1
|
McCormick JJ, King KE, Rutherford MM, Meade RD, Notley SR, Akerman AP, Dokladny K, Kenny GP. Effect of extracellular hyperosmolality during normothermia and hyperthermia on the autophagic response in peripheral blood mononuclear cells from young men. J Appl Physiol (1985) 2022; 132:995-1004. [PMID: 35238651 DOI: 10.1152/japplphysiol.00661.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat-stress induced dehydration is associated with extracellular hyperosmolality. To counteract the associated stress, cells employ cytoprotective mechanisms, including autophagy, however, the autophagic response to hyperosmotic stress has yet to be evaluated in humans. Thus, we investigated autophagy and associated cellular stress pathways (the heat shock response [HSR], apoptosis, and the acute inflammatory response) to isosmotic and hyperosmotic conditions with and without hyperthermia in twelve young men (mean [SD]; 25 [5] years). Participants received a 90-min intravenous infusion of either isosmotic (ISO; 0.9% NaCl; serum osmolality of 293 [4] mOsm/kg) or hyperosmotic (HYP; 3.0% NaCl; 300 [6] mOsm/kg) saline, followed by passive whole-body heating using a water perfused suit to increase esophageal temperature by ~0.8⁰C. Peripheral blood mononuclear cells were harvested at baseline (pre-infusion), post-infusion, and after heating, and changes in protein content were analyzed via Western blotting. Post-infusion, the LC3-II/I ratio was higher in HYP compared to ISO infusion (p<0.001), although no other protein changes were observed (all p>0.050). Following passive heating, autophagy increased in HYP, as demonstrated by an increase in LC3-II from baseline (p=0.004) and an elevated LC3-II/I ratio compared to ISO (p=0.035), and a decrease in p62 when compared to the ISO condition (p=0.019). This was accompanied by an elevation in cleaved caspase-3 following heating in the HYP condition (p<0.010), however, the HSR and acute inflammatory response did not change under any condition (all p>0.050). Taken together, our findings indicate that serum hyperosmolality induces autophagy and apoptotic signaling during mild hyperthermia with minimal autophagic activation during normothermia.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Maura M Rutherford
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|