1
|
Respiratory characteristics of the tammar wallaby pouch young and functional limitations in a newborn with skin gas exchange. J Comp Physiol B 2021; 191:995-1006. [PMID: 33914108 DOI: 10.1007/s00360-021-01364-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
A short gestation, low birth weight and presence of cutaneous exchange of O2 and CO2 comprise altricial features of newborn marsupials and that collectively implies a highly immature respiratory system. In the present study, we investigated various respiratory characteristics of the neonatal/postnatal tammar wallaby, a species of marsupial in which > 30% of the newborn's total O2 demands are supported by cutaneous rather than pulmonary gas exchange. The ventilatory response (HVR) to acute hypoxia (10% inspired O2) was absent in the newborn (1 day old) pouch young; a hypoxic hypometabolism contributed entirely to the hyperventilation (increased pulmonary convection requirement). A high (compared to older animals) resting metabolic cost to breathe and an inefficient respiratory system suggest the lack of a HVR might be due to an energetic constraint that impinges on their ability to sustain an increase in ventilation. The latter was supported by the inability of the newborn to tolerate metabolic-ventilatory stimulation following administration of the metabolic uncoupler, 2,4-dinitrophenol (2,4-DNP). At 1 week of age, the cost of breathing was reduced, which coincided with the expression of a significant ventilatory response to hypoxia, a more energetically efficient respiratory system, and tolerance to 2,4-DNP. These data suggest this species of marsupial is born with major respiratory insufficiency, and that their pronounced dependence on the skin for metabolic gas exchange is of critical importance for survival.
Collapse
|
2
|
Polymeropoulos ET, Milsom WK. Editorial: Untangling the oxygen transport cascade: a tribute to Peter Frappell (Frapps). J Comp Physiol B 2021; 191:973-978. [PMID: 34463812 DOI: 10.1007/s00360-021-01401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
This collection of research articles was put together in honour of respiratory physiologist Professor Peter Frappell's (Frapps's) academic achievements. It encompasses various topics relating to the oxygen transport cascade, which was central to Frapps' career as a comparative physiologist. This issue highlights the diversity and outreach of his influence on the field and his pioneering spirit; promoting novel perspectives, methodologies and research techniques. This issue also demonstrates how Frapps' knowledge and scientific findings answered some of the fundamental questions within the field of respiratory physiology while creating and fostering a rather unique work atmosphere in the laboratories he led. We thank Frapps for the contributions he has made and the friendships he has nurtured over his career. Cheers, Frapps - we love you mate!
Collapse
Affiliation(s)
- Elias T Polymeropoulos
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS, 7001, Australia.
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Dzal YA, Milsom WK. Effects of hypoxia on the respiratory and metabolic responses to progressive cooling in newborn rodents that range in heterothermic expression. Exp Physiol 2021; 106:1005-1023. [PMID: 33608952 DOI: 10.1113/ep089085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/12/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Adult homeotherms and heterotherms differ in cold and hypoxia tolerance and in how they match O2 supply and demand in response to these stressors. It has never been ascertained whether these differences reflect different developmental trajectories or whether they are already present at birth. What is the main finding and its importance? When exposed to cold and hypoxia, newborn rodents differed in how they matched O2 supply and demand, with responses reflecting the degree of heterothermic expression and tolerance. Our findings indicate that elements of the adult phenotype are already present at birth. ABSTRACT There are physiological differences in how adult rodents regulate O2 supply and O2 demand when exposed to hypoxia in the cold. We examined whether these differences reflect divergent developmental trajectories of homeotherms and heterotherms or whether the differences are already present at birth. We exposed newborn rodents (0-4 days old) that ranged in heterothermic expression [a homeotherm, the rat (Rattus norvegicus); two facultative heterotherms, the mouse (Mus musculus) and the hamster (Mesocricetus auratus); and an obligate heterotherm, the ground squirrel (Ictidomys tridecemlineatus)] to either normoxia (21% O2 ) or hypoxia (7% O2 ) and measured their metabolic, thermoregulatory and ventilatory responses while progressively reducing the ambient temperature from 33 to 15°C. All newborns reduced their body temperature, O2 consumption rate and ventilation during progressive cooling, both in normoxia and in hypoxia. When progressively cooled in hypoxia, however, the homeothermic rats exhibited the greatest thermogenic response, depressed their O2 consumption rate the least and increased ventilation the most. In contrast, the obligate heterotherm, the ground squirrel, did not mount a thermogenic response, exhibited the greatest reduction in O2 consumption rate and increased O2 uptake not by increasing ventilation like the rat, but by extracting ≤80% of the O2 from each breath. Facultative heterotherms (mice and hamsters) exhibited responses in between these two extreme phenotypes. We conclude that even as newborns, homeotherms and heterotherms diverge in how they match O2 supply and O2 demand when progressively cooled in hypoxia, with responses reflecting the degree of heterothermic expression, in addition to reported hypoxia and cold tolerance.
