe orthostatic stress the diameter of the brachial artery remains constant, supporting use of brachial velocity for accurate continuous non-invasive orthostatic vascular resistance responses. The magnitude of the orthostatic forearm vascular resistance response was unrelated to the baseline brachial arterial diameter, suggesting that upstream vessel size does not matter in the ability to mount a vasoconstrictor response to orthostasis.
Collapse
Affiliation(s)
- V. E. Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| | - J. P. Moore
- School of Sport, Health & Exercise Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - E. R. Greene
- Department of Biology and Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, United States of America
| | - O. Appenzeller
- Department of Neurology, New Mexico Health Enhancement and Marathon Clinics Research Foundation, Albuquerque, New Mexico, United States of America
| | - R. Hainsworth
- Division of Cardiovascular and Neuronal Remodeling, Faculty of Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Turcani M, Ghadhanfar E. Biphasic changes in spontaneous cardiovagal baroreflex sensitivity during passive hyperthermia. Sci Rep 2019; 9:2586. [PMID: 30796280 PMCID: PMC6385277 DOI: 10.1038/s41598-019-39172-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/18/2019] [Indexed: 01/28/2023] Open
Abstract
Successful adaptation to passive hyperthermia requires continual adjustment of circulation, which is mediated mainly by the autonomic nervous system. The goal of this study was to explore the alterations in spontaneous cardiovagal baroreflex sensitivity (BRS) during exposure to a hot environment. To continuously follow changes in core body temperature (Tc), haemodynamics, and BRS, male Wistar-Kyoto rats were implanted with telemetric transmitters. BRS at an ambient temperature of 23 °C was not steady but oscillated with a maximum power in the range of 0.02–0.2 Hz. Exposure to hot air immediately shifted the distribution of BRS to higher values, although Tc remained unchanged (37.2 (0.3) °C), and the average BRS changed from 1.3 (0.3) to 3 (1.4) ms.mmHg−1, p < 0.0001. The degree of initial cardiovagal baroreflex sensitization explained 57% of the variability in the time to the onset of arterial pressure decline (p = 0.0114). With an increasing Tc (>38.8 (0.6) °C), BRS non-linearly declined, but haemodynamic parameters remained stable even above a Tc of 42 °C when the cardiovagal baroreflex was virtually non-operative. Abrupt full desensitization of the cardiovagal baroreflex with a muscarinic blocker did not induce arterial pressure decline. Our data indicate that a progressive decrease in BRS during passive hyperthermia does not induce haemodynamic instability. The positive association between initial cardiovagal baroreflex sensitization and the time to the onset of arterial pressure decline may reflect the potential protective role of parasympathetic activation during exposure to a hot environment.
Collapse
Affiliation(s)
- Marian Turcani
- Department of Physiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, Safat, 13110, Kuwait.
| | - Elham Ghadhanfar
- Department of Physiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, Safat, 13110, Kuwait
| |
Collapse
|
6
|
Crandall CG, Rickards CA, Johnson BD. Impact of environmental stressors on tolerance to hemorrhage in humans. Am J Physiol Regul Integr Comp Physiol 2018; 316:R88-R100. [PMID: 30517019 DOI: 10.1152/ajpregu.00235.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemorrhage is a leading cause of death in military and civilian settings, and ~85% of potentially survivable battlefield deaths are hemorrhage-related. Soldiers and civilians are exposed to a number of environmental and physiological conditions that have the potential to alter tolerance to a hemorrhagic insult. The objective of this review is to summarize the known impact of commonly encountered environmental and physiological conditions on tolerance to hemorrhagic insult, primarily in humans. The majority of the studies used lower body negative pressure (LBNP) to simulate a hemorrhagic insult, although some studies employed incremental blood withdrawal. This review addresses, first, the use of LBNP as a model of hemorrhage-induced central hypovolemia and, then, the effects of the following conditions on tolerance to LBNP: passive and exercise-induced heat stress with and without hypohydration/dehydration, exposure to hypothermia, and exposure to altitude/hypoxia. An understanding of the effects of these environmental and physiological conditions on responses to a hemorrhagic challenge, including tolerance, can enable development and implementation of targeted strategies and interventions to reduce the impact of such conditions on tolerance to a hemorrhagic insult and, ultimately, improve survival from blood loss injuries.
Collapse
Affiliation(s)
- Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center , Dallas, Texas
| | - Caroline A Rickards
- Department of Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Blair D Johnson
- Department of Exercise and Nutrition Sciences, University at Buffalo , Buffalo, New York
| |
Collapse
|
7
|
Peçanha T, Forjaz CLM, Low DA. Additive effects of heating and exercise on baroreflex control of heart rate in healthy males. J Appl Physiol (1985) 2017; 123:1555-1562. [PMID: 28860171 DOI: 10.1152/japplphysiol.00502.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study assessed the additive effects of passive heating and exercise on cardiac baroreflex sensitivity (cBRS) and heart rate variability (HRV). Twelve healthy young men (25 ± 1 yr, 23.8 ± 0.5 kg/m2) randomly underwent two experimental sessions: heat stress (HS; whole body heat stress using a tube-lined suit to increase core temperature by ~1°C) and normothermia (NT). Each session was composed of a preintervention rest (REST1); HS or NT interventions; postintervention rest (REST2); and 14 min of cycling exercise [7 min at 40%HRreserve (EX1) and 7 min at 60%HRreserve (EX2)]. Heart rate and finger blood pressure were continuously recorded. cBRS was assessed using the sequence (cBRSSEQ) and transfer function (cBRSTF) methods. HRV was assessed using the indexes standard deviation of RR intervals (SDNN) and root mean square of successive RR intervals (RMSSD). cBRS and HRV were not different between sessions during EX1 and EX2 (i.e., matched heart rate conditions: EX1 = 116 ± 3 vs. 114 ± 3 and EX2 = 143 ± 4 vs. 142 ± 3 beats/min but different workloads: EX1 = 50 ± 9 vs. 114 ± 8 and EX2 = 106 ± 10 vs. 165 ± 8 W; for HS and NT, respectively; P < 0.01). However, when comparing EX1 of NT with EX2 of HS (i.e., matched workload conditions but with different heart rates), cBRS and HRV were significantly reduced in HS (cBRSSEQ = 1.6 ± 0.3 vs. 0.6 ± 0.1 ms/mmHg, P < 0.01; SDNN = 2.3 ± 0.1 vs. 1.3 ± 0.2 ms, P < 0.01). In conclusion, in conditions matched by HR, the addition of heat stress to exercise does not affect cBRS and HRV. Alternatively, in workload-matched conditions, the addition of heat to exercise results in reduced cBRS and HRV compared with exercise in normothermia. NEW & NOTEWORTHY The present study assessed cardiac baroreflex sensitivity during the combination of heat and exercise stresses. This is the first study to show that prior whole body passive heating reduces cardiac baroreflex sensitivity and autonomic modulation of heart rate during exercise. These findings contribute to the better understanding of the role of thermoregulation on cardiovascular regulation during exercise.
Collapse
Affiliation(s)
- Tiago Peçanha
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of Sao Paulo , Sao Paulo , Brazil
| | - Cláudia L M Forjaz
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of Sao Paulo , Sao Paulo , Brazil
| | - David A Low
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University , Liverpool , United Kingdom
| |
Collapse
|