Collapse
Affiliation(s)
- Yvonne A Dzal
- Department of Biology and Centre for Forest Interdisciplinary Research, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Kuypers K, Martherus T, Lamberska T, Dekker J, Hooper SB, Te Pas AB. Reflexes that impact spontaneous breathing of preterm infants at birth: a narrative review. Arch Dis Child Fetal Neonatal Ed 2020; 105:675-679. [PMID: 32350064 DOI: 10.1136/archdischild-2020-318915] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Some neural circuits within infants are not fully developed at birth, especially in preterm infants. Therefore, it is unclear whether reflexes that affect breathing may or may not be activated during the neonatal stabilisation at birth. Both sensory reflexes (eg, tactile stimulation) and non-invasive ventilation (NIV) can promote spontaneous breathing at birth, but the application of NIV can also compromise breathing by inducing facial reflexes that inhibit spontaneous breathing. Applying an interface could provoke the trigeminocardiac reflex (TCR) by stimulating the trigeminal nerve resulting in apnoea and a reduction in heart rate. Similarly, airflow within the nasopharynx can elicit the TCR and/or laryngeal chemoreflex (LCR), resulting in glottal closure and ineffective ventilation, whereas providing pressure via inflations could stimulate multiple receptors that affect breathing. Stimulating the fast adapting pulmonary receptors may activate Head's paradoxical reflex to stimulate spontaneous breathing. In contrast, stimulating the slow adapting pulmonary receptors or laryngeal receptors could induce the Hering-Breuer inflation reflex or LCR, respectively, and thereby inhibit spontaneous breathing. As clinicians are most often unaware that starting primary care might affect the breathing they intend to support, this narrative review summarises the currently available evidence on (vagally mediated) reflexes that might promote or inhibit spontaneous breathing at birth.
Collapse
Affiliation(s)
- Kristel Kuypers
- Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tessa Martherus
- Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tereza Lamberska
- Neonatology, General University Hospital in Prague, Prague, Czech Republic
| | - Janneke Dekker
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Arjan B Te Pas
- Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Andrewartha SJ, Cummings KJ, Frappell PB. Acid-base balance in the developing marsupial: from ectotherm to endotherm. J Appl Physiol (1985) 2014; 116:1210-9. [DOI: 10.1152/japplphysiol.00996.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Marsupial joeys are born ectothermic and develop endothermy within their mother's thermally stable pouch. We hypothesized that Tammar wallaby joeys would switch from α-stat to pH-stat regulation during the transition from ectothermy to endothermy. To address this, we compared ventilation (V̇e), metabolic rate (V̇o2), and variables relevant to blood gas and acid-base regulation and oxygen transport including the ventilatory requirements (V̇e/V̇o2 and V̇e/V̇co2), partial pressures of oxygen (PaO2), carbon dioxide (PaCO2), pHa, and oxygen content (CaO2) during progressive hypothermia in ecto- and endothermic Tammar wallabies. We also measured the same variables in the well-studied endotherm, the Sprague-Dawley rat. Hypothermia was induced in unrestrained, unanesthetized joeys and rats by progressively dropping the ambient temperature (Ta). Rats were additionally exposed to helox (80% helium, 20% oxygen) to facilitate heat loss. Respiratory, metabolic, and blood-gas variables were measured over a large body temperature (Tb) range (∼15–16°C in both species). Ectothermic joeys displayed limited thermogenic ability during cooling: after an initial plateau, V̇o2 decreased with the progressive drop in Tb. The Tb of endothermic joeys and rats fell despite V̇o2 nearly doubling with the initiation of cold stress. In all three groups the changes in V̇o2 were met by changes in V̇e, resulting in constant V̇e/V̇o2 and V̇e/V̇co2, blood gases, and pHa. Thus, although thermogenic capability was nearly absent in ectothermic joeys, blood acid-base regulation was similar to endothermic joeys and rats. This suggests that unlike some reptiles, unanesthetized mammals protect arterial blood pH with changing Tb, irrespective of their thermogenic ability and/or stage of development.
Collapse
Affiliation(s)
- Sarah J. Andrewartha
- University of Tasmania, Hobart, Tasmania, Australia
- CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia; and
| | - Kevin J. Cummings
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Peter B. Frappell
- University of Tasmania, Hobart, Tasmania, Australia
- CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia; and
| |
Collapse
|
6
|
Cummings KJ, Frappell PB. Breath-to-breath hypercapnic response in neonatal rats: temperature dependency of the chemoreflexes and potential implications for breathing stability. Am J Physiol Regul Integr Comp Physiol 2009; 297:R124-34. [PMID: 19420287 DOI: 10.1152/ajpregu.91011.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The breathing of newborns is destabilized by warm temperatures. We hypothesized that in unanesthetized, intact newborn rats, body temperature (T(B)) influences the peripheral chemoreflex response (PCR response) to hypercapnia. To test this, we delivered square-wave challenges of 8% CO(2) in air to postnatal day 4-5 (P4-P5) rats held at a T(B) of 30 degrees C (Cold group, n = 11), 33 degrees C (Cool group, n = 10), and 35 degrees C thermoneutral zone group [thermoneutral zone (TNZ) group, n = 11], while measuring ventilation (Ve) directly with a pneumotach and mask. Cool animals were challenged with 8% CO(2) balanced in either air or hyperoxia (n = 10) to identify the PCR response. Breath-to-breath analysis was performed on 30 room air breaths and every breath of the 1-min CO(2) challenge. As expected, warmer T(B) was associated with an unstable breathing pattern in room air: TNZ animals had a coefficient of variation in Ve (Ve CV%) that was double that of animals held at cooler T(B) (P < 0.001). Hyperoxia markedly suppressed the hypercapnic ventilatory response over the first 10 breaths (or approximately 4 s), suggesting that this domain is dominated by the PCR response. The PCR response (P = 0.03) and total response (P = 0.04) were significantly greater in TNZ animals compared with hypothermic animals. The total response had a significant, negative relationship with Vco(2) (R(2) = 0.53; P < 0.001). Breathing stability was positively related to the total response (R(2) = 0.36; P < 0.001) and to a lesser extent, the PCR response (R(2) = 0.19; P = 0.01) and was negatively related to Vco(2) (R(2) = 0.34; P < 0.001). ANCOVA confirmed a significant effect of T(B) alone on breathing stability (P < 0.01), with no independent effects of Vco(2) (P = 0.41), the PCR response (P = 0.82), or the total Ve response (P = 0.08). Our data suggest that in early postnatal life, the chemoreflex responses to CO(2) are highly influenced by T(B), and while related to breathing stability, are not predictors of stability after accounting for the independent effect of T(B).
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia.
| | | |
Collapse
|